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Abstract: Arginase (ARG) is a binuclear manganese-containing metalloenzyme that can
convert L-arginine to L-ornithine and urea and plays a key role in the urea cycle. It
also mediates different cellular functions and processes such as proliferation, senescence,
apoptosis, autophagy, and inflammatory responses in various cell types. In mammals, there
are two isoenzymes, ARG-1 and ARG-2; they are functionally similar, but their coding genes,
tissue distribution, subcellular localization, and molecular regulation are distinct. In recent
decades, the abnormal expression of ARG-1 or ARG-2 has been reported to be increasingly
linked to a variety of diseases, including cardiovascular disease, inflammatory bowel
disease, Alzheimer’s disease, and cancer. Therefore, considering the current relevance of
this topic and the need to address the growing demand for new and more potent ARG
inhibitors in the context of various diseases, this review was conceived. We will provide
an overview of all classes of ARG inhibitors developed so far including compounds of
synthetic, natural, and semisynthetic origin. For the first time, the synthesis protocol
and optimized reaction conditions of each molecule, including those reported in patent
applications, will be described. For each molecule, its inhibitory activity in terms of IC50

towards ARG-1 and ARG-2 will be reported specifying the type of assay conducted.

Keywords: Arginase; Arginase inhibitors; synthetic protocols

1. Introduction
Arginase (ARG) has roots in early life forms. It is a manganese-containing binuclear

metalloenzyme capable of converting L-arginine to urea and L-ornithine. Urea provides
protection against ammonia (NH3), while L-ornithine serves to stimulate cell growth and
other physiological functions. This interconnection with various metabolic pathways, such
as polyamine synthesis and energy metabolism regulation, underscores the importance
of ARG in maintaining metabolic homeostasis [1]. L-arginine is one of the most versatile
amino acids in animal cells, serving as a precursor not only for the protein synthesis but
also for the production of nitric oxide, urea, polyamines, proline, glutamate, creatine, and
agmatine [2]. In mammals, there are two isoenzymes: arginase-1 (ARG-1) and arginase-2
(ARG-2). They are functionally similar, but the coding genes, tissue distribution, subcellular
localization, and molecular regulation are distinctive. ARG-1 is localized in the cytoplasm
and mainly expressed in the liver, where it is responsible for the detoxification of ammonia
in the urea cycle [1]. In contrast, ARG-2 is predominantly found in the mitochondria and
is primarily involved in polyamine generation [3]. Both enzymes metabolize L-arginine,
which is severely depleted in the immunosuppressive tumour microenvironment (TME),
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where it is crucial for proliferating cells. This positions them at the forefront of immune
escape through various mechanisms.

Within the TME, ARG-1 plays a crucial role in immune evasion by activating immuno-
suppressive cells, such as myeloid-derived suppressor cells (MDSCs), a heterogeneous
population of bone marrow-derived cells that suppress immune responses and facilitate
tumour progression [4]. In addition to high expression in MDSCs, ARG-1 is also upreg-
ulated in tumour-associated macrophages (TAMs) and activated neutrophils within the
TME [5,6]. In these cells, it depletes L-arginine, impairing T-cell activation and proliferation,
ultimately enabling cancer cells to evade immune surveillance.

Recently, ARG-2 has received special attention. It has been reported that the ARG-2
pathway is a means by which regulatory T cells (Tregs), also called CD4

+ cells, regulate
inflammation in tissues. Compared to psoriatic Tregs, healthy Tregs express almost 4-fold
more ARG-2; similarly, Tregs in metastatic melanoma lesions express high levels of ARG-2
protein, with these levels being higher in tumour-infiltrating Tregs than in Tregs isolated
from healthy skin [7]. ARG-2 reduces the survival and proliferation of effector T cells
(CD8

+), thereby impacting antitumour immune responses. Thus, L-arginine metabolism via
ARG-2 is an immunoregulatory pathway used by Tregs in human tissues, with significant
implications for both autoimmunity and cancer.

The disturbance in the expression of ARG can lead to a range of vascular, neurologi-
cal, immunological, and inflammatory disorders, as the isoforms ARG-1 and ARG-2 are
involved in the regulation of nitric oxide (NO), polyamines, proline, and, particularly in
the immune system, endothelial cells, and neuronal cells [8–10].

Regarding the involvement of ARG in the immune system, in the presence of an inflam-
matory stimulus, the enzyme nitric oxide synthase (NOS) produces NO. This NO interacts
with reactive oxygen species (ROS), creating a cytotoxic nitrosative stress environment
that inhibits both cellular replication and pathogenic activity [11]. On the other hand, the
enzyme ARG metabolizes L-arginine, regulating defence mechanisms and downregulating
NO production. This helps prevent uncontrolled cellular apoptosis triggered by ONOO–

species generated from excess NO reacting with superoxide radicals (O2
−) [12].

An altered balance in the expression of these two enzymes can cause serious issues for
the immune system. Additionally, the dysregulated release of ARG from cells and tissues
into extracellular fluids can further compromise the defence mechanisms of macrophages
against pathogens by limiting the bioavailability of L-arginine, reducing NO levels, and
disrupting cytokine production pathways. It has been shown that ARG is implicated in
disorders such as multiple sclerosis, as the increased regulation of the enzyme ARG-2
stimulates the production of cytokines that differentiate T helper 17 cells, thus inducing
inflammation [13]. In studies on obesity-induced vasculopathy, it has been observed that
high levels of fats and sucrose activate Rho-associated kinases, increasing the expression
of ARG-1. The increased synthesis of polyamines mediated by ARG-1 promotes cellular
proliferation and fibrosis; additionally, the rise in ROS levels contributes to dysfunction [14].

The enzyme ARG, particularly its isoform ARG-2, plays a crucial role in maintaining
the balance of the cardiovascular system by regulating the levels of NO [15]. This helps
reduce oxidative damage to the endothelium, promotes blood vessel dilation, and prevents
the adhesion and aggregation of leukocytes and platelets. An imbalance between the
enzymes that degrade L-arginine (ARG and NOS) can contribute to many age-related
cardiovascular complications, such as vascular stiffness, ventricular hypertrophy, hyperten-
sion, inflammation, and disorders caused by oxidative stress [16]. Studies have shown that
a high-fat, high-cholesterol diet causes liver damage in mice, leading to the overexpression
of ARG-1, a consequent reduction in circulating L-arginine levels, and cardioprotective
effects mediated by NO [17]. In contrast, a glucose-free diet in mice results in increased
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expression of ARG-2, triggering signalling pathways that protect hepatocytes from fat
accumulation, inflammatory responses, insulin resistance, and glucose intolerance [18].

ARG and NOS are present in both the peripheral and central nervous systems, but
their interaction is complicated by the complexity of the brain. ARG is essential for
the detoxification of ammonia and the synthesis of polyamines, which are necessary for
neuronal development and regeneration. NO, on the other hand, is a neurotransmitter
that contributes to synaptic plasticity and cerebral blood flow. During development,
high levels of cAMP stimulate ARG-1 to promote neuronal survival. However, with
ageing, an imbalance between ARG and NOS can reduce NO production, contributing to
neurodegenerative diseases [19].

One neurodegenerative disease associated with the alteration of ARG enzyme expres-
sion is Alzheimer’s disease. It has been observed that microglial activation leads to the
production of cytokines, which induce increased expression of ARG-1 and ARG-2 in the
brain. However, the accumulation of ARG-2 at sites of β-amyloid deposition causes the
uncoupling of NOS, generating O2

− and neurodegenerative oxidative stress [20]. This
may be an attractive molecular imaging target for the evaluation of Alzheimer’s disease
progression [21]. In certain contexts, an excess of NO can cause neuronal damage and brain
trauma due to excitotoxicity. Notably, the role of ARG-2 is completely reversed in neurode-
generative diseases compared to cardiovascular disorders, highlighting the importance of
understanding the distinct contributions of each isoform in different disease contexts. This
underscores the need for selective molecules tailored to each isoform.

In line with the significant role of ARG-1 and ARG-2 in numerous diseases, there has
been growing interest in developing inhibitors for these enzymes. In particular, identifying
the ARG enzymes as critical metabolic checkpoints in the TME has spurred the design
of novel ARG inhibitors. Both natural and synthetic compounds have been evaluated in
various in vitro, ex vivo, and in vivo models [22,23]. Natural compounds like chlorogenic
acid and picetannol, as well as synthetic compounds such as L-arginine-like derivatives
and boronic acid derivatives, have been studied. These boronic acids are α-amino acids
with a lateral boronic group capable of chelating the two manganese ions required for
enzymatic activity. However, their inhibitory activity (IC50) was in the micromolar range,
indicating the need for further improvement. The initial approach taken by Van Zandt
et al., later upgraded by others, focused on expanding 2-(S)-amino-6-boronohexanoic acid
(ABH) with moieties capable of additional interactions with residues Asp181, Asp183,
and Asp202 [24–26]. Further improvements in the pharmacological profile were achieved
by limiting the conformational flexibility of ABH. Notable examples include CB-1158
(numidargistat) and OATD-02 [27,28]. In a recent study, OATD-02 demonstrated superior
in vivo antitumor capacity compared to CB-1158, as it inhibited both extracellular ARG-1
within the TME and cellular ARG-2 overexpressed in the TME [29]. By inhibiting ARG-2,
OATD-02 was found to regulate the activity of CD8

+ cells and Tregs, thus controlling a key
player responsible for the metabolic adaptation typical of hypoxic tumours.

This review aims to provide a comprehensive overview of ARG inhibitors, focusing
on the ongoing search for these molecules involved in multiple key pathophysiological
processes. We categorize these inhibitors into generations and classes, as illustrated in
Figure 1. For each molecule, its inhibitory activity (IC50) against ARG-1 and ARG-2 will be
reported, with colorimetric assays used for all compounds unless otherwise specified.

Three reviews have previously addressed this topic, each from a different perspective.
Borek et al. focused on the SAR and pharmacokinetic properties of each inhibitor [22]; Niu
et al. discussed the underlying mechanism of ARG in tumour cell growth and summarized
recent clinical research on ARG targeting for cancer therapy [30]. Clemente et al. explored
the potential of ARG as a molecular imaging biomarker, stimulating the development of
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high-affinity, specific ARG imaging probes [16]. Failla et al. analysed the structural charac-
teristics and plasticity of ARG-1 and ARG-2 binding sites, aiming to design inhibitors with
new binding patterns [31]. However, none of these reviews have addressed the synthetic
procedures of ARG inhibitors, a critical aspect from a medicinal chemistry perspective.
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Figure 1. Schematic representation of all ARG inhibitor classes.

The chemical synthesis of these inhibitors presents numerous challenges, primarily
due to their inherent chemical complexity. For instance, replacing the guanidine group with
a boronic acid residue has proven effective. This modification preserves the geometry and
electrophilicity of the original group while improving the compound’s physicochemical
properties, such as reduced polarity and non-basicity. However, synthesizing a boronic
acid derivative is challenging due to the reactivity of the functional group, necessitating
the use of a protected ester form. Although using a protecting group can simplify the
synthetic process, this is not always the case with amino acid derivatives, such as ARG
inhibitors. These derivatives must mimic the amino acid L-arginine, requiring both amino
and carboxylic groups. Given that these functional groups are as reactive as boronic acid,
selecting the optimal protecting group and synthetic strategy is challenging. The inherent
chemical complexity of these procedures presents scalability issues and challenges with
reproducibility, further complicated by the presence of chiral centres and the need for
stereoselective syntheses.

In this review, we provide a complete overview of all classes of ARG inhibitors,
including molecules of synthetic and natural origins. For the first time, we also present
the synthetic protocols and the optimized reaction conditions for each molecule. Many
structures and syntheses of ARG inhibitors have been reported in patents that are often
difficult to access and interpret. This review aims to be a comprehensive guide to the
synthesis of ARG inhibitors, addressing critical issues from a synthetic chemical perspective
and suggesting how these can be overcome through medicinal chemistry strategies.

2. First-Generation Inhibitors
The first ARG inhibitors were developed by analysing the chemical structure of the

enzyme’s natural substrates, such as L-arginine and other structurally similar amino acids.
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The enzyme’s small and highly polar active site favours the accommodation of amino
acids with a natural L-configuration (such as L-arginine analogues), which is also the
configuration responsible for the enzyme’s activity.

The subsequent inclusion of a boronic group into the inhibitor structures was crucial
for two main reasons. First, during the binding mechanism with the ARG enzyme, the
boronic group forms a tetrahedral boronate anion by incorporating an OH group, effectively
mimicking the transition state of the hydrolysis of the trigonal planar guanidine group in L-
arginine by ARG. Second, the boron atom’s electron deficiency facilitates nucleophilic attack
by the hydroxide ion, enhancing the activity of the inhibitor. Boronic acid also serves as an
excellent guanidine substitute due to its similar geometry and electrophilicity, while offering
better physicochemical properties—it is less polar, non-basic, and has fewer hydrogen bond
donors [32]. In addition to incorporating the boronic moiety, other structural modifications
included varying the length of the alkyl side chain, introducing a sulphur atom along
the carbon chain, and adding a phenyl ring to the side chain to create a conformationally
restricted analogues. These modifications led to the development of ARG inhibitors, which,
divided into α-amino acid derivatives and boronic acid-containing compounds, constitute
the class of first-generation inhibitors [22].

2.1. α-Amino Acid Derivatives

ARG inhibitors derived from amino acids include L-homoarginine (1), L-ornithine
(2), and L-citrulline (3) categorized as “natural amino acids compounds” (Figure 2).
L-homoarginine interacts slowly with ARG, as the enzyme’s hydrolytic efficiency depends
on the side chain of the α-amino acid substrate. It inhibits human hARG-1 with IC50 and
Ki values of 8.14 ± 0.52 mM and 6.1 ± 0.50 mM, respectively, and hARG-2 with IC50

and Ki values of 2.52 ± 0.01 mM and 1.73 ± 0.10 mM, respectively. ARG activity was
assessed by measuring L-ornithine formation in HEK293T cell lysates [33]. L-ornithine
shows a significant inhibition of rat ARG, achieving 85.9% inhibition at 10 mM. Similarly,
L-citrulline exhibits inhibition levels comparable to L-ornithine, with a bovine liver ARG
inhibition of 60% at 20 mM for L-ornithine and 53% at 20 mM for L-Citrulline, as measured
by a [14C] urea assay [34,35]. The IC50 values, in the millimolar range, obtained with the
aforementioned α-amino acid derivatives in in vitro models indicated that they were weak
ARG inhibitors, predicting an even weaker therapeutic potential in vivo.
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Figure 2. Chemical structures of compounds 1–3.

Nω-hydroxyarginine (L-NOHA, 4), is a hydroxylated derivative of L-arginine and a
potent ARG inhibitor. It demonstrated the following activity against hARG with the fol-
lowing results: hARG-1 with a Kd of 3.6 µM (pH 8.5, surface plasmon resonance, SPR) and
hARG-2 with Ki values of 1.6 µM, (pH 7.5) and 2 µM (pH 9.5, radioactive assay) [36,37]. For
the synthesis of L-NOHA, Wallace et al. adopted Bodanszky’s method (Scheme 1) [38,39].
Starting with Nδ-(benzyloxycarbonyl)-L-ornithine (4a), the carboxylic acid group was
protected using tert-butylacetate and HClO4, yielding the corresponding tert-butyl ester
(4b). Compound 4b was treated with tert-butyl pyrocarbonate in dichloromethane (DCM)
at 0 ◦C and then at room temperature (r.t.) to protect the amine group, producing com-
pound 4c. Next, hydrogenation with H2 and Pd/C removed the benzyloxycarbonyl group,
generating the Nα-(tert-butyroxycarbonyl)-L-ornithine tert-butyl ester (4d) [39]. To form
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the cyanamide derivative 4e, the reaction of 4d with BrCN in MeOH using NaOAc as a
base (Bailey’s method) was performed [40]. The subsequent reaction of 4e with NH2OH in
dry dioxane under reflux produced the Nα-(tert-butyloxycarbonyl)-Nω-hydroxy-L-arginine
tert-butyl ester (4f). Finally, deprotection of 4f with trifluoroacetic acid (TFA) yielded
Nω-hydroxyarginine (4) [39].
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Scheme 1. Synthesis of L-NOHA (4).

Nor-NOHA (5), a hydroxyguanidine derivative with a shorter alkyl chain, is another
compound that effectively inhibits the enzyme ARG [41]. It was tested on hARG with the
following results: on hARG-1 (pH 8.5) it showed a Kd of 0.517 µM (SPR) and 0.047 µM
(isothermal titration colorimetry determination, ITC), while on hARG-2 it exhibited a Ki of
51 nM (pH 7.5). As shown by the data from the ARG inhibition tests, the smaller derivative
nor-NOHA demonstrated higher affinity compared to L-NOHA and also exhibited a
better pharmacokinetic profile, including improved bioavailability and faster elimination.
The synthesis of nor-NOHA, which is very similar to that of L-NOHA, is outlined in
Scheme 2 [36,37].
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Scheme 2. Synthesis of compound 5.

The synthesis of nor-NOHA (5), began with Nα-tert(butyloxycarbonyl)-L-glutamine
(5a) as the starting material [42]. After the Hofmann degradation of the carboxamide, the
amine group was protected using benzyl chloroformate (CbzCl), followed by the protec-
tion of the carboxyl group with a tert-butyl ester, yielding Nα-tert(butyloxycarbonyl)-Nγ-
benzyloxycarbonyl-L-2,4-tert-butyl-diaminobutyrate (5b). This intermediate 5b underwent
further reactions, including catalytic hydrogenation to selectively deprotect the amine
group, followed by treatment with BrCN and NH2OH-HCl to introduce the hydroxyguani-
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dine group, forming Nα-tert(butyloxycarbonyl)-Nω-hydroxy-nor-L-tert-butyl arginine (5c).
These steps were streamlined into two stages. Finally, dry HCl removed all protecting
groups, yielding the target compound, nor-NOHA.2HCl (5) [43].

Two additional first-generation inhibitors, Nω-hydroxy-indospicin (6) and 4-hydroxy-
amino-D,L-phenylalanine (7), are analogues of L-NOHA in which the hydroxyguanidine
group is replaced by hydroxyamidine. Both have shown micromolar activity against
bovine liver ARG ([14C] urea assay) with IC50 values of 50 ± 10 µM for compound 6 and
230 ± 5 µM for compound 7 [41].

The synthesis of compounds 6 and 7 (see Scheme 3) has been described by Vadon
et al. Briefly, N-BOC-glycine was alkylated using 5-bromopentanenitrile (for compound
6) or 4-(bromomethyl)benzonitrile (for compound 7) in dry tetrahydrofuran (THF) using
lithium diisopropylamide (LDA). The resulting products, Nα-tert-butoxycarbonyl-6-cyano-
D,L-norleucine (6b) and Nα-tert-butoxycarbonyl-p-cyano-D,L-phenylalanine (7b) had their
carboxyl groups protected as a tert-butyl ester using benzyltriethylammonium chloride,
K2CO3, and tert-butyl bromide in dimethylacetamide (DMAc). The intermediates Nα-tert-
butoxycarbonyl-6-cyano-D,L-norleucine-tert-butylester (6c) and Nα-tert-butoxycarbonyl-p-
cyano-D,L-phenylalanin-tert-butylester (7c) were refluxed with ethanolic hydroxylamine
for 6 h to form the hydroxiimidine derivatives Nα-tert-butoxycarbonyl-Nω-hydroxy-
D,L-indospicine-tert-butylester (6d) and Nα-tert-butoxycarbonyl-p-hydroxyamidino-D,L-
phenylalanine-tert-butylester (7d). In the final synthetic step, treatment with HCl in dry
dioxane at r.t. for 24 h removed the protecting groups, producing the final compounds Nω-
hydroxy-D,L-indospicine (6) and 4-hydroxy-amino-D,L-phenylalanine (7), respectively [44].
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α-Difluoromethylornithine (DFMO, 8) is an irreversible inhibitor of ornithine decar-
boxylase (ODC), the enzyme involved in polyamines biosynthesis [34,45]. It also exhibited
weak inhibitory activity against intestinal ARG, with a Ki of 3.9 ± 1.0 mM in intact HT-29
cells and 80 ± 3% inhibition at 10 mM on bovine liver arginase [46]. The synthesis of DFMO
is shown in Scheme 4 [47]. The process began with glycine ethyl ester hydrochloride salt
(8a) reacting with benzaldehyde in the presence of magnesium sulphate, acetonitrile (ACN),
and triethylamine (TEA) to form the 2-benzylideneamino glycine ethyl ester (8b). This
intermediate was then treated with acrylonitrile in the presence of K2CO3 and triethylben-
zylammonium chloride, yielding ethyl 2-benzylideneamino-4-cyanobutyrate (8c). Next, 8c
reacted with chlorodifluoromethane and lithium tert-butoxide in THF at 40 ◦C producing
ethyl-2-benzylideneamino-2-difluoromethyl-4-cyanobutyrate (8d). Compound 8d was
then deprotected with 4 M HCl in methyl-tert-butyl ether (MTBE) to give ethyl-2-amino-2-
difluoromethyl-4-cyanobutyrate (8e), which underwent catalytic hydrogenation in MTBE
and 12 M HCl to form ethyl 2,5-diamino-2-difluoromethylpentanoate dihydrochloride (8f).
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In the final step, 8f was deprotected with 12 M HCl, yielding DFMO monohydrochloride
monohydrate (8).
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2.2. Boronic Acid Derivatives

Another class of first-generation ARG inhibitors consists of boronic acid derivatives.
The compound 2(S)-amino-6-boronohexanoic acid (ABH, 9) is the first boronic acid-based
arginine isostere [48]. ABH exhibited strong activity, with a Kd of 5 nM for hARG-1, a Ki of
8.5 nM for hARG-2, and an IC50 of 0.8 µM for rat liver ARG-1 [22]. The synthesis of ABH is
outlined in Scheme 5 [48,49]. First, (R)-5-(tert-butoxy)-4-((tert-butoxycarbonyl)amino)-5-
oxopentanoic acid (9a) was reduced using sodium borohydride and ethyl chloroformate
to produce a primary alcohol derivative (9b). In the next step, 9b underwent Swern
oxidation to form an aldehyde 9c, which was used directly in a Wittig reaction with triph-
enylphosphonium methylilide, yielding olefin (9d). The hydroboration of 9d, followed by
treatment with MeOH and protection with (1S,2S,3R,5S)-(+)-pinanediol, yields intermediate
9e. The final step involved complete deprotection using BCl3, yielding ABH (9) as a white
semi-crystalline solid.
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2-Boronoethyl-L-cysteine (BEC, 10) is an analogue of ABH, where a sulphur atom
replaces carbon in the main chain. BEC exhibited activity with a Kd of 270 nM for hARG-
1 (ITC) and a Ki of 30 nM for hARG-2 (radioactive assay) [22]. The synthesis of BEC
(Scheme 6) involved a single-step reaction [50]. A solution of cysteine (10b) and dibutylen-
boronate (10a) in MeOH and H2O was refluxed at 80 ◦C under N2 for 14 h. Afterward,
azobisisobutyronitrile was added, yielding the desired compound 10.



Pharmaceutics 2025, 17, 117 9 of 51Pharmaceutics 2025, 17, x FOR PEER REVIEW 9 of 51 
 

 

 

Scheme 6. Synthesis of compound 10. 

ABH and BEC exhibited higher affinity for ARG than α-amino acid derivatives. How-
ever, their bioavailability was relatively low, with undetectable plasma levels, likely due 
to their limited ability to cross biological membranes. Additionally, their unacceptable 
toxicity to normal cells, stemming from their chemical reactivity and instability, rendered 
them unsuitable for clinical use in cancer treatment. As a result, a structural optimization 
study, along with the exploration of medicinal chemistry strategies—such as drug deliv-
ery systems—became crucial. Approaches aimed at enhancing the permeability and sta-
bility of these ARG inhibitors, potentially through carrier or bioprecursor prodrug strate-
gies, are urgently needed. 

3. Second-Generation Inhibitors 
Second-generation inhibitors include α-substituted ABH analogues, which have 

shown promising and potent ARG inhibitors. These inhibitors are further divided into 
two subclasses: basic side chain α-substituted ABH analogues (see Section 3.1) and non-
basic side chain α-substituted ABH analogues (see Section 3.2) [16]. 

3.1. Basic Side Chain α-Substituted ABH Analogues 

The first second-generation molecule discussed in this review is (R)-2-amino-6-bo-
rono-2-(2-piperidin-1-yl) ethyl) hexanoic acid (11), which demonstrated inhibition activity 
against hARG-1 and hARG-2 with IC50 values of 223 nM and 509 nM, respectively [24]. Its 
cellular activity against hARG-1 in CHO cells was also confirmed (IC50 = 509 nM) [22]. The 
patented synthesis of compound 11 (Scheme 7) began with (4S,5S)-tert-butyl-6-oxo-4,5-
diphenyl-1,3-oxazinane-3-carboxylate (11a), which was alkylated with 2-(4-iodobutyl)-
4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11b) using NaHMDS and HMPA in THF at -78 
°C, forming boronate (11c). A second alkylation with allyl iodide, using potassium bis(tri-
methylsilyl)amide (KHMDS) as the base and DME (dimethoxyethane) as the solvent, 
yielded oxazinone 11d, which followed two possible synthetic routes a or b. In route a, 
11d underwent ozonolysis in DCM at −78 °C (11e) followed by reductive amination with 
piperidine, NaBH(OAc)3, and AcOH in DCM to produce amine 11f in a 95% yield. The 
auxiliary oxazinone was then removed by treatment with 6 M HCl in a microwave reactor 
at 170 °C for 40 min, yielding compound 11 in a 87% yield. For route b, the steps were 
reversed. First 11d was treated with Li in liquid ammonia to produce (R)-methyl 2-allyl-
2-(tert-butoxycarbonylamino)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate 
(11g) as a colourless oil. This intermediate was then subjected to ozonolysis in DCM at −78 
°C (11h), followed by reductive amination with piperidine, NaBH(OAc)3, and AcOH 
forming amine 11i in 67% yield. The deprotection of 11i with 6 M HCl under reflux for 16 
h produced the final compound 11 as a dihydrochloride salt [51]. The two synthetic pro-
cedures for compound 11 (route a and route b) were developed to facilitate large-scale 
synthesis. Route a required fewer synthetic steps and provided a higher overall yield com-
pared to route b. The need to optimize the synthesis of compound 11, addressed by the 
same authors who designed this inhibitor, was driven by the need for a precise configu-
ration of the target inhibitor and the requirement to start with a flexible intermediate, such 

Scheme 6. Synthesis of compound 10.

ABH and BEC exhibited higher affinity for ARG than α-amino acid derivatives. How-
ever, their bioavailability was relatively low, with undetectable plasma levels, likely due
to their limited ability to cross biological membranes. Additionally, their unacceptable
toxicity to normal cells, stemming from their chemical reactivity and instability, rendered
them unsuitable for clinical use in cancer treatment. As a result, a structural optimization
study, along with the exploration of medicinal chemistry strategies—such as drug delivery
systems—became crucial. Approaches aimed at enhancing the permeability and stability
of these ARG inhibitors, potentially through carrier or bioprecursor prodrug strategies, are
urgently needed.

3. Second-Generation Inhibitors
Second-generation inhibitors include α-substituted ABH analogues, which have

shown promising and potent ARG inhibitors. These inhibitors are further divided into two
subclasses: basic side chain α-substituted ABH analogues (see Section 3.1) and non-basic
side chain α-substituted ABH analogues (see Section 3.2) [16].

3.1. Basic Side Chain α-Substituted ABH Analogues

The first second-generation molecule discussed in this review is (R)-2-amino-6-borono-
2-(2-piperidin-1-yl) ethyl) hexanoic acid (11), which demonstrated inhibition activity against
hARG-1 and hARG-2 with IC50 values of 223 nM and 509 nM, respectively [24]. Its cel-
lular activity against hARG-1 in CHO cells was also confirmed (IC50 = 509 nM) [22]. The
patented synthesis of compound 11 (Scheme 7) began with (4S,5S)-tert-butyl-6-oxo-4,5-
diphenyl-1,3-oxazinane-3-carboxylate (11a), which was alkylated with 2-(4-iodobutyl)-
4,4,5,5-tetramethyl-1,3,2-dioxaborolane (11b) using NaHMDS and HMPA in THF at
−78 ◦C, forming boronate (11c). A second alkylation with allyl iodide, using potassium
bis(trimethylsilyl)amide (KHMDS) as the base and DME (dimethoxyethane) as the solvent,
yielded oxazinone 11d, which followed two possible synthetic routes a or b. In route a,
11d underwent ozonolysis in DCM at −78 ◦C (11e) followed by reductive amination with
piperidine, NaBH(OAc)3, and AcOH in DCM to produce amine 11f in a 95% yield. The
auxiliary oxazinone was then removed by treatment with 6 M HCl in a microwave reactor
at 170 ◦C for 40 min, yielding compound 11 in a 87% yield. For route b, the steps were
reversed. First 11d was treated with Li in liquid ammonia to produce (R)-methyl 2-allyl-2-
(tert-butoxycarbonylamino)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate (11g)
as a colourless oil. This intermediate was then subjected to ozonolysis in DCM at −78 ◦C
(11h), followed by reductive amination with piperidine, NaBH(OAc)3, and AcOH forming
amine 11i in 67% yield. The deprotection of 11i with 6 M HCl under reflux for 16 h pro-
duced the final compound 11 as a dihydrochloride salt [51]. The two synthetic procedures
for compound 11 (route a and route b) were developed to facilitate large-scale synthesis.
Route a required fewer synthetic steps and provided a higher overall yield compared to
route b. The need to optimize the synthesis of compound 11, addressed by the same authors
who designed this inhibitor, was driven by the need for a precise configuration of the target
inhibitor and the requirement to start with a flexible intermediate, such as the aldehyde,
which could be prepared on a large scale and with high enantioselectivity.
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Among α, α-disubstituted amino acid-based ARG inhibitors, compound 2-amino-
6-borono-2-(1-(3,4-dichlorobenzyl) piperidin-4-yl) hexanoic acid (12), stands out. This
derivative, featuring a piperidine ring linked to a quaternary amino acid centre, was synthe-
sized by Golebiowski et al. (Scheme 8) [26]. It demonstrated potent inhibitory activity with
IC50 values of 200 nM for hARG-1 and 290 nM for hARG-2 [16]. The synthesis of compound
12 began with the reaction of 1-tert-butyl-4-methyl piperidine-1,4-dicarboxylate (12a) with
N,O-dimethylhydroxylamine and i-PrMgBr in THF, forming Weinreb amide 12b. Next, 12b
underwent substitution with but-3-en-1-yl-magnesiumbromide in THF at 0 ◦C under N2

yielding tert-butyl 4-(pent-4-enoyl) piperidine-1-carboxylate (12c) in a 91% yield. In the
third step, an Ugi reaction was performed by treating ketone 12c with tert-butyl isocyanide
and ammonium acetate (NH4OAc) in 2,2,2-trifluoroethanol, producing intermediate
tert-butyl-4-(2-acetamido-1-(tert-butylamino)-1-oxohex-5-en-2-yl) piperidine-1-carboxylate
(12d). This was followed by a hydroboration reaction using pinacolborane, chloro-1,5-
cycloctadiene iridium (I) dimer ([Ir(cod)Cl]2), and 1,2-bis(diphenylphosphino)ethane (dppe)
in THF, to yield derivative 12e. A subsequent step included the deprotection of the piperi-
dine ring with 2 M HCl in dioxane at r.t. for 2 h. The deprotected piperidine was then
N-alkylated with 3,4-dichlorobenzaldehyde and NaBH(OAc)3 in 1,2 dichloroethane (DCE)
at r.t. for 16 h. Final acid deprotection with 6 M HCl yielded the target compound 12 [26,51].
This synthetic procedure was optimized by the authors and involved seven steps, each
achieving notably high yields. The optimization process incorporated a multi-component
reaction strategy, specifically the Ugi reaction, using a ketone derivative (12c) as a model
substrate and tert-butyl isocyanide. Optimal conditions were achieved by using ammo-
nium acetate as both the amino and acid component, along with replacing methanol with
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trifluoroethanol as the solvent. This adjustment effectively suppressed the competitive
Passerini reaction.
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Two additional N-alkylated piperidine derivatives are 2-amino-6-borono-2-(1-(4-
chlorobenzyl) piperidin-4-yl)-hexanoic acid (MARS, 13) and 2-amino-6-borono-2-(1-(4-
fluorobenzyl)piperidin-4-yl)hexanoic acid (FMARS, 14), which differ in the halogen sub-
stituent. MARS exhibited IC50 values of 0.9 µM for hARG-1 and 0.7 µM for hARG-2, while
FMARS showed IC50 values of 1.1 µM for hARG-1 and 0.4 µM for hARG-2 [52]. The syn-
thesis of both compounds (Scheme 9), reported by Clemente et al., followed the patented
protocol established by Adam Golebiowski et al. [51,52]. The strategy was similar to that
used for compound 12, with the key difference being the use of a reductive amination step
(4-chloro and 4-fluoro benzadelhydes for MARS and FMARS, respectively).
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Another class of ARG inhibitors includes tropane derivatives (15–19), characterized
by a two-carbon bridge within the piperidine ring, which enhances their activity. These
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compounds demonstrated significant inhibition of hARG-1 and hARG-2, with IC50 values
ranging from nanomolar to micromolar levels [22,24,26,52–54]. The increased potency of
tropane derivatives 15–19 compared to the simpler piperidine derivatives 12–14 has been
thoroughly investigated. For derivatives 12–14, the piperidine ring adopts a chair conforma-
tion, with the nitrogen atom interacting with two aspartate residues in the binding pocket
of ARG-1 and ARG-2 through a water molecule. In contrast, for derivatives 15–19, the two-
carbon bridge of the tropane forces the piperidine ring into a boat conformation, enabling
the nitrogen atom to establish direct contact with one of the aspartate residues in the pocket
of interest. The other aspartate residue is still contacted via the water molecule. Thus, the
tropane derivatives benefit from two key advantages that explain their enhanced potency:
the fixed ring geometry positions the nitrogen atom optimally (resulting in an entropy
gain) and the nitrogen establishes direct contact with one aspartate residue, bypassing the
need for water-mediated interaction. Furthermore, this significant improvement in in vitro
activity was accompanied by reduced polarity and an improved pharmacokinetic profile.

The synthesis of the derivatives 15–19 involved a seven-step protocol (Scheme 10) [55].
The initial four steps were consistent across all compounds. For the synthesis of compound
2-amino-2-(8-azabicyclo [3.2.1]octan-3-yl)-6-boronohexanoic acid (16), the fifth and sixth
steps were omitted, proceeding directly to the final stage. For compounds 2-amino-6-borono-
2-((1R,5S)-8-(3,4-dichlorobenzyl)-8-azabicyclo[3.2.1]octan-3-yl)hexanoic acid (ABHtrop, 15),
2-amino-2-(8-benzyl-8-azabicyclo[3.2.1]octan-3-yl)-6-boronohexanoic acid (17), 2-amino-6-
borono-2-(8-(3-chlorobenzyl)-8-azabicyclo[3.2.1]octan-3-yl) hexanoic acid (18), and 2-amino-
6-borono-2-(8-(3,4-difluorobenzyl)-8-azabicyclo [3.2.1]octan-3-yl) hexanoic acid (19), the
sixth step varied depending on the aldehyde reagent used.
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zotriazole (HOBt), and 4-dimethylaminopyridine (DMAP) in DCM at r.t. The intermedi-
ate underwent substitution with but-3-en-1-yl-magnesium bromide in THF at 0 °C, form-
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The synthetic strategy for these tropane ring analogues closely resembles that devel-
oped by the same authors for compound 12. In this case, the intermediate 15b was used
as the model substrate in the Ugi reaction. Both this intermediate and the subsequent
Ugi product, 15c, were thermodynamically favoured. Notably, the use of the trans isomer
of derivative 15b as a substrate for the Ugi reaction resulted in the same relative stereo-
chemistry for 15c. Starting with (1R,5S)-8-(tert-butoxycarbonyl)-8-azabicyclo[3.2.1]octane-
3-carboxylic acid (15a), the first step was the coupling with N-methyl-N-methoxyamide
using MeNH(OMe), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), hydroxyben-
zotriazole (HOBt), and 4-dimethylaminopyridine (DMAP) in DCM at r.t. The intermediate
underwent substitution with but-3-en-1-yl-magnesium bromide in THF at 0 ◦C, forming
(1R,5S)-tert-butyl 3-(pent-4-enoyl)-8-azabicyclo[3.2.1]octane-8-carboxylate (15b). In the
next step, 15b participated in an Ugi reaction with NH4OAc, tert-butyl-isocyanide, and
2,2,2-trifluoroethanol at r.t. for 7 days, yielding (1R,3s,5S)-tert-butyl 3-(2-acetamido-1-(tert-
butylamino)-1-oxohex-5-en-2-yl)-8-azabicyclo[3.2.1]octane-8-carboxylate (15c). Notably,
both ketone 15b and Ugi product 15c were thermodynamically favoured, with the trans
isomer of 15b yielding the same stereochemistry in 15c. Next, 15c underwent hydrobora-
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tion reaction with pinacolborane, [Ir(cod)Cl]2, and dppe in THF, producing a hydroborate
intermediate. This was treated with 4 M HCl in dioxane at r.t. for 3 h to selectively de-
protect the tropane nitrogen. N-alkylation for compounds 15 and 17–19 was carried out
using NaBH(OAc)3 and various aldehydes (3,4-dichlorobenzaldehyde for compound 15,
benzaldehyde for 17, 3-chlorobenzaldehyde for 18, and 3,4-difluorobenzaldehyde for 19) in
DCE. The intermediates were finally deprotected with 6 M HCl at 95 ◦C for 16 h, producing
the desired compounds.

The same strategy was applied to synthesize FBMARS (20, Scheme 11). Starting from
amino acid 20a, a coupling reaction with N,O-dimethylhydroxyalamine hydrochloride
in the presence of EDC, HOBt, and trimethylamine (TMA) in DCM yielded the Weinreb
amide 20b. This intermediate was substituted with but-3-en-1-yl-magnesiumbromide in
dry THF, forming ketone 20c. Ketone (20c) underwent an Ugi reaction with NH4OAc,
2,2,2-trifluoroethanol, and tert-butyl-isocyanide, yielding 20d after 3 weeks. Hydroboration
with dppe, [Ir(cod)Cl]2, DCM and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane produced 20e.
Subsequent treatment with 4 M HCl in dioxane for 1 h removed the tert-butyloxycarbonyl
group, yielding 20f as a salt. This salt was N-alkylated with 4-fluorobenzaldehyde in
DCE using TMA and sodium triacetoxyborohydride, forming intermediate 20g. Finally,
deprotection with 6 M HCl in DCM gave FBMARS (20) [52].
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The same research group detailed the synthesis of the 18F-fluoroanalogues of FMARS
(14) and FBMARS (20) using copper-mediated late-stage radiofluorination. These ra-
dioactive compounds are highly valuable for ARG imaging, which has proven effective
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in detecting and monitoring ARG-related diseases. The structures of 18F-FMARS and
18F-FBMARS are shown in Figure 3.
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Figure 3. Chemical structures of compounds 18F-FMARS and 18F-FBMARS.

Another class of ARG inhibitors includes N-alkylcyclobutylamine derivatives, featur-
ing a nitrogen atom substituted with diverse functional groups such as phenyl and biphenyl
moieties, which can be further modified. As summarized in Table 1, these compounds
(21–46) exhibited activity against hARG-1 and hARG-2, with potency ranging from 0.1 nM
to 100 nM.

Table 1. Chemical structures of compounds 21–46.
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mino)cyclobutyl)hexanoic acid 
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

34 
(S)-2-amino-6-borono-2-((1R,3R)-3-(((S)-1,2,3,4-tetrahydroi-

soquinolin-3-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

35 
(S)-2-amino-6-borono-2-((1S,3R)-3-((2,3-dihydrobenzofu-

ran-5-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

36  
(S)-2-amino-6-borono-2-((1S,3R)-3-((3′,4′-dichlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

37 
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-chlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

38 
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-(trifluoromethyl)bi-

phenyl-4-yl)methylamino)cyclobutyl) hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

39  
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-fluorobiphenyl-

4yl)methylamino)cyclobutyl)hecanoic acid  

0.1–25 nM (hARG-1) 
26–100 nM (hARG-2) 

40  
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

0.1–25 nM (hARG-1)
26–100 nM (hARG-2)

32
(S)-2-amino-2-(1S,3R)-3-(anthracen-9-ylmethylamino)cyclobutyl)-6-

borono hexanoic acid
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0.1–25 nM (hARG-2) 
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26–100 nM (hARG-1) 
26–100 nM (hARG-2) 
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(S)-2-amino-6-borono-2-((1R,3R)-3-(((S)-1,2,3,4-tetrahydroi-

soquinolin-3-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

35 
(S)-2-amino-6-borono-2-((1S,3R)-3-((2,3-dihydrobenzofu-

ran-5-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

36  
(S)-2-amino-6-borono-2-((1S,3R)-3-((3′,4′-dichlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

37 
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0.1–25 nM (hARG-2) 
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0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

39  
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-fluorobiphenyl-

4yl)methylamino)cyclobutyl)hecanoic acid  

0.1–25 nM (hARG-1) 
26–100 nM (hARG-2) 

40  
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

26–100 nM (hARG-1)
0.1–25 nM (hARG-2)

33
(S)-2-amino-6-borono-2-((1S,3R)-3-(2-

morpholinobenzylamino)cyclobutyl)hexanoic acid
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40  
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

26–100 nM (hARG-1)
26–100 nM (hARG-2)

34
(S)-2-amino-6-borono-2-((1R,3R)-3-(((S)-1,2,3,4-tetrahydroisoquinolin-

3-yl)methylamino)cyclobutyl)hexanoic acid
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34 
(S)-2-amino-6-borono-2-((1R,3R)-3-(((S)-1,2,3,4-tetrahydroi-

soquinolin-3-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

35 
(S)-2-amino-6-borono-2-((1S,3R)-3-((2,3-dihydrobenzofu-

ran-5-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

36  
(S)-2-amino-6-borono-2-((1S,3R)-3-((3′,4′-dichlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

37 
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-chlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

38 
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-(trifluoromethyl)bi-

phenyl-4-yl)methylamino)cyclobutyl) hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 
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(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-fluorobiphenyl-

4yl)methylamino)cyclobutyl)hecanoic acid  

0.1–25 nM (hARG-1) 
26–100 nM (hARG-2) 

40  
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

26–100 nM (hARG-1)
26–100 nM (hARG-2)

35
(S)-2-amino-6-borono-2-((1S,3R)-3-((2,3-dihydrobenzofuran-5-

yl)methylamino)cyclobutyl)hexanoic acid

Pharmaceutics 2025, 17, x FOR PEER REVIEW 15 of 51 
 

 

27  
(S)-2-amino-2-((1S,3R)-3-(biphenyl-3-ylmethylamino)cyclo-

butyl)-6-boronohexanoic acid  

0.1–25 nM (hARG-1) 
26–100 nM (hARG-2) 
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29  
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26–100 nM (hARG-1) 
0.1–25 nM (hARG-2) 
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(S)-2-amino-6-borono-2-((1S,3R)-3-(2-morpholinobenzyla-

mino)cyclobutyl)hexanoic acid 
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

34 
(S)-2-amino-6-borono-2-((1R,3R)-3-(((S)-1,2,3,4-tetrahydroi-

soquinolin-3-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

35 
(S)-2-amino-6-borono-2-((1S,3R)-3-((2,3-dihydrobenzofu-

ran-5-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

36  
(S)-2-amino-6-borono-2-((1S,3R)-3-((3′,4′-dichlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

37 
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(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-fluorobiphenyl-

4yl)methylamino)cyclobutyl)hecanoic acid  
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26–100 nM (hARG-2) 

40  
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

26–100 nM (hARG-1)
26–100 nM (hARG-2)

36
(S)-2-amino-6-borono-2-((1S,3R)-3-((3′,4′-dichlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid
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40  
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0.1–25 nM (hARG-1)
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(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-chlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid
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26–100 nM (hARG-2) 

34 
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yl)methylamino)cyclobutyl) hexanoic acid
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0.1–25 nM (hARG-2) 

33  
(S)-2-amino-6-borono-2-((1S,3R)-3-(2-morpholinobenzyla-

mino)cyclobutyl)hexanoic acid 
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

34 
(S)-2-amino-6-borono-2-((1R,3R)-3-(((S)-1,2,3,4-tetrahydroi-

soquinolin-3-yl)methylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 
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4yl)methylamino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

37 
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-chlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

38 
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-(trifluoromethyl)bi-
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0.1–25 nM (hARG-1) 
0.1–25 nM (hARG-2) 

39  
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-fluorobiphenyl-

4yl)methylamino)cyclobutyl)hecanoic acid  

0.1–25 nM (hARG-1) 
26–100 nM (hARG-2) 

40  
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

0.1–25 nM (hARG-1)
0.1–25 nM (hARG-2)

39
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-fluorobiphenyl-

4yl)methylamino)cyclobutyl)hecanoic acid
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40  
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

0.1–25 nM (hARG-1)
26–100 nM (hARG-2)

40
(S)-2-amino-6-borono-2-((1S,3R)-3-(4-

hydroxybenzylamino)cyclobutyl)hexanoic acid
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(S)-2-amino-6-borono-2-((1S,3R)-3-((3′,4′-dichlorobiphenyl-
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(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-chlorobiphenyl-

4yl)methylamino)cyclobutyl)hexanoic acid  
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26–100 nM (hARG-2) 

40  
 

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

26–100 nM (hARG-1)
26–100 nM (hARG-2)

41
(S)-2-amino-6-borono-2-((1S,3R)-3-(4-(4-

chlorophenoxy)benzylamino)cyclobutyl)hexanoic acid
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26–100 nM (hARG-1) 
26–100 nM (hARG-2) 
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mino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
26–100 nM (hARG-2) 

The synthesis of compounds 21–46, patented by Van Zandt et al. and illustrated in 
Scheme 12, closely resembles previously described methods. The process involved seven 
steps differing only in the reagent used during the sixth step [55]. The first step was a 
coupling reaction involving (1S,3S)-3-(tert-butoxycarbonylamino)cyclobutanecarboxylic 
acid (21a), N,O-dimethylhydroxylamine hydrochloride, N-methyl-morpholine, and EDC 
in DCM. This reaction, carried out at r.t. over 18 h, produced tert-butyl(1S,3S)3-(meth-
oxy(methyl)carbamoyl)cyclobutylcarbamate (21b). The second step involved the substi-
tution of 21b with 3-butenylmagnesium bromide in THF for 2 h at r.t., yielding tert-butyl-
(1S,3S)-3-pent-4-enoylcyclobutylcarbamate (21c). In the third step, an Ugi reaction with 
21c in 2,2,2-trifluoroethanol, NH4OAc and tert-butyl isocyanide over 4 days produced tert-
butyl(1S,3S)-3-(R-2-acetamido-1-(tert-butylamino)-1-oxohex-5-en-2-yl)cyclobutylcarba-
mate (21d). Next, 21d underwent hydroboration with pinacolborane in the presence of 
[Ir(cod)Cl]2 and dppe in DCM, forming tert-butyl-(1S,3S)-3-((R)-2-acetamido-1-(tert-butyl-
amino)-1-oxo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl)cyclobutylcarba-
mate (21e). In the fifth step, 21e was treated with 4 M HCl in dioxane for 3 h to remove 
the tert-butyloxycarbonyl group, yielding (S)-2-acetamido-2-((1S, 3R)-3-aminocyclobu-
tyl)-N-tert-butyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (21f) as a hy-
drochloride salt. For the sixth step, 21f was reacted overnight with acetic acid, 
NaBH(OAc)3, and various aldehydes (depending on the desired derivative) in DCE, pro-
ducing the respective N-alkylated intermediates (21g). In the final step, these intermedi-
ates were treated with 6 M HCl and heated to 100 °C overnight, yielding the final products 
21–46, whose names are provided in Table 1. 

0.1–25 nM (hARG-1)
0.1–25 nM (hARG-2)
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radioactive compounds are highly valuable for ARG imaging, which has proven effective 
in detecting and monitoring ARG-related diseases. The structures of 18F-FMARS and 18F-
FBMARS are shown in Figure 3. 
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biphenyl moieties, which can be further modified. As summarized in Table 1, these com-
pounds (21–46) exhibited activity against hARG-1 and hARG-2, with potency ranging 
from 0.1 nM to 100 nM. 

Table 1. Chemical structures of compounds 21–46. 

 

Compound R IC50 

21  
(S)-2-amino-6-borono-2-(1S,3R)-3-(3-phenylpropyla-

mino)cyclobutyl)hexanoic acid  
 

0.1–25 nM (hARG-1) 
26–100 nM (hARG-2) 

22 
(S)-2-amino-6-borono-2-((1S,3R)-3-(3-(3-chloro-5fluoro-

phenyl)propylamino) 
cyclobutyl)hexanoic acid 

 

26–100 nM (hARG-1) 
0.1–25 nM (hARG-2) 

23  
(S)-2-amino-6-borono-2-((1s,3R)-3-(3-(3,4-difluoro-

phenyl)propylamino)cyclobutyl) hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

24 
(S)-2-amino-6-borono-2-((1S,3R)-3-(3-(2,4-dichloro-

phenyl)propylamino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

25  
(S)-2-amino-6-borono-2-((1S,3R)-3-(2,3-dihydro-1h-inden-

2yl-amino)cyclobutyl)hexanoic acid  

0.1–25 nM (hARG-1) 
26–100 nM (hARG-2) 

26  
(S)-2-amino-6-borono-2-((1S,3R)-3-(4-tert-butylbenzyla-

mino)cyclobutyl)hexanoic acid  

26–100 nM (hARG-1) 
26–100 nM (hARG-2) 

Compound R IC50

42
(S)-2-amino-6-borono-2-(1S,3R)-3-((4′-chlorobiphenyl-2-

yl)methylamino)cyclobutyl)hexanoic acid
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46  
(S)-2-amino-6-borono-2-((1S,3R)-3-(4-cyclohexylbenzyla-
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The synthesis of compounds 21–46, patented by Van Zandt et al. and illustrated in 
Scheme 12, closely resembles previously described methods. The process involved seven 
steps differing only in the reagent used during the sixth step [55]. The first step was a 
coupling reaction involving (1S,3S)-3-(tert-butoxycarbonylamino)cyclobutanecarboxylic 
acid (21a), N,O-dimethylhydroxylamine hydrochloride, N-methyl-morpholine, and EDC 
in DCM. This reaction, carried out at r.t. over 18 h, produced tert-butyl(1S,3S)3-(meth-
oxy(methyl)carbamoyl)cyclobutylcarbamate (21b). The second step involved the substi-
tution of 21b with 3-butenylmagnesium bromide in THF for 2 h at r.t., yielding tert-butyl-
(1S,3S)-3-pent-4-enoylcyclobutylcarbamate (21c). In the third step, an Ugi reaction with 
21c in 2,2,2-trifluoroethanol, NH4OAc and tert-butyl isocyanide over 4 days produced tert-
butyl(1S,3S)-3-(R-2-acetamido-1-(tert-butylamino)-1-oxohex-5-en-2-yl)cyclobutylcarba-
mate (21d). Next, 21d underwent hydroboration with pinacolborane in the presence of 
[Ir(cod)Cl]2 and dppe in DCM, forming tert-butyl-(1S,3S)-3-((R)-2-acetamido-1-(tert-butyl-
amino)-1-oxo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl)cyclobutylcarba-
mate (21e). In the fifth step, 21e was treated with 4 M HCl in dioxane for 3 h to remove 
the tert-butyloxycarbonyl group, yielding (S)-2-acetamido-2-((1S, 3R)-3-aminocyclobu-
tyl)-N-tert-butyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (21f) as a hy-
drochloride salt. For the sixth step, 21f was reacted overnight with acetic acid, 
NaBH(OAc)3, and various aldehydes (depending on the desired derivative) in DCE, pro-
ducing the respective N-alkylated intermediates (21g). In the final step, these intermedi-
ates were treated with 6 M HCl and heated to 100 °C overnight, yielding the final products 
21–46, whose names are provided in Table 1. 

26–100 nM (hARG-1)
26–100 nM (hARG-2)

43
(S)-2-amino-6-borono-2-((1S,3R)-3-((6-phenylpyridin-3-

yl)methylamino)cyclobutyl)hexanoic acid
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The synthesis of compounds 21–46, patented by Van Zandt et al. and illustrated in 
Scheme 12, closely resembles previously described methods. The process involved seven 
steps differing only in the reagent used during the sixth step [55]. The first step was a 
coupling reaction involving (1S,3S)-3-(tert-butoxycarbonylamino)cyclobutanecarboxylic 
acid (21a), N,O-dimethylhydroxylamine hydrochloride, N-methyl-morpholine, and EDC 
in DCM. This reaction, carried out at r.t. over 18 h, produced tert-butyl(1S,3S)3-(meth-
oxy(methyl)carbamoyl)cyclobutylcarbamate (21b). The second step involved the substi-
tution of 21b with 3-butenylmagnesium bromide in THF for 2 h at r.t., yielding tert-butyl-
(1S,3S)-3-pent-4-enoylcyclobutylcarbamate (21c). In the third step, an Ugi reaction with 
21c in 2,2,2-trifluoroethanol, NH4OAc and tert-butyl isocyanide over 4 days produced tert-
butyl(1S,3S)-3-(R-2-acetamido-1-(tert-butylamino)-1-oxohex-5-en-2-yl)cyclobutylcarba-
mate (21d). Next, 21d underwent hydroboration with pinacolborane in the presence of 
[Ir(cod)Cl]2 and dppe in DCM, forming tert-butyl-(1S,3S)-3-((R)-2-acetamido-1-(tert-butyl-
amino)-1-oxo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl)cyclobutylcarba-
mate (21e). In the fifth step, 21e was treated with 4 M HCl in dioxane for 3 h to remove 
the tert-butyloxycarbonyl group, yielding (S)-2-acetamido-2-((1S, 3R)-3-aminocyclobu-
tyl)-N-tert-butyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (21f) as a hy-
drochloride salt. For the sixth step, 21f was reacted overnight with acetic acid, 
NaBH(OAc)3, and various aldehydes (depending on the desired derivative) in DCE, pro-
ducing the respective N-alkylated intermediates (21g). In the final step, these intermedi-
ates were treated with 6 M HCl and heated to 100 °C overnight, yielding the final products 
21–46, whose names are provided in Table 1. 

26–100 nM (hARG-1)
0.1–25 nM (hARG-2)

44
(S)-2-((1S,3R)-3-((9h-fluoren-2-yl)methylamino)cyclobutyl)-2-amino-6-

borono-hexanoic acid
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The synthesis of compounds 21–46, patented by Van Zandt et al. and illustrated in 
Scheme 12, closely resembles previously described methods. The process involved seven 
steps differing only in the reagent used during the sixth step [55]. The first step was a 
coupling reaction involving (1S,3S)-3-(tert-butoxycarbonylamino)cyclobutanecarboxylic 
acid (21a), N,O-dimethylhydroxylamine hydrochloride, N-methyl-morpholine, and EDC 
in DCM. This reaction, carried out at r.t. over 18 h, produced tert-butyl(1S,3S)3-(meth-
oxy(methyl)carbamoyl)cyclobutylcarbamate (21b). The second step involved the substi-
tution of 21b with 3-butenylmagnesium bromide in THF for 2 h at r.t., yielding tert-butyl-
(1S,3S)-3-pent-4-enoylcyclobutylcarbamate (21c). In the third step, an Ugi reaction with 
21c in 2,2,2-trifluoroethanol, NH4OAc and tert-butyl isocyanide over 4 days produced tert-
butyl(1S,3S)-3-(R-2-acetamido-1-(tert-butylamino)-1-oxohex-5-en-2-yl)cyclobutylcarba-
mate (21d). Next, 21d underwent hydroboration with pinacolborane in the presence of 
[Ir(cod)Cl]2 and dppe in DCM, forming tert-butyl-(1S,3S)-3-((R)-2-acetamido-1-(tert-butyl-
amino)-1-oxo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl)cyclobutylcarba-
mate (21e). In the fifth step, 21e was treated with 4 M HCl in dioxane for 3 h to remove 
the tert-butyloxycarbonyl group, yielding (S)-2-acetamido-2-((1S, 3R)-3-aminocyclobu-
tyl)-N-tert-butyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (21f) as a hy-
drochloride salt. For the sixth step, 21f was reacted overnight with acetic acid, 
NaBH(OAc)3, and various aldehydes (depending on the desired derivative) in DCE, pro-
ducing the respective N-alkylated intermediates (21g). In the final step, these intermedi-
ates were treated with 6 M HCl and heated to 100 °C overnight, yielding the final products 
21–46, whose names are provided in Table 1. 

0.1–25 nM (hARG-1)
0.1–25 nM (hARG-2)

45
(S)-2-amino-6-borono-2-((1S,3R)-3-((4′-(trifluoromethyl)biphenyl-2

yl)methylamino)cyclobutyl)hexanoic acid
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in DCM. This reaction, carried out at r.t. over 18 h, produced tert-butyl(1S,3S)3-(meth-
oxy(methyl)carbamoyl)cyclobutylcarbamate (21b). The second step involved the substi-
tution of 21b with 3-butenylmagnesium bromide in THF for 2 h at r.t., yielding tert-butyl-
(1S,3S)-3-pent-4-enoylcyclobutylcarbamate (21c). In the third step, an Ugi reaction with 
21c in 2,2,2-trifluoroethanol, NH4OAc and tert-butyl isocyanide over 4 days produced tert-
butyl(1S,3S)-3-(R-2-acetamido-1-(tert-butylamino)-1-oxohex-5-en-2-yl)cyclobutylcarba-
mate (21d). Next, 21d underwent hydroboration with pinacolborane in the presence of 
[Ir(cod)Cl]2 and dppe in DCM, forming tert-butyl-(1S,3S)-3-((R)-2-acetamido-1-(tert-butyl-
amino)-1-oxo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl)cyclobutylcarba-
mate (21e). In the fifth step, 21e was treated with 4 M HCl in dioxane for 3 h to remove 
the tert-butyloxycarbonyl group, yielding (S)-2-acetamido-2-((1S, 3R)-3-aminocyclobu-
tyl)-N-tert-butyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (21f) as a hy-
drochloride salt. For the sixth step, 21f was reacted overnight with acetic acid, 
NaBH(OAc)3, and various aldehydes (depending on the desired derivative) in DCE, pro-
ducing the respective N-alkylated intermediates (21g). In the final step, these intermedi-
ates were treated with 6 M HCl and heated to 100 °C overnight, yielding the final products 
21–46, whose names are provided in Table 1. 

26–100 nM (hARG-1)
26–100 nM (hARG-2)

46
(S)-2-amino-6-borono-2-((1S,3R)-3-(4-

cyclohexylbenzylamino)cyclobutyl)hexanoic acid
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oxy(methyl)carbamoyl)cyclobutylcarbamate (21b). The second step involved the substi-
tution of 21b with 3-butenylmagnesium bromide in THF for 2 h at r.t., yielding tert-butyl-
(1S,3S)-3-pent-4-enoylcyclobutylcarbamate (21c). In the third step, an Ugi reaction with 
21c in 2,2,2-trifluoroethanol, NH4OAc and tert-butyl isocyanide over 4 days produced tert-
butyl(1S,3S)-3-(R-2-acetamido-1-(tert-butylamino)-1-oxohex-5-en-2-yl)cyclobutylcarba-
mate (21d). Next, 21d underwent hydroboration with pinacolborane in the presence of 
[Ir(cod)Cl]2 and dppe in DCM, forming tert-butyl-(1S,3S)-3-((R)-2-acetamido-1-(tert-butyl-
amino)-1-oxo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl)cyclobutylcarba-
mate (21e). In the fifth step, 21e was treated with 4 M HCl in dioxane for 3 h to remove 
the tert-butyloxycarbonyl group, yielding (S)-2-acetamido-2-((1S, 3R)-3-aminocyclobu-
tyl)-N-tert-butyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide (21f) as a hy-
drochloride salt. For the sixth step, 21f was reacted overnight with acetic acid, 
NaBH(OAc)3, and various aldehydes (depending on the desired derivative) in DCE, pro-
ducing the respective N-alkylated intermediates (21g). In the final step, these intermedi-
ates were treated with 6 M HCl and heated to 100 °C overnight, yielding the final products 
21–46, whose names are provided in Table 1. 

0.1–25 nM (hARG-1)
26–100 nM (hARG-2)

The synthesis of compounds 21–46, patented by Van Zandt et al. and illustrated in
Scheme 12, closely resembles previously described methods. The process involved seven
steps differing only in the reagent used during the sixth step [55]. The first step was a
coupling reaction involving (1S,3S)-3-(tert-butoxycarbonylamino)cyclobutanecarboxylic
acid (21a), N,O-dimethylhydroxylamine hydrochloride, N-methyl-morpholine, and EDC
in DCM. This reaction, carried out at r.t. over 18 h, produced tert-butyl(1S,3S)3-
(methoxy(methyl)carbamoyl)cyclobutylcarbamate (21b). The second step involved the
substitution of 21b with 3-butenylmagnesium bromide in THF for 2 h at r.t., yield-
ing tert-butyl-(1S,3S)-3-pent-4-enoylcyclobutylcarbamate (21c). In the third step, an
Ugi reaction with 21c in 2,2,2-trifluoroethanol, NH4OAc and tert-butyl isocyanide over
4 days produced tert-butyl(1S,3S)-3-(R-2-acetamido-1-(tert-butylamino)-1-oxohex-5-en-2-
yl)cyclobutylcarbamate (21d). Next, 21d underwent hydroboration with pinacolborane
in the presence of [Ir(cod)Cl]2 and dppe in DCM, forming tert-butyl-(1S,3S)-3-((R)-2-
acetamido-1-(tert-butylamino)-1-oxo-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-
2-yl)cyclobutylcarbamate (21e). In the fifth step, 21e was treated with 4 M HCl in dioxane
for 3 h to remove the tert-butyloxycarbonyl group, yielding (S)-2-acetamido-2-((1S, 3R)-3-
aminocyclobutyl)-N-tert-butyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanamide
(21f) as a hydrochloride salt. For the sixth step, 21f was reacted overnight with acetic
acid, NaBH(OAc)3, and various aldehydes (depending on the desired derivative) in DCE,
producing the respective N-alkylated intermediates (21g). In the final step, these intermedi-



Pharmaceutics 2025, 17, 117 17 of 51

ates were treated with 6 M HCl and heated to 100 ◦C overnight, yielding the final products
21–46, whose names are provided in Table 1.
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Further investigations into the N-alkylcyclobutylamine scaffold led to the development
of tertiary amine derivatives (compounds 47–49). However, these derivatives displayed
lower potency compared to the parent compounds 21–46. Their syntheses and structures
are shown in Scheme 13.

The synthesis of compounds 47–49 followed an eight-step protocol starting with the re-
action of 3-oxocyclobutanecarboxylic acid (47a) in MeOH and p-toluensulfonic acid at 55 ◦C
for 3 days to yield methyl-3,3-dimethoxycyclobutanecarboxylate (47b). This intermediate
underwent coupling with N,O-dimethylhydroxylaminehydrochloride and isopropylmag-
nesium chloride in THF to produce 47c. Next, substitution with 3-butenylmagnesium
bromide yielded 1-(3,3-dimethoxycyclobutyl)pent-4-en-1-one (47d), which was sub-
jected to an Ugi reaction with ammonium acetate, tert-butyl-isocyanide, and 2,2,2-
trifluoroethanol, producing 2-acetamido-N-tert-butyl-2-(3,3-dimethoxycyclobutyl)hex-5-
enamide (47e). The hydroboration of 47e with pinacolborane, [Ir(cod)Cl]2 and dppe
generated 2-acetamido-N-tert-butyl-2-(3,3-dimethoxycyclobutyl)-6-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)hexanamide (47f), which was then treated with p-toluensulfonic
acid overnight in acetone to form 2-acetamido-N-tert-butyl-2-(3-oxocyclobutyl)-6-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl hexanamide (47g), containing an oxidized cyclobutyl
ring. In the penultimate step, 47g was reacted with either dibenzylamine (for compound
47), its trans isomer (for 48), or isoindoline (for 49), followed by NaBH(OAc)3 reduction to
form intermediates 47h. Finally, global deprotection using 6 M HCl at 100 ◦C yielded the
desired compounds 47–49 [47].

The basic side chain α-substituted ABH analogues (compounds 50–51) also emerged
as potent ARG inhibitors. Compound 50, i.e., 2-amino-6-borono-2-(3-(4-(4-chlorophenyl)-4-
hydroxypiperidin-1-yl)propyl)hexanoic acid, with a cyclic amine side chain, showed strong
inhibitory activity (Ki < 10 nM) against both hARG-1 and 2 [22]. Compound 51, featuring a
linear amine side chain, exhibited comparable potency.



Pharmaceutics 2025, 17, 117 18 of 51

Pharmaceutics 2025, 17, x FOR PEER REVIEW 17 of 51 
 

 

 

Scheme 12. Synthesis of compounds 21–46. 

Further investigations into the N-alkylcyclobutylamine scaffold led to the develop-
ment of tertiary amine derivatives (compounds 47–49). However, these derivatives dis-
played lower potency compared to the parent compounds 21–46. Their syntheses and 
structures are shown in Scheme 13. 

 

Scheme 13. Synthesis of compounds 47–49. Scheme 13. Synthesis of compounds 47–49.

Their synthesis involved a nine-step protocol (Scheme 14) [56]. The initial steps
consisted of sequential alkylations starting from tert-butyl-2-((diphenylmethylene)amino)
acetate (50a) generating tert-butyl-5-(tert-butyldimethylsilyoxy)-2-(diphenylmethylenea-
mino)pentanoate (50b) and then tert-butyl-2-(3-tert-butylmethylsilyloxy)propyl)-2-(diphen-
ylmethylenamino)hex-4-enoate (50c). After amine deprotection with hydroxylamine hy-
drochloride, the amino group was re-protected with benzyl chloroformate to yield tert-
butyl-2-(benzyloxycarbonylamino)-2-(3-(tert-butidimethylsilyloxy)propyl)hex-4-enoate (50e).
The hydroboration of 50e with pinacolborane in the presence of [Ir(cod)Cl]2, and dppe in dry
DCM gave tert-butyl-2-(benzyloxycarbonylamino)-2-(3-(tert-butidimethylsilyloxy)propyl)-
6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate (50f), followed by the removal
of the tert-butyldimethylsilyl (TBDMS) group under acid conditions to form 50g. The
alcohol group in 50g was iodinated to produce tert-butyl-2-(benzyloxycarbonylamino)-2-(3-
iodopropyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate (50h). In the eighth
step, N nucleophilic substitution was carried out using 4-(4-chlorophenyl)piperidin-4-
ol hydrochloride (for compound 50) or 2-phenylethanamine (for compound 51), yield-
ing tert-butyl-2-(benzyloxycarbonylamino)-2-(3-(3-phenylpiperidin-1-yl)propyl)-6-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate (50i). Finally, global deprotection using 1 M
HCl, Pd/C, TFA and DCM under argon, followed by the addition of phenyl boronic acid,
afforded final products 50–51.

OncoArendi Therapeutics (now Molecure) has developed (R)-2-amino-6-borono-2-
(guanidinomethyl)hexanoic acid (52), a compound featuring a methylguanidine side chain
at the α position relative to the amino acid group. The pure (R)-enantiomer demonstrated
potent ARG inhibition, with an IC50 of 32 nM against hARG-1. The synthesis protocol of
this compound is shown in Scheme 15 and is patented. The starting compound was ethyl-
2-oxohex-5-enoate (52a), which was treated with (S)-(-)-2-methyl-2-propanesulfinamide,
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Ti(OEt)4 in DCM to form imine (52b), which was reacted in turn with TBAF and MeNO2

undergoing a nitro methylene addition on the α-carbon atom. The asymmetric, diastereose-
lective aza-Henry reaction led to the formation of the nitro amine ester (52c), which was sub-
jected to hydroboration using pinacolborane, [Ir(cod)Cl]2, dppe, DCM, and the subsequent
reduction of the nitro group with NaBH4 and NiCl2-6H2O in MeOH to obtain boronate (52e).
The amine (52e) was then guanylated using tert-butyl(((tert-butoxycarbonyl)amino)(1H-
pyrazol-1-yl)methylene) carbamate, TEA, and ACN and was deprotected with a solution of
6 M HCl to obtain the desired compound (52) [25,57].
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3.2. Non-Basic Side Chain α-Substituted ABH Analogues

To this subclass belong sulphamide derivatives such as 2-amino-6-borono-2-((sulfamo-
ylamino)methyl)hexanoic acid (53), which exhibited an inhibition activity against hARG-1
with an IC50 of 330 nM [25]. The synthesis of 53 (see Scheme 16) consisted of an alkylation
reaction of compound 53a with pinacol-4-bromobutylboronate and sodium hydride (NaH)
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in N,N-dimethylformamide (DMF) to obtain a quaternary boronic cyanoaminoester (53b),
which was then reduced with sodium borohydride (NaBH4) to form the intermediate
53c. Compound 53c was subsequently subjected to sulphamoylation with chlorosulfonyl
isocyanate (ClSO2NCO) in the presence of tert-butanol in TEA and DCM at 0 ◦C. The final
step involved acid hydrolysis with HCl/dioxane, yielding the desired boronic acid (53).
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Other compounds designed as ARG inhibitors with a non-basic side chain included
derivatives 54–55, which contained urea and thiourea moieties, respectively. Both 54 (2-
amino-6-borono-2-(1-((4-chlorophenyl)carbamoyl)piperidin-4-yl)hexanoic acid) and 55 (2-
amino-6-borono-2-(1-((4-chlorophenyl)carbamothioyl)pyrrolidin-3-yl)hexanoic acid) were
capable of inhibiting hARG-1 and -2 in the range of 251 to 1000 nM. Despite their similar
activities, the synthesis pathways for these compounds differed [22,51]. For compound
54 (Scheme 17), the first four-steps of its synthesis were identical to those for compound
12, as shown in Scheme 8. Starting from intermediate 12e, the fifth step involved an acid
deprotection reaction using 6 M HCl solution at 95 ◦C for 16 h, giving intermediate 54a.
This intermediate was then selectively carbamylated at the piperidine nitrogen using 4-
chlorophenyl isocyanate (p-Cl–PhNCO) in the presence of TEA and DMF, producing the
target compound 54 [26].
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For the synthesis of compound 55, as shown in Scheme 18, Van Zandt et al. used
55a as the starting material [51]. This compound underwent a coupling reaction with
N,O-dimethylhydroxylamine hydrochloride and EDC, yielding intermediate 55b, which
in turn was then subjected to a substitution with 3-butenylmagnesium bromide in
THF producing compound 55c. Next, an Ugi reaction was performed with NH4OAc
and tert-butyl isocyanide in 2,2,2-trifluoroethanol, generating derivative 55d. This was
followed by a hydroboration reaction using pinacolborane, [Ir(cod)Cl]2 and dppe to
give tert-butyl-(3R)-3-[1-acetamido-1-(tert-butyl-carbamoyl)-5-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)pentyl]pyrrolidine-1-carboxylate (55e). In the fifth step, a solution of 6 M
HCl in 1,4-dioxane was added to 55e, yielding intermediate 55f, which was then treated
with 4-chlorophenyl-isothiocyanate in TEA and DMF to obtain the desired compound
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55. In addition to the inhibitors mentioned, several other compounds featuring different
substituents in their side chains were synthesized, through their activities were found to be
comparatively lower [58].
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Comparing the two subclasses of second-generation ARG inhibitors, it was observed
that the presence of a basic side chain in the α-substituted ABH derivatives led to a
notable improvement not only in activity but also in selectivity against both ARG-1 and
ARG-2, compared to their non-basic counterparts. This enhancement was attributed to
the formation of an additional hydrogen bond, mediated by a water molecule, between
the basic centre in the side chain of the ARG inhibitor and an aspartate residue in the
pocket of both ARG-1 and ARG-2—a feature absent in non-basic side chain α-substituted
ABH analogues. However, despite the improved selectivity and activity, the presence of a
basic side chain did not result in significant improvements in bioavailability compared to
non-basic analogues, and the pharmacokinetic profile still required optimization.

4. Third-Generation Inhibitors
The third generation of inhibitors features ring-constrained cyclic ABH analogues,

including compounds based on modified cyclopentyl and pyrrolidine structures. These
compounds have an alkyl linker with a boronic acid group inserted at ring position 2. One
example is (1S,2S,4R)-1-amino-4-(aminomethyl)-2-(3-boronopropyl)cyclopentanecarboxylic
acid (56), which showed an IC50 of 0.1–0.250 nM for both hARG-1 and hARG-2 in a
colorimetric assay. While the cited patent describes many analogues of 56, the lack of its
further development is likely due to its unsatisfactory pharmacokinetic properties. These
issues could potentially be addressed through strategies such as the prodrug approach or
the design of nanodelivery systems, which, as demonstrated in thousands of studies, have
been shown to overcome various pharmacokinetic and related limitations. Compound 56
was synthesized by Van Zandt et al. according to the Scheme 19 [59].

The synthesis began with commercially available 5-(propene-3-yl)cyclopent-2-enone
(56a), which was treated in nitromethane with the DOWEX® 550A-OH resin at 60 ◦C to
obtain the nitroderivative (56b). This was then dissolved in 2,2,2-trifluoroethanol and
reacted with NH4OAc and tert-butylisonitrile under N2 for 2 days, affording two isomers,
56c1 and 56c2, with acetamino and allyl substituents in the syn-relative position. Isomer
56c1 was stirred in DCM and treated with pinacolborane, [Ir(cod)Cl]2 and Diphos® at
–25 ◦C, yielding 56d (isomers 56d1 and 56d2). For the final step, a solution of (1S,2S,4R)-
1 -acetamido-N-tert-butyl-4-(nitromethyl)-2-(3-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-
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yl)propyl)cyclopentanecarboxamide (isomer 56d1) in ethanol and THF under N2 was
treated with Raney nickel. The mixture was purged with H2 and stirred for 20 h. After
purging with nitrogen, the mixture was filtered through Celite®, and the filtrate concen-
trated under reduced pressure. The crude product was dissolved in HCl/acetic acid/H2O
in a pressure bottle and stirred for 2 h at 60 ◦C, then capped and heated for 18 h at 130 ◦C.
After cooling to r.t. and uncapping, the desired compound 56 was obtained after chro-
matography purification as a white foam.
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Scheme 19. Synthesis of compound 56.

A wide range of pyrrolidine-derived compounds has been developed through further
optimization. The ring-constrained pyrrolidines help reduce entropy by positioning the
quaternary amino acid moiety in an optimal orientation for binding. Notably, the presence
of a cyclopentane derivative forces the amino group and boronic acid side chain into an anti
orientation, preventing van der Waals interactions with active site residues. Furthermore,
the atoms within the ring act as scaffolds for incorporating additional substituents that can
form hydrogen bonds with the aspartate residues in the ARG-1 and ARG-2 pockets. These
structural features collectively contribute to the enhanced potency of these compounds.
The most effective compound in this series was NED-3228 (57, Figure 4), which showed
IC50 values for hARG-1 and hARG-2 of 1.3 and 8.1 nM, respectively. Another notable
compound, 58 (see Figure 4), features an N-(piperidin-2-yl-methyl) substituent in place
of the N-(2-amino-3-phenylpropyl) group in 57. This compound exhibited IC50 values for
hARG-1 and hARG-2 of 2.6 and 14 nM, respectively.
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Compound 57 was synthesized by Van Zandt et al. through a nine-step process,
as outlined in Scheme 20 [60]. The synthesis began by reacting a solution of tert-butyl-
6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate (57a) in dry Et2O with allyl magnesium
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bromide at 0 ◦C. After stirring for 15 min, the reaction produced tert-butyl-trans-3-allyl-
4-hydroxypyrrolidine-1-carboxylate (57b). This was then treated with sulphur trioxide
pyridine complex in DMSO under nitrogen, yielding ketone intermediate 57c. Compound
57c was reacted with tert-butylisocyanide and ammonium acetate, resulting in a mixture
of anti- and syn-isomers of 57d. Next, the BOC group was removed using DCM and
TFA giving racemic 57e. To obtain the pure enantiomer 57e1, racemic 57e was treated
with (2S,3S)-2,3-bis(benzoyloxy)-4-(isopropylamino)-4-oxobutanoic acid in warm MeOH/i-
PrOH. After cooling, the desired salt crystallized out, and the crystals were filtered, washed,
and dried to give 57e1 with 99.7% ee. In the following step, 57e1 was reacted with pina-
colborane in the presence of [Ir(cod)Cl]2 and dppe in DCM to afford 57f as a white solid.
A BOC deprotection with an excess of TFA in dry DCM under N2 yielded 57g. This was
then reacted with tert-butyl-(S)-4-phenyl-1,2,3-oxathiazolidine-3-carboxylate 2,2-dioxide in
ACN at r.t. for 2 days, producing 57h, which was used directly without further purification.
Finally, 57h was deprotected in glacial acetic acid, water, and concentrated hydrochloric
acid in a pressure bottle. After stirring at 60 ◦C for 2 h, the mixture was capped and heated
to 130 ◦C for 18 h to yield NED-3228 (compound 57) as a white solid.
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Compound (3R,4S)-3-amino-1-(N-(2-aminoethyl)sulfamoyl)-4-(3-boronopropyl)pyrro-
lidine-3-carboxylic acid (59) also demonstrated strong activity against hARG-1 and hARG-2,
with IC50 values ranging from 0.1 to 100 nM for both enzymes. Compound 59 was synthe-
sized by Wan et al. in 2018, following the procedure outlined in Scheme 21 [61]. The syn-
thesis began with the reaction between sulfurisocyanatidic chloride and 2-bromoethan-1-ol
in DCM, followed by the addition of tert-butyl-(2-aminoethyl)carbamate and TEA in DCM.
The intermediate (tert-butyl (2-((2-oxooxazolidine)-3-sulfonamido)ethyl)carbamate) 59a
was reacted with a solution of (rac)benzyl trans-4-allyl-3-azidopyrrolidine-3-carboxylate
in ACN and TEA, resulting in 59b ((rac)(benzyl trans-(4-allyl-3-azido-1-(N-(2-((tert-
butoxycarbonyl)amino)ethyl)sulfamoyl)pyrrolidine-3-carboxylate). Next, 59b was hydrob-
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orated with pinacolborane, [Ir(cod)Cl]2 and dppe in DCM producing 59c ((rac)(benzyl trans-
3-azido-1-(N-(2-((tert-butoxycarbonyl)amino)ethyl)sulfamoyl)-4-(3-(4,4,5,5-tetramethyl-1,3,
2-dioxaborolan-2-yl)propyl)pyrrolidine-3-carboxylate)). Compound 59c was catalytically
hydrogenated in a mixture of EtOAc/EtOH giving rise to 59d ((rac)-trans-3-amino-1-(N-(2-
((tert-butoxycarbonyl)amino)ethyl)sulfamoyl)-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)propyl)pyrrolidine-3-carboxylic acid). Finally, 59d was deprotected in HCl at 50◦ C.
This reaction yielded the desired compound, (rac)-3-amino-1-(N-(2-aminoethyl)sulfamoyl)-
4-(3-boronopropyl)pyrrolidine-3-carboxylic acid (59) that was purified by HPLC and iso-
lated as a 1:2 trifluoroacetic acid salt.
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The bicyclic inhibitors (3aR,4S,5S,6aR)-5-amino-4-(3-boronopropyl)-2-(1-chloro-3-
hydroxypropan-2-yl)octahydrocyclopenta[c]pyrrole-5-carboxylic acid (60), (1S,2S,3aR,4S,5S,
6aS)-2-amino-1-(3-boronopropyl)-4-fluoro-5-(methylamino)octahydropentalene-2-carboxylic
acid (61), and (5S,7S,8S)-7-amino-8-(3-boronopropyl)-1-azaspiro[4.4]nonane-7-carboxylic
acid (62) represent a distinct class of inhibitors, independently developed by Merck Sharp
& Dohme Corp. and Arcus Biosciences Inc. These compounds are derivatives of octahy-
drocyclopenta[c]pyrrole with various nitrogen atom substituents. Foley et al. synthesized
a range of bicyclic boronic acid derivatives, with compound 60 proving to be the most
promising, showing an IC50 < 100 nm against hARG-1. Compound 61 demonstrated an
IC50 of 6.9 nM against hARG-1 performed by Thioornithine Generating Assay (TOGA).
The general synthesis scheme for compound 60 is shown in Scheme 22 [62].

In the first step, tert-butyl-5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
(60a) was alkylated under the action of allyl bromide and LiHMDS in THF. This pro-
duced the allylated compound tert-butyl 4-allyl-5-oxohexahydrocyclopenta[c]pyrrole-
2(1H)-carboxylate (60b). Subsequently, a reaction of ketone 60b with CHCl3 and
chlorotrimethylsilane in strongly basic conditions, followed by the deprotection of
trimethylsilyl group under the action of acetic acid and tetrabutylammonium fluoride
in THF gave rise to the racemic trichloromethyl derivative 60c. Chiral column chro-
matography was used to isolate the desired enantiomer. The treatment of 60c with NaN3

and NaOH produced the crude carboxilic acid 60d ((3aR,4S,5S,6aR)-4-allyl-5-azido-2-(tert-
butoxycarbonyl)octahydrocyclopenta[c]pyrrole-5-carboxylic acid). The carboxylic group
was protected as benzylic ester using benzyl bromide and K2CO3 in dry ACN. Next, 60e was
subjected to a hydroboration reaction with [Ir(cod)Cl]2, dppe, and pinacolborane in DCM.
After purification, the product 5-benzyl 2-(tert-butyl) (3aR,4S,5S,6aR)-5-azido-4-(3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)hexahydrocyclopenta[c]pyrrole-2,5(1H)-dicar-
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boxylate (60f) was obtained. The BOC group was removed by treating 60f with DCM and
TFA, giving the free amine (60g) in a 99% yield. Amine (60g) in DCM was reacted with
1-chloro-3-hydroxy acetone and Na(OAc)3BH, yielding benzyl (3aR,4S,5S,6aR)-5-azido-2-(1-
chloro-3-hydroxypropan-2-yl)-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)
octahydrocyclopenta[c]pyrrole-5-carboxylate (60h), which was used without purification.
Finally, 60 was obtained by the hydrogenation of 60h with 10% Pd/C in MeOH and de-
protection with 3M HCl at r.t. for 1 h. Purification by reverse phase C18 chromatography
yielded the target compound 60 as a white solid.

Pharmaceutics 2025, 17, x FOR PEER REVIEW 25 of 51 
 

 

 

Scheme 22. Synthesis of compound 60. 

In the first step, tert-butyl-5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate 
(60a) was alkylated under the action of allyl bromide and LiHMDS in THF. This produced 
the allylated compound tert-butyl 4-allyl-5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-car-
boxylate (60b). Subsequently, a reaction of ketone 60b with CHCl3 and chlorotrime-
thylsilane in strongly basic conditions, followed by the deprotection of trimethylsilyl 
group under the action of acetic acid and tetrabutylammonium fluoride in THF gave rise 
to the racemic trichloromethyl derivative 60c. Chiral column chromatography was used 
to isolate the desired enantiomer. The treatment of 60c with NaN3 and NaOH produced 
the crude carboxilic acid 60d ((3aR,4S,5S,6aR)-4-allyl-5-azido-2-(tert-butoxycarbonyl)oc-
tahydrocyclopenta[c]pyrrole-5-carboxylic acid). The carboxylic group was protected as 
benzylic ester using benzyl bromide and K2CO3 in dry ACN. Next, 60e was subjected to a 
hydroboration reaction with [Ir(cod)Cl]2, dppe, and pinacolborane in DCM. After purifi-
cation, the product 5-benzyl 2-(tert-butyl) (3aR,4S,5S,6aR)-5-azido-4-(3-(4,4,5,5-tetrame-
thyl-1,3,2-dioxaborolan-2-yl)propyl)hexahydrocyclopenta[c]pyrrole-2,5(1H)-dicarbox-
ylate (60f) was obtained. The BOC group was removed by treating 60f with DCM and 
TFA, giving the free amine (60g) in a 99% yield. Amine (60g) in DCM was reacted with 1-
chloro-3-hydroxy acetone and Na(OAc)3BH, yielding benzyl (3aR,4S,5S,6aR)-5-azido-2-(1-
chloro-3-hydroxypropan-2-yl)-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pro-
pyl)octahydrocyclopenta[c]pyrrole-5-carboxylate (60h), which was used without purifi-
cation. Finally, 60 was obtained by the hydrogenation of 60h with 10% Pd/C in MeOH and 
deprotection with 3M HCl at r.t. for 1 h. Purification by reverse phase C18 chromatography 
yielded the target compound 60 as a white solid. 

The synthesis of 61 (Scheme 23) began by the introduction of allyl group into the 4-
position of (3αR,6αS)-tetrahydro-1H-spiro[pentalene-2,2′-[1,3]dioxolan]-5(3H)-one (61a) 
under the action of allyl alcohol, 1,1′-ferrocenediyl-bis(diphenylphosphine) (dppf), and 
allylpalladium(II) chloride dimer in MeOH, producing 61b. To obtain 61c, an Ugi reaction 
with (3aR,4S,6aS)-4-allyltetrahydro-1H-spiro[pentalene-2,2′-[1,3]dioxolan]-5(3H)-one 
(61b), NH4OAc, and tert-butyl isocyanide in 2,2,2-trifluoroethanol was performed. 
(3αR,4S,6αS)-5-acetamido-4-allyl-N-(tert-butyl)hexahydro-1H-spiro[pentalene-2,2′-
[1,3]dioxolane]-5-carboxamide (61c) was used without further purification. The 

Scheme 22. Synthesis of compound 60.

The synthesis of 61 (Scheme 23) began by the introduction of allyl group into
the 4-position of (3αR,6αS)-tetrahydro-1H-spiro[pentalene-2,2′-[1,3]dioxolan]-5(3H)-one
(61a) under the action of allyl alcohol, 1,1′-ferrocenediyl-bis(diphenylphosphine) (dppf),
and allylpalladium(II) chloride dimer in MeOH, producing 61b. To obtain 61c, an
Ugi reaction with (3aR,4S,6aS)-4-allyltetrahydro-1H-spiro[pentalene-2,2′-[1,3]dioxolan]-
5(3H)-one (61b), NH4OAc, and tert-butyl isocyanide in 2,2,2-trifluoroethanol was per-
formed. (3αR,4S,6αS)-5-acetamido-4-allyl-N-(tert-butyl)hexahydro-1H-spiro[pentalene-
2,2′-[1,3]dioxolane]-5-carboxamide (61c) was used without further purification. The depro-
tection of the dioxalan moiety with p-toluenesulfonic acid in acetone yielded a racemic
mixture of epimers (~1:1) resolved using chiral supercritical-fluid chromatography (SFC)
to isolate 61d. For the next step, (1S,2S,3aS,6aR)-2-acetamido-1-allyl-N-(tert-butyl)-5-
oxooctahydropentalene-2-carboxamide (61d), was reacted with 1-fluoro-4-hydroxy-1,4-
diazoniabicyclo[2,2,2]octane bis(tetrafluoroborate) in MeOH at 65 ◦C for 40 min. This reac-
tion gave two products: (1S,2S,3aS,6R,6aR)-2-acetamido-1-allyl-N-(tert-butyl)-6-fluoro-5,5-
dimethoxyoctahydropent alene-2-carboxamide (61e1) and (1S,2S,3aR,4S,6aS)-2-acetamido-
1-allyl-N-(tert-butyl)-4-fluoro-5,5-dimethoxyoctahydropentalene-2-carboxamide (61e2).
Treating 61e2 with H2O and TFA in DCM at 23 ◦C and stirring for 1 h provided
1S,2S,3aS,6R,6aR)-2- acetamido-1-allyl-N-(tert-butyl)-6-fluoro-5-oxooctahydropentalene-2-
carboxamide (61f) as a white solid. The hydroboration of 61f was performed by adding it in
DCM to a solution of (+)-pinanediolborane, [Ir(cod)Cl]2, and dppe under N2 at 23 ◦C. Stir-
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ring for 20 min yielded crude (1S,2S,3aS,6R,6aR)-2-acetamido-N-(tert-butyl)-6-fluoro-5-oxo-
1-(3-((3aS,4S,6S,7aR)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1,3,2]dioxaborol-2yl)
propyl)octahydropentalene-2-carboxamide (61g), used in the next step without further
purification. The reaction of 61g with methylamine in absolute EtOH at 0 ◦C, followed by
sodium cyanoborohydride, produced 61h. Finally, the deprotection of 61h using 6 M HCl
provided the final product 61 as a white solid [63].
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Scheme 23. Synthesis of compound 61.

Bicyclic systems, like 62, demonstrated strong activity against both hARG-1 and hARG-
2. Compound 62 inhibited hARG-1 with an IC50 of 2.1 nM. However, comparing its activity
to other compounds is challenging because Merck utilized the (TOGA), while other groups
used a colorimetric assay based on ARG-induced urea production.

The synthesis of 62 (Scheme 24), as reported by Mitcheltree et al., started with the
oxidation of 1-azaspiro[4.4]non-7-ene (62a) to produce crude 62b, which was used with-
out purification. Reacting 6-oxaspiro[bicyclo[3.1.0]hexane-3,2′-pyrrolidine (62b) with al-
lylmagnesium bromide in Et2O at 0 ◦C under N2 gas for 15 h yielded (7R,8R)-8-allyl-
1-azaspiro[4.4]nonan-7-ol (62c) as a pale-yellow oil. This intermediate was also used
directly. Next, TEA and benzyl (2,5-dioxopyrrolidin-1-yl) carbonate (Cbz-OSu) were
added to 62c in DCM, stirred for 2 h at r.t. and yielded (7R,8R)-7-allyl-8-hydroxy-1-
azaspiro[4.4]nonane-1-carboxylate (62d) as a colourless oil. Oxidizing 62d with Dess–
Martin periodinane provided benzyl 7-allyl-8-oxo-1-azaspiro[4.4]nonane-1-carboxylate
(62e), also a colourless oil. The subsequent reaction of 62e with NH4OAc and tert-butyl iso-
cyanide in 2,2,2-trifluoroethanol at 35 ◦C for 15 h produced benzyl (5S,7S,8S)-7-acetamido-8-
allyl-7-(tert-butylcarbamoyl)-1-azaspiro[4.4] nonane-1-carboxylate (62f), a racemic mixture.
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Chiral separation using SFC gave the enantiomer (5S,7S,8S)-7-acetamido-8-allyl-7-(tert-
butylcarbamoyl)-1-azaspiro[4.4]nonane-1-carboxylate (62g) as a viscous oil. For further
modification, 62g was reacted with dppe, [Ir(cod)Cl]2, and pinacolborane in DCM un-
der inert conditions, yielding (5S,7S,8S)-7-acetamido-7-(tert-butylcarbamoyl)-8-(3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)-1-azaspiro[4.4]nonane-1-carboxylate (62h) as
a viscous semisolid. Finally, the deprotection of 62h in 12 M HCl at 110 ◦C for 12 h pro-
duced the target compound (5S,7S,8S)-7-amino-8-(3-boronopropyl)-1-azaspiro[4.4]nonane-
7-carboxylic acid (62) as a viscous oil [63].
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Highly effective inhibitors of ARG activity include 2-substituted alkylamines, such
as the compound (1R,2S,5R)-1-acetamido-5-(2-boronoethyl)-2-(piperidin-1-ylmethyl)cyclo-
hexanecarboxylic acid (63). This compound exhibited potent inhibitory activity, with IC50

values for hARG-1 and hARG-2, ranging from 1 to 100 nM and 100 to 1000 nM, respectively.
In cellular assays, compound 63 demonstrated notable activity with an IC50 of up to
100 nM. Other derivatives, like compound 64 (featuring a hydroxy group at position 2),
were less potent than the piperidine analogue 63. Compound 64 showed intracellular
activity between 10 and 100 µM and IC50 < 1000 nM for both ARGs.

The synthesis of 63 is outlined in Scheme 25 and began with the preparation of
ethyl 2-oxocyclohex-3-enecarboxylate (63b) via the acylation of 2-cyclohexen-1-one (63a)
with ethyl chloroformate under strongly basic conditions (LDA in THF). Next, ethyl
2-hydroxy-4-vinylcyclohex-1-ene-1-carboxylate (63c) was synthesized by reacting 63b
with vinylmagnesium bromide and CuBr x Me2S in the presence of TMSCl under ar-
gon at −78 ◦C. The treatment of 63c with NH4OAc and tert-butyl isocyanide in 2,2,2
trifluoroethanol produced 63d in a 56% yield. The subsequent reduction of ethyl rac-
(1R,2R,4R)-2-acetamido-2-(tert- butylcarbamoyl)-4-vinylcyclohexane-1-carboxylate (63d)
with diisobutylaluminium hydride (DIBAL-H) at −78 ◦C, followed by treatment with
piperidine and sodium triacetoxyborohydride produced rac-(1R,2S,5R)-1-acetamido-N-
tert-butyl)-2-(piperidin-1-yl-methyl)-5-vinylcyclohexanecarboxamide (63e) as a single di-
astereoisomer. The boronation of 63e using pinacolborane, dppe, and [Ir(cod)Cl]2 in DCM
at r.t. formed (1R,2S,5R)-1-acetamido-N-(tert-butyl)-2-(piperidin-1-ylmethyl)-5-(2-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)cyclohexanecarboxamide (63f). Finally, refluxing
63f with 6 M HCl for 6h produced compound 63 as a white solid [64].
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Scheme 25. Synthesis of compound 63.

Compound 64 was synthesized similarly to 63, as shown in Scheme 26. Refluxing
a mixture of 6-methyl-2-cyclohexenone (64a), benzene, acetic acid, and manganese(III)
acetate dihydrate for 6 h produced 64b. Subsequently, 1-methyl-2-oxo-4-vinylcyclohexyl
acetate (64c) was synthesized via the 1,4-addition of vinylmagnesium bromide, catalysed
by CuBr x Me2S in THF. Next, the Ugi reaction of 64c with NH4OAc and tert-butyl iso-
cyanide in 2,2,2 trifluoroethanol produced 2-acetamido-2-(tert-butylcarbamoyl)-1-methyl-4-
vinylcyclohexyl acetate (64d). The hydroboronation of 64d using pinacolborane, dppe, and
[Ir(cod)Cl]2 in DCM at r.t. gave 64e as a single diastereoisomer. Finally, refluxing 64e with
6M HCl yielded 1-amino-5-(2-boronoethyl)-2-hydroxy-2-methylcyclohexanecarboxylic acid
hydrochloride (64) as a single diastereoisomer (white solid). A by-product of 64f was also
obtained as a single diastereosomer [65].
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Scheme 26. Synthesis of compound 64.

Compound 65 was synthesized similarly to compound 64, but with a different start-
ing material, as illustrated in Scheme 27. The process is not described in detail. After
purification via flash chromatography on DOWEX® ion exchange resin, the target product,
rac-(3R,5R)-3-aminno-5-(2-boronoethyl)tetrahydro-2H-pyran-3-carboxylic acid hydrochlo-
ride (65), was obtained as a single diastereoisomer in a 56% yield (white solid). Com-
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pound 65 demonstrated activity against both hARG-1 (IC50 = 100–1000 nM) and hARG-2
(IC50 = 1–10 mM).
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A novel class of ARG inhibitors with a proline scaffold was developed by Sichuan
Kelun-Biotech Biopharmaceutical, AstraZeneca, and Merck Sharp & Dohme. These in-
hibitors include proline derivatives with a boronic acid group either in position 1 (along-
side a carboxyl group) or at position 2 (as in Merck’s compounds). Merck introduced
compounds with various substitutions, such as hydroxyl, alkyl, piperidine, pyrrolidine,
and aliphatic amino groups. Among these, a standout was the compound (2S,3R,4R)-4-
amino-3-(3-boronopropyl)pyrrolidine-2-carboxylic acid (66), which had an amino group
at position 4. This compound demonstrated significant inhibitory activity with an IC50 of
3.2 nM (TOGA) for hARG-1. Another notable compound, (2S,3S,4R)-3-(3-boronopropyl)-
4-hydroxypyrrolidine-2-carboxylic acid (67), featured a hydroxyl group at position 4, ar-
ranged trans to carboxylic acid and the propylboronic acid linker. Its activity against
hARG-1 was slightly lower, with an IC50 of 6 nM. An azetidine-based derivative, (2S,3S)-
3-(aminomethyl)-3-(3-boronopropyl)azetidine-2-carboxylic acid (68), was the most effec-
tive homolog, showing an IC50 of 8 nM for hARG-1. AstraZeneca and Kelun also con-
tributed to this class of inhibitors. AstraZeneca reported derivatives like (2R,4R)-4-amino-
2-(4-boronobutyl)pyrrolidine-2-carboxilic acid (69), which showed IC50 values of 10 nM
for hARG-1 and 20 nM for hARG-2. Its methyl analogue, (2R,4R)-2-(4-boronobutyl)-4-
(methylamino)pyrrolidine-2-carboxylic acid (70), displayed even greater potency, with
IC50 values of 3 nM for hARG-1 and 10 nM for hARG-2. Kelun’s derivatives included
proline analogues substituted with hydroxyl or amino groups. Among these, compound 69
showed moderate activity in a standard assay, with an IC50 activity of 4.3 µM for hARG-1.
The synthesis of compounds 66–70 follows detailed procedures outlined in Schemes 28–32.

Compound 66 was synthesized as described by Achab et al. (Scheme 28) [66]. The pro-
cess began with the addition of KHMDS to a solution of 1-(tertbutyl)-2-methyl (2S)-3-allyl-4-
oxopyrrolidine-1,2-dicarboxylate (66a) in THF at –78 ◦C under N2. After stirring and warm-
ing to –20 ◦C, CSA was added, followed by pre-cooled MeOH and NaBH4 at –78 ◦C. Purifi-
cation through silica gel chromatography yielded 1-(tert-butyl)2-methyl (2S,3S,4S)-3-allyl-4-
hydroxypyrrolidine-1,2-dicarboxylate (66b) as a black oil. In the next step, 66b was reacted
with 2,6-dimethylpyridine and chloromethanesulfonyl chloride in DCM at 0 ◦C, producing
crude 1-(tert-butyl) 2-methyl(2S,3S,4S)-3-allyl-4-(((chloromethyl)sulfonyl)oxy)pyrrolidine-
1,2-dicarboxylate (66c). Without further purification, 66c was treated with sodium
azide in DMSO at 80 ◦C, yielding crude 1-(tert-butyl) 2-methyl (2S,3S,4R)-3-allyl-4-
azidopyrrolidine-1,2-dicarboxylate (66d). Next, pinacolborane, [Ir(cod)Cl]2 and dppe were
used in DCM under argon to convert 66d into 1-(tert-butyl) 2-methyl (2S,3S,4R)-4-azido-3-
(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)pyrrolidine-1,2-dicarboxylate (66e)
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as a colourless oil. This intermediate underwent azide reduction using Pd/C in EtOAc,
forming crude 1-(tert-butyl)-2-methyl (2S,3R,4R)-4-amino-3-(3-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)propyl)pyrrolidine-1,2-dicarboxylate (66f). Finally, 66f was heated with
6 M HCl in a microwave reactor at 120 ◦C for 1 h to produce (2S,3R,4R)-4-amino-3-(3-
boronopropyl)pyrrolidine-2-carboxylic acid (66) as a light brown solid. The same study
described the synthesis of 67 (Scheme 29) using the intermediate 66c (Scheme 28).

Caesium acetate and 18-crown-6 were added to a solution of intermediate 66c in
toluene stirred under N2 at r.t. This reaction yielded 1-(tert-butyl)-2-methyl (2S,3S,4R)-4-
acetoxy-3-allylpyrrolidine-1,2-dicarboxylate (67a) as a colourless oil. In the next step, a mix-
ture of pinacolborane, [Ir(cod)Cl]2, and dppe in DCM was prepared under N2 and stirred
at r.t. The solution of 67a was then added, producing 1-(tert-butyl)-2-methyl-(2S,3S,4R)-4-
acetoxy-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)pyrrolidine-1,2-dicarboxyl-
ate (67b). For the final step, 67b was deprotected by treatment with 12 M HCl in wa-
ter, resulting in the formation of (2S,3S,4R)-3-(3-boronopropyl)-4-hydroxypyrrolidine-2-
carboxylic acid (67) as a yellowish solid.
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The synthesis of 68, outlined in Scheme 30, began with the intermediate 68a,
prepared following established literature methods. Intermediate (2S,3S)-tert-butyl-
3((benzyloxy)methyl)-1-(9-phenyl-9H-fluoren-9-yl)-3-(3-(4,4,5,5,-tetramethyl-1,3,2-dioxabo-
rolan-2-yl)prpyl)azetidine-2-carboxylate (68a), used in the synthesis of various other com-
pounds, was subjected to catalytic hydrogenation using 10% Pd/C in MeOH, yielding
crude (2S,3S)-tert-butyl 3-(hydroxymethyl)-3-(3-(4,4,5,5-tetramethyl-1,3,3-di-oxaborolan-2-
yl)propyl)azetidine-2-carboxylate (68b). This intermediate was used directly in the next step
without further purification. To synthesize 68c, TEA and BOC-anhydride were added to 68b
at 0 ◦C, resulting in (2S,3S)-di-tert-butyl 3-((benzyloxy)methyl)-3-(3-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)propryl)azetidine-1,2-di-carboxylate (68c). Subsequent catalytic
hydrogenation with 10% Pd/C in MeOH produced (2S,3S)-di-tert-butyl 3-(hydroxymethyl)-
3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propryl)azetidine-1,2-dicarboxylate (68d),
the corresponding hydroxymethyl derivative. Methanesulfonyl chloride and TEA were
added to 68d in DCM at 0 ◦C to form crude (2S,3S)-di-tert-butyl 3-(((methylsulfonyl)oxy)
methyl)-3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propryl)azetidine-1,2-dicarboxylate
(68e), a methylsulfonyl ester derivative. Without purification, 68e was reacted with
sodium azide in DMF at 80 ◦C for 15 h yielding (2S,3S)-di-tert-butyl 3-(azidomethyl)-
3-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propryl)azetidine-1,2-dicarboxylate (68f),
an azide derivative. The oxidation of 68f with NH4OAc and sodium periodate in a
THF-H2O mixture at r.t. for 15 h yielded crude (3-((2S,3S)-3-(azidomethyl)-1,2-bis(tert-
butoxycarbonyl)azetidine-3-l)prpyl)boronic acid (68g), a boronic acid derivative. This
intermediate underwent reduction with PPh3 in THF—H2O at 60 ◦C under N2, forming
(3-((2S,3S)-3-(aminomethyl)-1,2-bis(tert-butoxycarbonyl)azetidine-3-l)proyl)boronic acid
(68h), an aminomethyl derivative. Finally, TFA was added to 68h in DCM at 20 ◦C, depro-
tecting the BOC groups and yielding (2S,3S)-3-(aminomethyl)-3-(3-boronopropyl)azetidine-
2-carboxylic acid (68) as the free base [67].
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Mlynarski et al. reported the synthesis of many proline derivatives, including 69
(Scheme 31) and 70 (Scheme 32) [68].

The synthesis of 69 began with (2S, 4S)-1-tert-butyl-2-methyl-4-hydroxypyrrolidine-
1,2-dicarboxylate (69a), which was treated with methanesulfonyl chloride and TEA in DCM
at 0 ◦C. This yielded 1-(tert-butyl)-2-methyl(2S,4S)-4-((methylsulfonyl)oxy)pyrrolidine-1,2-
dicarboxylate, an intermediate used directly in the next step. Reaction with sodium azide in
DMF produced 69b as a mixture of rotamers. A solution of NaOH in H2O was added to 69b
dissolved in THF/MeOH, generating (2S, 4R)-2-benzyl 1-tert-butyl-4-azidopyrrolidine-1,2-
dicarboxylate (69c). This compound was treated with crotyl bromide in THF at –78 ◦C under
N2, followed by KHMDS in toluene. The reaction mixture was warmed to r.t. and stirred
for 3 h, yielding 69d as a mixture of rotamers and E/Z olefins in a 78% yield. Next, 69d was
subjected to hydroboration using pinacolborane, [Ir(cod)Cl]2 and dppe in DCM under N2.
Stirring overnight yielded 69e, which was purified by SFC to separate the diastereoisomers.
The major diastereoisomer 69f1 was identified as the anti-addition product, while the minor
diastereomer 69f2 was the syn-addition product. (2R,4R)-2-benzyl 1-tert-butyl 4-azido-2-(4-
(4,4,5,5-tetramethyk-1,3,2-dioxaborolan-2-yl)butyl)pyrrolidine-1,2-dicarboxylate (69f2) was
subjected to catalytic hydrogenation using 10% Pd/C in a mixture of EtOAc and MeOH.
This step produced 69g, which was used without further purification. In the final step, 69g
was first treated with TFA in DCM at r.t. and then with 1 M HCl and phenylboronic acid in
Et2O, obtaining (2R,4R)-4-amino-2-(4-boronobutyl)pyrrolidine-2-carboxilic acid (69) as a
white solid.

Compound 70, an analogue of 69 with a methyl amino group at position 4 of the proline
ring, was synthesized starting from 1-(tert-butyl)2-methyl (2S,4R)-4-aminopyrrolidine-1,2-
dicarboxylate (70a). The primary amino group in 70a was protected using BOC-anhydride,
and then methylated with NaH and CH3I in DMF to form intermediate 70c. The synthesis
from 70c followed the same procedures as those for compound 69, starting from the second
step onward. The final product, (2R,4R)-2-(4-boronobutyl)-4-(methylamino)pyrrolidine-2-
carboxylic acid (70), was obtained as a white solid.

5. Fourth-Generation Inhibitors
In this section of the review, we introduce a new class of compounds: the fourth-

generation ARG inhibitors. These inhibitors are cyclic dipeptides composed of natural
and non-natural amino acids, with the amino acids linked to a pyrrolidine or piperidine
nitrogen, or an exocyclic amine group in proline residues [22]. The development of this
new generation of ARG inhibitors was driven by the limitations of earlier compounds,
which exhibited poor pharmacokinetic profiles, including very low oral bioavailability and
a highly polar zwitterionic nature.

5.1. Peptide Boronic Acid Derivatives
5.1.1. Peptide Cyclic Inhibitors

The fourth generation of inhibitors includes ABH derivatives, which feature a ring-
constrained pyrrolidine that reduces entropy by positioning the quaternary amino acid in
an optimal orientation for binding [48,54]. A notable example is numidargistat ((3R,4S)-3-
amino-1-((S)-2-aminopropanoyl)-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid (71), a
potent ARG inhibitor with IC50 values of 86 nM for hARG-1 and 296 nM for hARG-2 [22].
In 2016, it was approved by the Food Drug Administration (FDA) for clinical trials to
treat patients with metastatic solid tumours, both as a monotherapy and in combination
with chemotherapy and immunotherapy [69]. Compound 71 and its analogues (72–73)
were synthesized from Sjogren et al., with their synthetic protocols being patent-protected,
as shown in Scheme 33 [70]. Specifically, compounds (3R,4S)-3-amino-1-((S)-2-amino-3-
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methylbutanoyl)-4-(3-boronopropylpyrrolidine)-3-carboxylic acid (72) and (3R,4S)-3-amino-
1-((S)-2-amino-3-hydroxypropanoyl)-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid (73)
were prepared similarly to numidargistat (71), with the only difference being the reagents
used with intermediate 71g. For 72, (tert-butoxycarbonyl)-L-valine was used, while for 73,
(S)-3-(tert-butoxycarbonyl)-2,2-dimethyloxazolidine-4-carboxylic acid was employed.
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The synthesis started with tert-butyl 6-oxa-3-azabicyclo [3.1.0]hexane-3-carboxylate
(71a), which was reacted with allyl-MgBr in a Grignard reaction to form compound 71b.
This was then oxidized using a sulphur trioxide pyridine complex (Py-SO3) to generate
the ketone 71c. Next, tert-butyl 3-allyl-4-oxopyrrolidine-1-carboxylate (71c) was treated
with CHCl3 and LiHMDS, followed by NaN3 and NaOH to yield compound 71d. The
next step involved the protection of compound 71d with BnBr and K2CO3, resulting in
((3R,4S)-3-benzyl 1-tert-butyl-4-allyl-3-azidopyrrolidine-1,3-dicarboxylate (71e), which was
then subjected to hydroboration with pinacolborane and [Ir(cod)Cl]2 in DCM to produce
compound 71f. Compound 71f underwent BOC deprotection with TFA in DCM, yielding
71g. This was then alkylated with BOC-L-Alanine and EDC in DCM to form 71h, which
was deprotected again with TFA in DCM. In the final steps, compound 71i was reacted with
isobutylboronic acid, hexane, methanol, a solution of HCl, and K2CO3 to obtain the boronic
derivative 71l. Finally, hydrogenation with Pd/C resulted in the desired product, (3R,4S)-3-
amino-1-((S)-2-aminopropanoyl)-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid (71).
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An analogue of (2S,3R,5S)-3-amino-1-((S)-2-aminopropanoyl)-5-(2-boronoethyl)-2-
methylpiperidine-3-carboxylic acid (74), which has a methyl group in position 2 of the
piperidine ring, also exhibits activity against hARG-1 and hARG-2 with an IC50 of 249 nM
or lower [22]. The full synthesis of this compound is detailed in Scheme 34 and is described
briefly here.
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The patented synthesis of compound 74 began with a substitution reaction between
ethyl 2–bromopropionate (74a) and allylamine hydrochloride in the presence of TEA
in ACN, yielding compound 74b. This was followed by amine protection using BOC-
anhydride, TEA, and DCM, stirred overnight at r.t., producing compound 74c. Basic hydrol-
ysis with NaOH and EtOH converted 74c into N-allyl-N-(tert-butoxycarbonyl)alanine (74d).
To a solution of 74d in DCM, N,N-diisopropylethylamine (DIPEA), N,O–dimethylhydroxya-
mine, and HATU were added, forming the amide 74e after overnight stirring at r.t. This in-
termediate underwent alkylation reaction with vinyl magnesium bromide in THF at –20 ◦C,
followed by ring-closing metathesis using Grubbs catalyst 2nd generation in DCM, yielding
cyclic compound 74g. A second Grignard reaction with vinylmagnesium bromide and
CuBr x Me2S in THF was performed, followed by the addition of tert-butyl-2-methyl -3-oxo-
3,6-dihydropyridin–1(2H)–carboxylate (74g) and chlorotrimethyl silane at –78◦ C, which
was then stirred overnight at r.t. to yield tert-butyl-2-methyl-3-oxo-5–vi nylpiperidine-
1–carboxylate (74h). To a solution of 74h in 2,2,2–trifluoroethanol, NH4OAc and tert-
butylisocyanide were added dropwise, and the mixture was stirred at r. t. overnight. After
chiral HPLC resolution, compound 74l underwent a N-deprotection with HCl /AcOEt,
yielding 74m. This intermediate was protected with benzaldehyde, and sodium triace-
toxyborohydride in DCE to obtain 74n as a white foam. A hydroboration reaction was
performed on 74n using dppe, [Ir(cod)Cl]2, and pinacolborane in DCM, followed by treat-
ment with 12 M HCl, resulting in the boronic acid derivative 74p. This was protected using
BOC anhydride, a solution 1M NaOH and acetone, producing compound 74q as a white
solid. The next step involved hydrogenation over 20% Pd (OH)2/C in MeOH, followed
by N-alkylation with BOC-L-Ala-Osu in DMF, resulting in 74s. In the final step, treatment
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of 74s with a solution of 4 M HCl in EtOAc yielded the desired compound (2S,3R,5S)-3-
amino-1-((S)-2-aminopropanoyl)-5-(2-boronoethyl)-2-methylpiperidine-3-carboxylic acid
(74) [71].

The compound (3R,5S)-3-amino-1-(2-aminoacetyl)-5-(2-boronoethyl)piperidine-3-carb-
oxylic acid (75) is a glycine derivative with IC50 values ranging from 1 to 249 nM against
hARG-1 and 500–999 nM against hARG-2. Its synthesis, outlined in Scheme 35, in-
volves a patented two-step procedure. Starting from (3R, 5S)-5-(2-boronoethyl)-3-((tert-
butoxycarbonyl)amino)piperidine-3-carboxylic acid (75a), Blaszczyk et al. performed an
amidation reaction using BOC-Gly-OSu in DMF, followed by deprotection with 4 M HCI in
EtOAC, yielding the final product 75 [22,71].
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Another ARG inhibitor, (3R,5S)-1-(l-histidyl)-3-amino-5-(2-boronoethyl)piperidine-3-
carboxylic acid trihydrochloride (76) is a histidine derivative with the same IC50 profile as
75 (1–249 nM for hARG-1 and 500–999 nM for hARG-2) [64]. Its synthesis follows the same
procedure as 75 but uses BOC-L-His-(1-BOC)-Osu in the first step (Scheme 35).

Among peptide inhibitors, notable examples include (3aR,4S,5S,6aR)-5-amino-2-((S)-2-
aminopropanoyl)-4-(3 boronopropyl) octahydrocyclopenta[c] pyrrole-5-carboxylic acid (77)
with an IC50 of 108 nM against hARG-1 (Merck,TOGA assay), and (3aR,4S,5S,6aR)-5-amino-
2-((S)-2-amino-3-methylbutanoyl)-4-(3-boronopropyl)octahydrocyclopenta[c]pyrrole-5-car-
boxylic acid (78), containing a valine moiety and exhibiting an improved IC50 of 52 nM,
(TOGA assay) [22]. The synthesis of both compounds follows a patented 10-step protocol
outlined in Scheme 36 [62,63]. The processes are identical except for the coupling reagent
used in the seventh step: BOC-Ala-OH for 77 and BOC-Val-OH for 78.

The synthesis of compound 77 began with the resolution of 77a via SFC, yielding tert-
butyl-(3aR,4S,6aR)-4-allyl-5-oxohexahydrocyclopenta[c]pyrrolo-2(1H)-carboxylate (77b).
In the second step, 77b was treated with CHCl3, chlorotrimethylsilane, and LiHMDS
(1 M in THF) under N2 at –78 ◦C, then warmed to –30 ◦C and stirred for 1.5 h. Fol-
lowing the addition of tetrabutylammonium acetate in DMF, the mixture was heated to
0 ◦C and stirred for 12 h, forming tert-butyl-(3aR,4S,6aR)-4-allyl-5-(trichloromethyl)-5-
((trimethylsilyl)oxy)hexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (77c). In the third
step, the product was treated with acetic acid and tetra-n-butylammonium fluoride in THF,
to produce 77d, which was then reacted with sodium azide and sodium hydroxide in water
to give (3aR,4S,6aR)-4-allyl-5-azido-2-(tert-butoxycarbonyl)octahydrocyclopenta[c]pyrrole-
5-carboxylic acid (77e). The benzylation of 77e with K2CO3 and benzyl bromide yielded 5-
benzyl 2-(tert-butyl)(3aR,4S,5S,6aR)-4-allyl-5-azidohexahydrocyclopenta[c]pyrrole-2,5(1H)-
dicarboxylate (77f). A hydroboration reaction with [Ir(cod)Cl]2 and pinacolborane in DMC
then produced 5-benzyl 2-(tert-butyl) (3aR,4S,5S,6aR)-5-azido-4-(3-(4,4,5,5-tetramethyl-
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1,3,2-dioxaborolan-2-yl)propyl)hexahydro cyclopenta[c]pyrrole-2,5(1H)-dicarboxylate (77g),
which was deprotected with 4 M HCl in EtOAc, yielding benzyl(3aR,4S,5S,6aR)-5-azido-4-
(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan2-yl)propyl)octahydrocyclopenta[c]pyrrole-5-car-
boxylate (77h). Compound 77h was N-alkylated with BOC-Ala-OH or BOC-Val-OH
in DMF and in the presence of propanephosphonic acid anydride (T3P) and TEA to
form (3aR,4S,5S,6aR)-5-azido-2-((tert-butoxycarbonyl)-L-alanyl)-4-(3-(4,4,5,5-tetramethyl-
1,3,2-dioxaborolan-2-yl)propyl)octahydrocyclopenta[c]pyrrole-5-carboxylate or (3aR,4S,5S,
6aR)-5-azido-2-((tert-butoxycarbonyl)-L-valin)-4-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)propyl)octahydrocyclopenta[c]pyrrole-5-carboxylate (77i). Subsequent deprotection
with H2 over Pd-C gave 77l, which was used directly in the final step. The treatment
of 77l with 6 M HCl at 20 ◦C for 13 h yielded the final product (3αR,4S,5S,6αR)-2-(L-
alanyl)-5-amino-4-(3-boronopropyl)octahydrocyclopenta[c]pyrrole-5-carboxylic acid (77)
and (3αR,4S,5S,6αR)-2-(L-vanil)-5-amino-4-(3-boronopropyl)octahydrocyclopenta[c]pyrrole-
5-carboxylic acid (78) as white solids (TFA salt).
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5.1.2. Proline Cyclic Inhibitors

Other peptide inhibitors of ARG are based on a proline scaffold, where the amino
group of the proline core is coupled with various natural amino acids such as valine,
leucine, and proline, or unnatural amino acids like cyclopentylglycine, tert-leucine, and
indanylglycine. Examples include (2S,3R,4R)-4-((S)-2-amino-3-methylbutanamido)-3-(3-
boronopropyl)pyrrolidine-2-carboxylic acid (79), (2S,3R,4R)-4-((S)-2-amino-2-cyclopentyla-
cetamido)-3-(3-boronopropyl)pyrrolidine-2-carboxylic acid (80), and (2S,3R,4R)-4-((S)-
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2-amino-3,3-dimethylbutanamido)-3-(3-boronopropyl)pyrrolidine-2-carboxylic acid (81).
These compounds, reported in Figure 5, exhibit improved inhibitory properties.
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Figure 5. Chemical structures of compounds 79–81.

Compound 79, featuring an isopropyl group as a substituent, inhibits hARG-1 with an
IC50 = 320 nM and hARG-2 with IC50 = 330 nM (TOGA assay). In contrast, compounds 80
and 81, containing cyclopentylglycine and tert-leucine as unnatural amino acids linked to
the proline scaffold, are significantly more potent, inhibiting hARG-1 with an IC50 = 0.8 nM
(TOGA assay) [22]. Compounds 80 and 81 were synthesized following the same method as
compound 79 (Scheme 37) but using appropriate starting materials [72].
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The patented synthesis of compound 79, described by Achab AA et al., involves three
steps [72]. Starting with (2S,3R,4R)-1-tert-butyl 2-methyl 3-allyl-4-aminopyrrolidine-1,2-
dicarboxylate (79a), the compound undergoes N-alkylation using BOC-L-Val-OH, TEA, and
HATU, yielding intermediate 79b. This is followed by a hydroboration reaction with pina-
colborane, [Ir(cod)Cl]2, and dppe to produce compound 79c. In the final step, the interme-
diate is treated with potassium trimethylsilanolate, then with 6 M HCl, to obtain the target
compound (2S,3R,4R)-4-((S)-2-amino-3-methylbutanamido)-3-(3-boronopropyl)pyrrolidine-
2-carboxylic acid (79).

Another ARG inhibitor is (2S,3R,4R)-4-((S)-2-amino-4-methylpentanamido)-3-(3-
boronopropyl)pyrrolidine-2-carboxylic acid (82), which incorporates leucine and the nat-
ural amino acid attached to the amine group of the proline scaffold. This compound
inhibits hARG-1 with an IC50 = 1.6 nM (TOGA) and is synthesized in three steps, as
outlined in Scheme 38 [22,72]. Starting with 1-(tert-butyl)-2-methyl(2S,3R,4R)-3-allyl-4-
aminopyrrolidine-1,2-dicarboxylate (82a), a hydroboration reaction with a pinanediolbo-
rane derivative, (3aR,4R,6R,7aS)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1,3,2]
dioxaborole, [Ir(cod)Cl]2, and dppe yields compound 82b. This intermediate is then
N-alkylated using BOC-L-Leu-OH, TEA, and HATU to produce compound 82c. In the
final step, compound 82c reacts with potassium trimethylsilanolate, followed by treat-
ment with 6 M HCl, resulting in the desired compound, (2S,3R,4R)-4-((S)-2-amino-4-
methylpentanamido)-3-(3-boronopropyl)pyrrolidine-2-carboxylic acid (82).
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The compound (2R,4R)-4-((S)-2-amino-3-methylbutanamido)-2-(4-boronobutyl)pyrro-
lidine-2-carboxylic acid (AZD0011, 83), a valine analogue, exhibited IC50 values of 320 nM
against hARG-1 and 330 nM against hARG-2, as determined by the TOGA assay. Further-
more, pharmacological tests using the mouse xenograft model revealed that 83 acted as
prodrug, releasing the parent compound 69 in vivo [73]. The synthesis of 83, outlined in
Scheme 39 [62], involved two steps starting from (2R,4R)-4-amino-1-(tert-butoxycarbonyl)-
2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)pyrrolidine-2-carboxylic acid (69g).
In the first step, 69g underwent N-alkylation with BOC-Val-OH, TEA, and HATU yielding
intermediate 83a. The second step involved deprotection using TFA, Et2O, a solution 1
M HCl, and phenylboronic acid, producing the final compound (2R,4R)-4-((S)-2-amino-3-
methylbutanamido)-2-(4-boronobutyl)pyrrolidine-2-carboxylic acid (83).
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The compound (2R,4R)-4-((S)-2-amino-3-hydroxy-3-methylbutanamido)-2-(4-borono-
butyl)pyrrolidine-2-carboxylic acid (84), a hydroxyvaline analogue, displayed IC50 values
of 340 nM and 520 nM against hARG-1 and hARG-2, respectively, as determined by
the TOGA assay [22]. Its synthesys outlined in Scheme 40, involved two steps starting
with (2R,4R)-2-benzyl-1-tert-butyl 4-amino-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)butyl)pyrrolidine-1,2-dicarboxylate (84a). The first step was N-alkylation with (S)-
N-α-tert-butoxycarbonyl-3,3-dimethyl-serine, DIPEA, and HATU, yielding intermediate
84b. In the second step, deprotection was achieved using Pd/C in EtOAc, followed by
treatment with TFA, Et2O, a solution 1 M HCl, and phenylboronic acid, producing the
final compound (2R,4R)-4-((S)-2-amino-3-hydroxy-3-methylbutanamido)-2-(4-boronobutyl)
pyrrolidine-2-carboxylic acid (84) [68].

As observed in the structures of the fourth-generation ARG inhibitors presented thus
far, the nitrogen atom is linked to an amino acid of a varying nature through a peptide
bond. In some cases, the design of these compounds has resulted in improvements in both
activity and pharmacokinetic profiles, fulfilling the objectives for which this generation
was developed. However, in other instances, these inhibitors exhibited lower inhibitory
activity compared to the non-peptide derivatives of the third generation and could only
be considered prodrugs in specific cases. For example, it has been demonstrated that
peptide derivatives, such as compound 83, were rapidly metabolized in vivo through the
hydrolysis of the peptide bond, releasing the non-peptide derivative 69, which exhibited
superior activity.
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OATD-02 (85), developed by OncoArendi Therapeutics (now Molecure), is a boronic
acid derivative and an intracellular dual inhibitor of ARG-1 and ARG-2, with potent IC50

values of 20 nM and 48 nM for hARG-1 and -2, respectively [22]. Currently in preclini-
cal development [74], its synthesis involves five steps, as detailed in Scheme 41 [28,75].
Starting from 2-cyclohexen-1-one (85a), the reaction with triethoxyvinylsilane under the
catalysis of Rh(cod)(MeCN)2BF4 and R-BINAP in dioxane produced intermediate 85b.
Further processing with sodium hydride and diethyl carbonate yielded 85c, which was
converted to 85d by reaction with NH4OAc in 2,2,2-trifluoroethanol and tert-butyl iso-
cyanide. The subsequent reduction of (1R,2R,4R)-2-acetamido-2-(tert-butylcarbamoyl)-4-
vinylcyclohexane-1-carboxylate (85d) with a solution 1 M DIBAL-H in DCM at –78 ◦C,
followed by the addition of dimethylamine in THF and sodium triacetoxyborohydride, led
to the formation of (1R,2S,5R)-1-acetamido-N-(tert-butyl)-2-((dimethylamino)methyl)-5-
vinylcyclohexanecarboxamide (85e). Reacting 85e with pinacolborane in the presence of
dppe and [Ir(cod)Cl]2, followed by reflux in 6 M HCl, yielded the crude product. Purifica-
tion through chromatography on the silica gel C-18 (isocratic elution, H2O), and, next, flash
chromatography on the DOWEX® 50WX8 ion exchange resin (eluent 0.1 M ammonia in
water) produced the final compound (OATD-02) 85.
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Recently, Shields and colleagues developed novel ARG inhibitors by exploring the

previously little-studied β-position of the compound ABH (9) [76]. Specifically, they synthe-
sized promising inhibitors by alkylating the β-position of ABH with various functionalized
alkyl chains to increase potency. Until now, companies and research groups had focused
primarly on substitution at the α-position or the simultaneous substitution of both the α-
and β-positions through cyclization. Through their chemical modifications, Shields et al.
have extensively occupied the channel leading to the active site by targeting the β-position,
without relying on cyclization. Among the twenty compounds synthesized, the most potent
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inhibitors able to inhibit ARG-1 with an IC50 value lower than that ABH (i.e., lower than
the 470 nM obtained from the biochemical assays performed by the same authors) were
compounds 86–88, shown in Figure 6. Notably, compounds 87 and 88 shared the same
chemical structure but differed in spatial arrangement: 87 was the anti derivative, and 88
was the syn derivative. The anti arrangement (87) exhibited higher potency. The X-ray
crystallography of the 87 and 88-ARG-2 complexes prompted the authors to add an amino
acid residue to 87 and 88, forming a peptide bond to further improve potency. Various
amino acid residues were tested, and the most promising inhibitors were derivatives 89
and 90 (Figure 6). For the syn compound, alanine was added while valine was added
to the anti compound. Interestingly, the syn compound (88) became more potent after
alanine was added (89), surpassing both 87 and its corresponding derivative, 90. Moreover,
pharmacological tests confirmed that 89 and 90 acted as prodrugs, releasing the respective
parent compounds in vivo [76].
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The synthetic procedure of compounds 87 and 88 is shown in Scheme 42.
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The synthesis began with the mesylation of tert-butyl (2S,3S)-2-(((benzyloxy)carbonyl)
amino)-3-(hydroxymethyl)hex-5-enoate (87a) and tert-butyl (2S,3R)-2-(((benzyloxy)carbonyl)
amino)-3-(hydroxymethyl)hex-5-enoate (88a) and the subsequent protection of the amino
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function using potassium phthalimide to give the corresponding protected amines tert-
butyl (2S,3R)-2-(((benzyloxy)carbonyl)amino)-3-((1,3-dioxoisoindolin-2-yl)methyl)hex-5-
enoate (87c) and tert-butyl (2S,3S)-2-(((benzyloxy)carbonyl)amino)-3-((1,3-dioxoisoindolin-
2-yl)methyl)hex-5-enoate (88c). Subsequently, the hydroboration reaction of 87c and 88c
was performed in the presence of [Ir(cod)Cl]2, dppm and pinacolborane yielding 87d and
88d, respectively. In the last step, a global deprotection in acidic medium was performed to
remove the benzyl carbamate, tert-butyl ester, and the pinacol-protecting groups, revealing
the final compounds (2S,3R)-2-amino-3-(aminomethyl)-6-boronohexanoic acid dihydrochlo-
ride (87) and (2S,3S)-2-amino-3-(aminomethyl)-6-boronohexanoic acid dihydrochloride (88)
as hydrochloride salts. These salts were freebased by passage through an ion exchange
column and then freeze-dried.

7. Natural Compounds as ARG Inhibitors
Plant-derived compounds, often inspired by traditional medicine, offer a promising

avenue for discovery ARG inhibitors. Natural and semi-synthetic compounds not only
enhance molecular diversity but also hold the potential to reduce toxicity [34,77].

Among natural ARG inhibitors, polyphenols stand out for their bioactivity and safety.
This class includes flavonoids, phenolic acids, and tannins, which have demonstrated
significant ARG inhibitory activity and could serve as valuable lead compounds. On
the semi-synthetic side, cinnamide derivatives, derived from cinnamic acid, show great
potential. These compounds can be chemically modified to improve their potency and
selectivity. By combining natural and semi-synthetic approaches, researchers can create a
robust platform for developing new ARG inhibitors, benefiting from molecular diversity,
reduced toxicity, and structure–activity relationship (SAR) insights.

7.1. Polyphenols

Polyphenols are among the most prominent natural compounds identified as ARG
inhibitors. These secondary plant metabolites, abundant in fruits, vegetables, and medicinal
plants, offer a wide array of health benefits. Key classes of polyphenols include flavonoids,
phenolic acids, stilbenes, and lignans, many of which have demonstrated ARG-inhibitory
activity, partly linked to their influence on NO production.

Notable examples (Table 2) include chlorogenic acid (91) (a phenolic acid), picetannol
(92) and resveratrol (93) (stilbens), and taxifolin (94) (flavanoid). These compounds showed
IC50 values of 10.6 µM, 12.1 µM, 18.2 µM, and 23.2 µM, respectively, against ARG-1 in assays
using mammalian bovine liver [78]. Piceatannol-3′-O-β-D-glucopyranoside (95), a stilbene
glycoside, inhibited both ARG-1 and ARG-2 in a dose-dependent manner with IC50 values
of 11.2 µM and 11.0 µM, measured in rat liver and kidney lysates, respectively [79]. Studies
by Arraki et al. [80] highlighted several polyphenols, including ellagic acid (96),various
luteolin derivatives extracted from the leaves of Morus alba, like luteolin-7-diglucoside
(97), luteolin-7-glucoside (98), and luteolin (99), as well as stilbenes like scirpusin B (100), ε-
viniferin (101), cyperusphenol B (102), carexinol A (103), and the newly identified virgatanol
(104) stilbenes and polyphenols isolated from various species of Cyperus and Carex, from
the Cyperaceae family—which showed inhibitory effects on purified bovine liver (Table 2).
Additionally, Sauchinone (105), isolated from Saurus chinensis extract, showed an IC50 of
61.4 µM against ARG-2 in murine kidney lysates [81]. Methanolic extracts of Scutellaria
indica also showed promise, with compounds (2S)-5,7-dihydroxy-8,20-dimethoxyflavanone
(106) and (2S)-5,20,50-trihydroxy-7, 8-dimethoxyflavanone (107) displaying IC50 values
of 25.1 µM and 11.6 µM, respectively, against ARG-2 [82]. However, comparing these
findings is challenging due to the variability in assay conditions. Despite this limitation,
structural analyses suggest that features like the caffeoyl (3,4-dioxycinnamoyl) group and
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catechol functionality are crucial for ARG inhibition. Although the identified natural
compounds mostly exhibit micromolar-range activity, these insights provide a foundation
for designing more potent ARG inhibitors and expanding the chemical space of natural
product-derived therapeutics.

Table 2. Structures and IC50 values of natural and semi-synthetic compounds.

Compound Structure ARG-1 Activity ARG-2 Activity

91
Chlorogenic acid
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7.2. Cinnamide Derivatives

Pham et al. simplified the structure of chlorogenic acid—an ester of caffeic and quinic
acid—to create compound (108) (Table 2), also known as caffeic acid phenylamide (CAPA).
In tests using a micro-assay on purified bovine liver arginase (bARG-1), CAPA showed
slightly better activity than chlorogenic acid, with IC50 values of 6.9 µM and 10.6 µM,
respectively. However, when tested on recombinant human arginase (hARG-1), CAPA’s
activity decreased significantly, with an IC50 of 60.3 µM.

This study highlights the value of using bARG-1, a cost-effective alternative, for
initial screening of potential mammalian ARG inhibitors. However, it also emphasizes the
importance of testing promising compounds on hARG-1 to ensure their relevance before
advancing to further studies. The research identified the cinnamoyl group and catechol
moiety as essential structural features for inhibitory activity. Despite CAPA’s relatively
high IC50 against hARG-1, its structure points to cinnamide derivatives as promising lead
compounds for developing therapeutically effective ARG inhibitors [83].

8. Conclusions and Future Perspectives
In conclusion, ARG, the enzyme responsible for the metabolism of the amino acid

L-arginine, plays a key role in numerous pathophysiological processes, making it a sig-
nificant target for researchers aiming to combat various disorders. Although the enzyme
was discovered many years ago, recent advancements have spurred renewed research
into ARG and its inhibitors, leading to the development of new molecules designed to
target this enzyme. This review traces the evolution of ARG inhibitors, categorizing them
into different generations and classes based on structure variations, including recently
developed molecules and those derived from natural or semi-synthetic sources. For the
first time, in this review the structures and syntheses of ARG inhibitors described in patent
applications have been reported.

As emphasized throughout the review, various pathologies are characterized by
the uncontrolled expression of one of the two ARG isoforms, underscoring the need for
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selective inhibitors targeting either ARG-1 or ARG-2. Despite numerous studies and clinical
trials demonstrating the potential of ARG as a biomarker and diagnostic tool for cancer
progression, there is still a need for standardized clinical definitions of ARG activity and for
the consistent measurement of ARG-1 and ARG-2 expression levels in blood or tissues for
cancer diagnosis. To address this challenge, an artificial intelligence-based prediction model
could be developed, leveraging deep learning of clinical data, including cancer types, ARG
activity values, expression levels, and patient information, to assess cancer progression.

Despite significant progress, a fully selective inhibitor remains elusive due to the
structural similarities between the two isoforms. Notable examples include numidargistat
and OATD-02, although neither shows significant selectivity for one isoform over the
other. However, OATD-02 offers a unique advantage as the first potent dual ARG-1/ARG-
2 inhibitor in its class. Its enhanced antitumor activity in vivo has been attributed to
its complex mechanism of action, targeting both intracellular and extracellular ARGs.
Consequently, OATD-02 stands out as the only pharmacological tool capable of effectively
harnessing the benefits of inhibiting both isoenzymes, while also regulating also CD8+ and
Treg cell activity in contrast to numidargistat.

Both numidargistat and OATD-02 have advanced to the clinical phase, ref. [84] with
OATD-02 still in the recruitment phase. Numidargistat has been evaluated in five separate
phase I studies for advanced or metastatic solid tumours, primarily in combination with
other immunotherapies or conventional chemotherapies. However, the literature suggests
that immunochemotherapy has shown superior efficacy compared to immunotherapy
alone [85]. While numidargistat has a manageable safety profile, characterized primarily
by inhibition of the urea cycle, immune-related adverse events, and a pharmacodynamic
increase in plasma arginine levels [86,87], it has not yet advanced beyond phase I due to
a response below expectations in terms of overall response rate and disease control rate.
Another ARG inhibitor in clinical trials, CB-280 (structure undisclosed), is being tested
for cystic fibrosis [88]. This compound has shown good tolerability, with no dose-limiting
toxicities or severe grade adverse reactions [89]. In addition to small molecule inhibitors,
a peptide vaccine targeting ARG-1 has been tested in clinical studies demonstrating a
good safety profile, with no severe adverse reactions and with 90% of patients showing
a measurable immune response to the peptide, though the clinical antitumor response
has been modest [90]. Further details on the clinical studies have been published in Failla
et al. [31].

The challenge of developing selective inhibitors for the ARG isoforms remains highly
relevant. Structural modifications, such as incorporating boronic acid in place of the
guanidine group and side chain derivatizations, have led to significant improvements,
though an ideal compound has yet to be achieved. High-throughput screening offers a
promising solution, especially when the target structure is not fully defined, and it can be
used alongside computational strategies.

Moreover, improving the pharmacokinetic profile of these molecules presents another
challenge. A promising approach involves leveraging medicinal chemistry techniques to
achieve the desired selectivity for one of the two isoforms while simultaneously enhancing
pharmacokinetic properties, as discussed in our previous perspective [31]. Strategies such
as the prodrug approach, utilizing small molecules or polymers as carriers, could improve
drug targeting [91]. Alternatively, molecular hybridization techniques hold potential for
improving pharmacokinetic profile of ARG inhibitors, thereby boosting their pharmacolog-
ical activity [92–94]. Furthermore, since ARG inhibitors have shown promise as probes for
molecular imaging, improving their selectivity and biopharmaceutical properties could
pave the way for both therapeutic and diagnostic applications.
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