Membrane Vesicles as Drug Delivery Systems: MISEV, In Vivo Fluorescence Imaging and Tracking, Specific Tissue Targeting, and Therapeutic Application in Diseases
Abstract
1. Membrane Vesicles as Drug Delivery System (DDSs) Are Rapidly Developing
2. The Minimum Information for Studies of Extracellular Vesicles (MISEV)
3. In Vivo Fluorescence Imaging and Tracking of Membrane Vesicles as DDSs
4. In Vivo Specific Tissue Targeting of Membrane Vesicles as DDSs
5. Therapeutic Application of Membrane Vesicles as DDSs in Diseases
Author Contributions
Funding
Conflicts of Interest
References
- An, X.Y.; Zeng, Y.; Liu, C.; Liu, G. Cellular-Membrane-Derived Vesicles for Cancer Immunotherapy. Pharmaceutics 2023, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.S.; Zhang, X.J.; Zhang, W.D.A.; Zhao, S.Y.; Chen, Y. Identification and characterization of cell-bound membrane vesicles. Biochim. et Biophys. Acta (BBA)-Biomembr. 2017, 1859, 756–766. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, W.D.; Tang, Q.S.; Zhou, Y.; Li, Y.F.; Rong, T.; Wang, H.Y.; Chen, Y. Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers. J. Nanobiotechnol. 2020, 18, 69. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Y.; Sun, C.H.; Liu, K.F.; Zhang, W.D.; Gaman, M.A.; Chen, Y. Cell-bound membrane vesicles contain antioxidative proteins and probably have an antioxidative function in cells or a therapeutic potential. J. Drug Deliv. Sci. Technol. 2023, 81, 104240. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.D.; Chen, Y.; Shan, W.Z. Image and data processing algorithms for identifying cell-bound membrane vesicle trajectories and movement information. Data Brief. 2019, 22, 605–619. [Google Scholar] [CrossRef]
- Qin, Y.; Zhuang, H.D.; Zhang, Y.; Chen, Y. Analysis of lipid composition of cell-bound membrane vesicles (CBMVs) derived from endothelial cells. Biochem. Biophys. Res. Commun. 2024, 733, 150722. [Google Scholar] [CrossRef]
- Zhao, H.N.; Huang, Z.D.; Sheng, Q.H.; Shao, W.X.; Zeng, M.; Wang, K.; Zhang, Y.; Qin, Y.; Xiong, Z.H.; Chen, L.Z.; et al. Enhanced Anti-Tumour Efficacy of iRGD-Modified Cell-Bound Membrane Vesicles (iRGD-CBMVs) as a Novel Drug Carrier. J. Extracell. Biol. 2025, 4, e70052. [Google Scholar] [CrossRef]
- Lan, M.Y.; Zhang, Y.; Chen, Y. Solving the Contamination Conundrum Derived from Coisolation of Extracellular Vesicles and Lipoproteins: Approaches for Isolation and Characterization. Small Methods 2025, 1, e01606. [Google Scholar] [CrossRef]
- Cañón-Beltrán, K.; Hamdi, M.; Mazzarella, R.; Cajas, Y.N.; Leal, C.L.V.; Gutiérrez-Adán, A.; González, E.M.; Silveira, J.C.; Rizos, D. Isolation, Characterization, and MicroRNA Analysis of Extracellular Vesicles from Bovine Oviduct and Uterine Fluids. Methods Mol. Biol. 2021, 2273, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Trauner, G.J.; Bernath-Nagy, D.; Merker, M.S.; Merker, S.; Luzarowski, M.; Leuschner, F.; Frey, N.; Giannitsis, E.; Krohn, J.B. Isolation, Characterization, and Proteomic Analysis of Plasma-Derived Extracellular Vesicles for Cardiovascular Biomarker Discovery. J. Vis. Exp. 2025, 31, 215. [Google Scholar] [CrossRef] [PubMed]
- Erttmann, S.F.; Gekara, N.O. Protocol for isolation of microbiota-derived membrane vesicles from mouse blood and colon. STAR Protoc. 2023, 4, 102046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W.D.; Wu, Z.W.; Chen, Y. Diversity of extracellular vesicle sources in atherosclerosis: Role and therapeutic application. Angiogenesis 2025, 28, 34. [Google Scholar] [CrossRef]
- Bojmar, L.; Kim, H.S.; Tobias, G.C.; Vatter, F.A.P.; Lucotti, S.; Gyan, K.E.; Kenific, C.M.; Wan, Z.; Kim, K.A.; Kim, D.; et al. Extracellular vesicle and particle isolation from human and murine cell lines, tissues, and bodily fluids. STAR Protoc. 2021, 2, 100225. [Google Scholar] [CrossRef]
- Deák, R.; Mihály, J.; Szigyártó, I.C.; Beke-Somfai, T.; Turiák, L.; Drahos, L.; Wacha, A.; Bóta, A.; Varga, A. Nanoerythrosomes tailoring: Lipid induced protein scaffolding in ghost membrane derived vesicles. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110428. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, J.; He, Y.; Jiang, L. Plant extracellular vesicles. Protoplasma 2020, 257, 3–12. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, H. Characterization and function of membrane vesicles in Gram-positive bacteria. Appl. Microbiol. Biotechnol. 2021, 105, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.H.; Qin, Y.; Zhuang, H.D.; Zhang, Y.; Wu, Z.W.; Chen, Y. Membrane Vesicles as Drug Delivery Systems: Source, Preparation, Modification, Drug Loading, In Vivo Administration and Biodistribution, and Application in Various Diseases. Pharmaceutics 2023, 15, 1903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lan, M.Y.; Chen, Y. Minimal Information for Studies of Extracellular Vesicles (MISEV): Ten-Year Evolution (2014–2023). Pharmaceutics 2024, 16, 1394. [Google Scholar] [CrossRef]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Vizio, D.D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef]
- Verweij, F.J.; Balaj, L.; Boulanger, C.M.; Carter, D.R.F.; Compeer, E.B.; D’Angelo, G.; Andaloussi, S.E.; Goetz, J.G.; Gross, J.C.; Hyenne, V.; et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods 2021, 18, 1013–1026. [Google Scholar] [CrossRef]
- Krishnan, M.A.; Alimi, O.A.; Pan, T.S.; Kuss, M.; Korade, Z.; Hu, G.; Liu, B.; Dua, B. Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics 2024, 16, 102. [Google Scholar] [CrossRef]
- Chen, Y.X.; Shi, Y.H.; Tao, Z.M. Fluorescence Tracking of Small Extracellular Vesicles In Vivo. Pharmaceutics 2023, 15, 2297. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.A.; Kramer, C.M. Cardiac Magnetic Resonance Imaging in Heart Failure. Cardiovasc. Innov. Appl. 2024, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.Y.; Qiu, R.Y.; Chen, J.Y.; Wang, L.Y.; Li, L.L.; Tian, Y.F.; Wang, H.J.; Lu, Y.S.; Zhao, J.C. A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images. Cardiovasc. Innov. Appl. 2023, 8, 24. [Google Scholar] [CrossRef]
- Remmelink, M.J.; Rip, Y.; Nieuwenhuijzen, J.A.; Ket, J.C.F.; Oddens, J.O.; Reijke, T.M.; Bruin, D.M. Advanced optical imaging techniques for bladder cancer detection and diagnosis: A systematic review. BJU Int. 2024, 134, 890–905. [Google Scholar] [CrossRef]
- Petroni, D.; Fabbri, C.; Babboni, S.; Menichetti, L.; Basta, J.; Turco, S.D. Extracellular Vesicles and Intercellular Communication: Challenges for In Vivo Molecular Imaging and Tracking. Pharmaceutics 2023, 15, 1639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Z.Y.; Gu, Y.H.; Gu, R.J. Therapeutic Effect of Membrane Vesicle Drug Delivery Systems in Inflammatory Bowel Disease. Pharmaceutics 2025, 17, 1127. [Google Scholar] [CrossRef]
- Muttiah, B.; Ng, S.L.; Lokanathan, Y.; Ng, M.H.; Law, J.X. Extracellular Vesicles in Breast Cancer: From Intercellular Communication to Therapeutic Opportunities. Pharmaceutics 2024, 16, 654. [Google Scholar] [CrossRef]
- Papadakos, S.P.; Arvanitakis, K.; Stergiou, I.E.; Vallilas, C.; Sougioultzis, S.; Germanidis, G. Stamatios TheocharisInterplay of Extracellular Vesicles and TLR4 Signaling in Hepatocellular Carcinoma Pathophysiology and Therapeutics. Pharmaceutics 2023, 15, 2460. [Google Scholar] [CrossRef]
- Yuan, S.L.; Li, G.F.; Zhang, J.B.; Chen, X.; Su, J.C.; Zhou, F.J. Mesenchymal Stromal Cells-Derived Extracellular Vesicles as Potential Treatments for Osteoarthritis. Pharmaceutics 2023, 15, 1814. [Google Scholar] [CrossRef]
- Kholia, S.; Sanchez, M.B.H.; Cedrino, M.; Papadimitriou, E.; Tapparo, M.; Deregibus, M.C.; Bruno, S.; Antico, F.; Brizzi, M.F.; Quesenberry, P.J. Giovanni Camussi Mesenchymal Stem Cell Derived Extracellular Vesicles Ameliorate Kidney Injury in Aristolochic Acid Nephropathy. Front. Cell Dev. Biol. 2020, 24, 188. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.Q.; Zhao, J.W.; Luan, F.X.; Wang, Y.J.; Lai, F.; Ouyang, D.F.; Tao, Y. Combining MSC Exosomes and Cerium Oxide Nanocrystals for Enhanced Dry Eye Syndrome Therapy. Pharmaceutics 2023, 15, 2301. [Google Scholar] [CrossRef] [PubMed]
- Ceccotti, E.; Saccu, G.; Sanchez, M.B.H.; Bruno, S. Naïve or Engineered Extracellular Vesicles from Different Cell Sources: Therapeutic Tools for Kidney Diseases. Pharmaceutics 2023, 15, 1715. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Zhuang, H.; Ren, X.; Lan, M.; Fan, S.; Qiu, Z.; Zhao, J.; Chen, Y. Membrane Vesicles as Drug Delivery Systems: MISEV, In Vivo Fluorescence Imaging and Tracking, Specific Tissue Targeting, and Therapeutic Application in Diseases. Pharmaceutics 2025, 17, 1550. https://doi.org/10.3390/pharmaceutics17121550
Qin Y, Zhuang H, Ren X, Lan M, Fan S, Qiu Z, Zhao J, Chen Y. Membrane Vesicles as Drug Delivery Systems: MISEV, In Vivo Fluorescence Imaging and Tracking, Specific Tissue Targeting, and Therapeutic Application in Diseases. Pharmaceutics. 2025; 17(12):1550. https://doi.org/10.3390/pharmaceutics17121550
Chicago/Turabian StyleQin, Ying, Hongda Zhuang, Xiaoyong Ren, Mengyi Lan, Shuoshuo Fan, Zhitao Qiu, Junfang Zhao, and Yong Chen. 2025. "Membrane Vesicles as Drug Delivery Systems: MISEV, In Vivo Fluorescence Imaging and Tracking, Specific Tissue Targeting, and Therapeutic Application in Diseases" Pharmaceutics 17, no. 12: 1550. https://doi.org/10.3390/pharmaceutics17121550
APA StyleQin, Y., Zhuang, H., Ren, X., Lan, M., Fan, S., Qiu, Z., Zhao, J., & Chen, Y. (2025). Membrane Vesicles as Drug Delivery Systems: MISEV, In Vivo Fluorescence Imaging and Tracking, Specific Tissue Targeting, and Therapeutic Application in Diseases. Pharmaceutics, 17(12), 1550. https://doi.org/10.3390/pharmaceutics17121550

