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Abstract: This study aimed to enhance the stability of the Rotigotine (ROT) patch using polymers as
crystal inhibitors. Three polymers (Poloxamer 188, Soluplus, TPGS) were selected as crystal inhibitors
to formulate ROT patches with varying drug loadings (20%, 40%, 60%, and 80%, w/w). SEM and XRD
analysis revealed that the Soluplus and Soluplus-TPGS groups with a high concentration (80%, w/w)
of ROT could be stored at room temperature for at least 90 days without crystallization. Moreover,
the crystallization nucleation time and growth rate were utilized to assess the ability of Poloxamer
188, Soluplus, and TPGS to hinder the formation of ROT crystals and slow down its crystallization
rate. Molecular docking results elucidated the intermolecular forces between ROT and different
polymers, revealing their mechanisms for crystal inhibition. The ROT-Soluplus-TPGS combination
exhibited the lowest binding free energy (−5.3 kcal/mol), indicating the highest binding stability,
thereby effectively reducing crystal precipitation. In vitro skin permeation studies demonstrated that
ROT patches containing crystal inhibitors exhibited promising transdermal effects. With increasing
ROT concentration, the cumulative drug permeation substantially increased, while the lag time was
notably reduced. This study offers novel insights for the development of ROT patches.

Keywords: crystal inhibition; polymers; Rotigotine; patch; stability

1. Introduction

Rotigotine (ROT), a non-ergot dopamine agonist (DA), stimulates all dopaminergic
(D1-5) receptors, selected serotonergic (5-HT1A) receptors, and adrenergic (α2) receptors.
It is commonly used as a first-line treatment for Parkinson’s disease (PD) and restless leg
syndrome (RLS) [1–3]. Due to its low bioavailability in oral administration, a silicone-
based patch (Neupro®) was developed for transdermal delivery. Neupro® has been shown
to maintain stable and effective plasma concentrations over 24 h, reducing abnormal
involuntary movements and demonstrating good efficacy and tolerability in the treatment
of PD and RLS [4,5]. However, the unexpected occurrence of polymorphism led to the
withdrawal of the patches in the US and Europe in 2008 [6]. Polymorphism, a phenomenon
observed in various pharmaceuticals with more than one crystalline form, results from
differences in the free energy of the crystalline forms and the solvated state, leading to
variations in solubilities and bioavailabilities [7–9]. The withdrawal of Neupro® was
attributed to the eight-fold lower solubility of the more stable crystalline form II compared
to crystalline solid form I, potentially affecting therapeutic outcomes [10].

Crystallization has long been recognized as a critical factor in formulation design,
particularly in inhibiting crystallization to ensure therapeutic efficacy and safety [11,12].
For instance, polymers have been used in solid dispersions to prevent recrystallization
and enhance physical stability [13,14]. In the case of transdermal patches, maintaining
supersaturation of drugs to enhance permeation may increase the risk of crystallization
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upon storage under incompatible conditions, leading to decreased drug permeation and re-
duced efficacy of transdermal therapy [15–17]. Therefore, strategies to inhibit crystallization
play an important role in the development of transdermal patches. Researchers have ex-
plored various approaches, such as synthesizing prodrugs to improve solubility, designing
transdermal systems with acrylate copolymeric pressure-sensitive adhesives, and utilizing
polymers like polyvinylpyrrolidone (PVP) to prevent crystallization of drugs [18–20].

Medical polymers, which do not possess pharmacological activity but can improve the
properties of pharmaceutical preparations, have demonstrated superior biocompatibility
and have been used as crystallization inhibitors [21–23]. For example, poloxamer 407 (P407)
has been shown to stabilize supersaturation with tacrolimus by altering the crystal surface
properties [24]. Amphiphilic block copolymers (ABCs) have also gained attention for their
surface activity, allowing them to be absorbed onto host crystals [25–28].

Transdermal administration has been approved to be effective in reducing first-pass
metabolism and gastrointestinal side effects, providing continuous release of drugs with
stable plasma concentrations, and improving patient compliance [29,30]. Several studies
have been conducted on improving stability of ROT patches [31–33]. Formulation factors
such as the type of pressure-sensitive adhesive, drug loading, and patch thickness have
been examined to determine how to enhance the stability of ROT and improve its bioavail-
ability [34,35]. However, investigations on the crystallization inhibition of ROT have been
rarely reported, and those particularly based on polymers commonly used as pharmaceuti-
cal excipients have not been reported yet. Compared with non-pharmaceutical materials,
the use of pharmaceutical polymers as crystallization inhibitors in the preparation of ROT
patches not only improves their stability but also effectively reduces their toxic side effects
on normal tissues, which is valuable for the clinical application of ROT.

In this study, we designed ROT patches with polymers commonly used in the phar-
maceutical field as crystal inhibitors (Scheme 1). Three polymers (Poloxamer 188, Soluplus,
and TPGS) were initially screened through optical microscopy as crystal inhibitors. XRD
and SEM were used to investigate the crystal characteristics. The crystal formation time
and growth rate were measured by optical microscopy to evaluate the inhibitory ability of
the crystal inhibitors. Molecular docking was conducted to analyze the interaction between
ROT and polymers to further understand the mechanism of crystallization inhibition. The
results of transdermal drug permeation and crystal suppression experiments showed that
the Soluplus group and the Soluplus-TPGS group (80%, w/w) exhibited good stability and
transdermal drug permeation performance. This study provides a new strategy to address
the crystallization issue in ROT patches.
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2. Materials and Methods
2.1. Materials

Rotigotine (ROT) (Beijing Foyou Pharmaceutical Co., Ltd., Beijing, China); Polox-
amer 188 (CAS 9002-96-4, BASF, Ludwigshafen, Germany); Soluplus (CAS 402932-23-4,
BASF, Ludwigshafen, Germany); F127 (CAS 9003-11-6, BASF, Ludwigshafen, Germany);
HPMC (CAS 9004-65-3, Aladdin, Shanghai, China); PVP (CAS 9003-39-8, Aladdin Shang-
hai Biochemical Technology, Shanghai, China); TPGS (CAS 9003-39-8, Kunshan Rongbai
Biotechnology Co., Ltd., Kunshan, China); Ethyl acetate (CAS 141-78-6, Li’an Longbohua
Pharmaceutical and Chemical Co., Ltd., Tianjin, China); Acrylic adhesives, the Durotak®

series (Durotak® 87-4098) (Henkel Chemical Co., Zhuhai, China).
Healthy SD rats (SPF, male, 200 ± 20 g) were provided by Liaoning Changsheng

Biotechnology Co., Ltd. (Dalian, China).

2.2. Methods
2.2.1. Screening of Crystal Growth Inhibitors

ROT (40%, w/w) was dissolved in a polyacrylic pressure-sensitive adhesive (Durotak®

87-4098). The polymer (HPMC, PVP, F127, Poloxamer 188, Soluplus, and TPGS) were
dissolved in 100 µL ethyl acetate, respectively, then added dropwise to the drug-containing
pressure-sensitive adhesive and stirred at room temperature for 1 h. The mixtures were
poured individually onto glass slides, then dried in a desiccator at 50 ◦C for 1 h to evaporate
organic solvents from the pressure-sensitive adhesive. Afterward, the samples were left
at room temperature for 7 days, and the crystallization of ROT was observed using an
optical microscope.

2.2.2. Effect of Polymer Ratio on ROT Crystallization

ROT (80%, w/w) was dissolved in a polyacrylic pressure-sensitive adhesive (Durotak®

87-4098). The screened polymers (Poloxamer 188, Soluplus, and Soluplus-TPGS) were
dissolved in ethyl acetate at mass ratios of 1:1, 2:1, 4:1, and 8:1 (ROT:polymer). The
subsequent procedures were consistent with the above, and the crystal nucleation time of
each group was recorded.

2.2.3. Characterization of ROT Patch
X-ray Diffraction (XRD)

To analyze the differences in the ability of different polymers to suppress crystalliza-
tion, a SMART-LAB X-ray diffractometer (Rigaku, Tokyo, Japan) was utilized to analyze
various matrix mixtures. The experiments were conducted with the following parameters:
step width of 0.02◦; 2θ scanning range from 5◦ to 50◦; generator voltage of 40 kV; generator
current of 40 mA; scanning speed of 1◦/min.

Scanning Electron Microscope (SEM)

To observe the crystalline morphology of ROT, SEM (Zeiss, Oberkochen, German) was
employed to examine the surface of different matrix mixtures. Matrix mixtures of ROT with
different polymers were cast on glass slides. After the crystals were observed by optical
microscope, the samples were coated with gold sputtering and examined at an accelerating
voltage of 15 kV.

Energy Dispersive X-ray Spectroscopy (EDS)

Energy dispersive X-ray spectroscopy and EDS mapping were used to probe the
elemental distribution during ROT crystallization. EDS measurements and mapping were
performed at an accelerating voltage of 15 kV. The prepared pressure-sensitive adhesive
mixture with ROT was cast on a clean glass plate, then incubated until crystals formed, as
described previously. After the crystals formed, the plates were coated with platinum for
measurements. The center and edges of each crystal were observed by SEM.
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2.2.4. Crystal Inhibition Mechanism
Molecular Docking

The molecular structures of ROT, Poloxamer 188, Soluplus, and TPGS were drawn
using Chemdraw software 20.0, and Chem3D 14.0.0.17 was used for energy optimization.
AutoDock4.2 software [4] was applied to conduct molecular docking experiments. ROT
molecules were set as acceptor molecules. The center coordinates of the docking grid were
X = −3, Y = −1, Z = 0; the box size was 15 × 15 × 15 Angstroms. Lamarckian genetic
algorithms were utilized for molecular docking, and the conformations with the lowest
binding free energies were selected for analysis.

Determination of Crystal Nucleation Time and Growth Rate

A mixture of ROT and pressure-sensitive adhesive (40%, 60%, and 80%, w/w) was
prepared. Different polymers were added based on ROT: crystal inhibitor (1:1) and cast
on glass slides. The crystal nucleation time and growth rate of ROT were monitored
using an optical microscope (BX51, Olympus, Tokyo, Japan). The nucleation time of ROT
was recorded, and the crystal diameter was measured to calculate the crystal growth rate
according to Equation (1):

V =
dn − dn−1

t
(1)

where V: crystal growth rate (µm/h); dn: crystal diameter at each time point (µm); t: the
specified time interval (h).

2.2.5. In Vitro Skin Permeation Test

A mixture of ROT and pressure-sensitive adhesive (20% and 80%, w/w) was prepared,
and crystal inhibitors (Soluplus and TPGS) were added. The Franz diffusion cell method
was employed to investigate skin penetration. The anti-adhesive layer of ROT patch was
removed, then applied to the stratum corneum of rat skin, and the air bubbles were driven
out. The skin was transferred to Franz transdermal diffusion cell (transdermal area of
1.77 cm2), with the receiving cell containing 4.0 mL PBS 6.5 (200 rpm, 32 ± 0.5 ◦C). At
predetermined time intervals (2, 4, 6, 8, 10, 12, and 24 h), 1.0 mL of sample was collected, and
the receiving medium was replaced with the same volume of fresh PBS. Drug concentration
was determined using HPLC after filtration through a polycarbonate membrane (0.45 µm).
The cumulative permeated drug amount per unit area (Q) was calculated according to
Equation (2):

Q =
Cn × V + ∑ Cn−1 × Vn

A
(2)

where Q: cumulative permeated drug amount per unit area (µg/cm2); V: total volume
of receiving solution (mL); Cn: measured the drug mass concentration at each time point
(µg/mL); Vn: sampling volume (mL); A: the diffusion area (cm2).

3. Results and Discussion
3.1. Screening of Potential Inhibitors for Crystal Growth

Optical microscopy was utilized to observe the crystallization of ROT (40%, w/w) in
polyacrylic pressure-sensitive adhesives with various polymers. The crystallization state
after 7 days (25 ◦C ± 2 ◦C, RH 60% ± 5%) is shown in Figure 1. Snowflake-like crystals
of ROT were observed in the HPMC, PVP, and F127 groups. Conversely, crystals were
absent in the Poloxamer 188, Soluplus, and TPGS groups, indicating the superior crystal
inhibitory ability of these three polymers. Consequently, these three polymers were chosen
for subsequent crystallization experiments.
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Figure 1. Crystallization of ROT in polyacrylic pressure-sensitive adhesives with different polymers,
scale bar = 500 µm.

3.2. Crystal Morphology Observation of ROT

The crystalline morphology of ROT in the pressure-sensitive adhesive was observed
using optical microscopy and SEM. As illustrated in Figure 2A, ROT exhibited a spherical
crystal shape with a solid nucleus formed by drug aggregation in the center (Figure 2B–D),
while dendritic crystals dispersed outward and flocculated crystals were observed at the
edges (Figure 2E–G). The crystallization was primarily due to polycrystallization resulting
from subtle differences in the arrangement of three-dimensional structure of the longer
flexible chains of ROT molecule, leading to a transition from highly soluble crystalline
type I to less soluble crystalline type II. Once formed, these crystals continued to grow,
enabling more free molecules to form stable crystals, which could impede the transdermal
absorption of drug.
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ROT crystallization (A); SEM-image focusing center (B–D) and edge (E–G). Scale bar = 100 µm (B,E),
50 µm (C,F), 10 µm (D,G).

3.3. Effect of Polymer Ratios on ROT Crystallization

The impact of polymer ratios on ROT crystallization was investigated. As shown in
Table 1, in the matrix mixture of ROT (80%, w/w), as the polymer ratio decreased, the
crystallization nucleation time of ROT was shortened to a certain extent. Particularly, the
Poloxamer 188 group exhibited the most significant reduction in crystallization nucleation
time. Specifically, when the ratio of ROT:Poloxamer 188 reached 8:1, its crystal inhibitory
effect was nearly abolished. However, no crystallization was observed in the Soluplus
group and the Soluplus-TPGS group at ratios of 1:1 and 2:1 within 30 days. It is worth noting
that even when the polymer ratio reached 8:1, the Soluplus group and the Soluplus-TPGS
group still exhibited longer crystallization nucleation time (4 days and 8 days, respectively).
Additionally, compared to the Soluplus group alone, the crystallization nucleation time of
ROT in the Soluplus-TPGS group was significantly prolonged. These findings indicated
that the crystal suppression ability of Poloxamer 188 was considerably weaker than that of
Soluplus, and the addition of TPGS effectively enhanced the crystal suppression capability
of Soluplus.
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Table 1. Effect of polymers ratio on ROT crystallization.

Polymer:ROT (w/w) Samples Nucleation Time

1:1

ROT 22 h
Poloxamer188 36 h

Soluplus —
Soluplus-TPGS —

1:2

ROT 22 h
Poloxamer188 32 h

Soluplus —
Soluplus-TPGS —

1:4

ROT 23 h
Poloxamer188 26 h

Soluplus 11 d
Soluplus-TPGS 19 d

1:8

ROT 22 h
Poloxamer188 22 h

Soluplus 4 d
Soluplus-TPGS 8 d

3.4. Characterization of ROT Crystallization in Different Polymers

The crystal morphology of ROT in various polymers was examined using SEM
and XRD. In the ROT groups (20%, w/w), no crystals were observed during 90 days
(Figure 3(A1–B4)), likely due to ROT not exceeding its saturation solubility in Durotak®

87-4098 pressure-sensitive adhesive, preventing excess ROT molecules from precipitating
as crystals. Differences in crystallization appeared between the 40% (w/w) and 60% (w/w)
ROT groups as the ROT content increased (Figure 3(C1–F4)). Over a 30-day crystallization
process, significant crystallization was observed in both the ROT and ROT-Poloxamer
188 groups at 40% (w/w) and 60% (w/w), with the ROT-Poloxamer 188 group displaying
irregularly dendritic crystallization compared to the snowflake-like crystals in the ROT
group, which suggested that Poloxamer 188 can influence the crystalline morphology of
ROT. After 90 days, the ROT group at 40% (w/w) exhibited polycrystalline nuclei growth,
while the 60% (w/w) group showed a large accumulation of crystals. As the ROT content
further increased, the ROT group (80%, w/w) (Figure 3(G1,H1)) and the ROT-Poloxamer
188 group (80%, w/w) (Figure 3(G2,H2)) showed more obvious ROT crystal accumula-
tion. Notably, no solid crystals of ROT were observed in the ROT-Soluplus group and the
ROT-Soluplus-TPGS group at different concentrations (20%, 40%, 60%, and 80%, w/w) for
90 days, indicating that Soluplus and Soluplus-TPGS had more excellent crystallization
inhibition capacity compared to Poloxamer 188.

The crystallization behavior of different ROT concentration groups was further an-
alyzed using X-ray diffraction (XRD). In Figure 4A,B, no ROT crystal diffraction peaks
were observed in the ROT groups (20%, w/w) after 90 days. In contrast, the ROT groups
(40%, 60%, and 80%, w/w), as well as the ROT-poloxamer 188 group, exhibited distinct
ROT diffraction peaks at 2θ angles of 12.089◦, 13.034◦, 13.664◦, 17.130◦, 17.812◦, 19.072◦,
20.595◦, 22.013◦, 23.010◦, 25.531◦, 25.736◦, 25.531◦, 27.736◦, 35.140◦, and 36.768◦, indicating
the presence of a significant amount of ROT crystals. Conversely, the ROT-Soluplus and
ROT-Soluplus-TPGS groups at various concentrations (20%, 40%, 60%, and 80%, w/w) did
not show any ROT crystal diffraction peaks (Figure 4C–H), suggesting that Soluplus and
Soluplus-TPGS effectively inhibited ROT crystallization during the 90-day process. The
crystallization inhibitory effects of Soluplus and TPGS to ROT may be related to the fact that
Soluplus contains a large number of hydrophilic groups, which can form strong hydrogen
bonds with ROT, thereby slowing down the drug recrystallization rate and maintaining the
drug in an amorphous state.
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The presence of sulfur in the thiophene group can serve as a specific marker for
observing ROT crystals. The EDS analysis of ROT crystallization is presented in Figure 5.
The elements carbon and sulfur were evenly distributed throughout the snowflake-like
ROT crystals. However, there was a discrepancy in the elemental composition between
the central region and the periphery of the ROT crystal. As illustrated in Figure 6, the
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carbon and sulfur contents in the central region and at the crystallization periphery were
63%, 37% and 72%, 28%, respectively. In comparison to the periphery, the sulfur content
in the central region was higher, suggesting that the formation of ROT crystals occurred
through the gradual aggregation of oversaturated free ROT molecules to form the central
nucleus, which then gradually extended outward to form snowflake-like branches, rather
than instantaneously forming irregular crystals with multiple nuclei.
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3.5. Molecular Docking of ROT with Different Polymers

To further investigate the mechanism of crystallization inhibition of ROT by three
polymers, molecular structures of ROT and different polymers were constructed (Figure 7).
Subsequently, molecular docking was performed to explore the interaction between the dif-
ferent polymers and ROT. Theoretical exploration of the interaction force between polymers
and ROT was carried out through computer technology (not completely consistent with the
actual situation of experimental research). As shown in Figure 8, the dotted lines represent
the type of interaction. The green molecules represent ROT, while the cyan molecules
represent the polymers. A π-σ stacking interaction was formed between the alkyl C atom
of Poloxamer 188 molecule and the benzene ring of ROT. A hydrogen bond was formed be-
tween the O atom of Soluplus molecule and the OH of ROT, and a π-σ stacking interaction
was formed between the alkyl CH and the benzene ring of ROT. Furthermore, π-π stacking
was observed between the aromatic ring of the TPGS molecule and the benzene ring of
ROT, with the carbonyl oxygen forming hydrogen bonds with the amino and hydroxyl
groups of ROT, and π-σ stacking was formed between the alkyl chain end of TPGS molecule
and the benzene ring of ROT. In the ROT-Soluplus-TPGS group, a hydrogen bond was
formed between the O atom of the Soluplus molecule and the hydroxyl group of ROT, and
a π-σ stacking interaction was observed between the alkyl CH and the benzene ring of
ROT. A π-alkyl interaction occurred between the alkyl aromatic ring of TPGS molecule and
the methyl group of ROT, with a hydrogen bond formed between the oxygen and amino
groups of ROT. Meanwhile, in order to reflect the strength of the intermolecular force, we
evaluated the binding ability between ROT and different polymers through the strength of
binding free energy. If the binding free energy is positive, external energy may be required
during the binding process between the drug and the polymer molecule. If the binding free
energy is negative, there is the possibility of docking between drug and polymer molecule,
and the lower the binding free energy is, more stable the bond between drug and polymer
molecule is [36]. As shown in Table 2, the binding free energies between ROT and polymer
were all negative. It showed that the docking between drug and polymer was relatively
stable, which could effectively prevent the crystallization of ROT. The ROT-Soluplus-TPGS
group exhibited the lowest binding energy (−5.3 kcal/mol), suggesting that TPGS can
collaborate with Soluplus to inhibit ROT crystallization effectively.
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Table 2. Molecular binding energy between ROT and different polymers.

Receptor Ligand Binding Free Energy (kcal/mol)

ROT

Poloxamer 188 −1.5
Soluplus −2.1

TPGS −4.0
TPGS-Soluplus −5.3
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3.6. Evaluation of Crystal Nucleation Time and Growth Rate

Due to the high saturation solubility of ROT in the polyacrylic pressure-sensitive
adhesive and high viscosity of the adhesive, the diffusion coefficient of the drug is low.
Consequently, immediate drug crystallization is hindered.

Hence, the establishment of a method for rapid screening of crystal inhibitors is
essential [31,37]. Increasing the drug content in the pressure-sensitive adhesive above the
saturated solubility threshold promotes rapid drug crystallization. The mixed matrix was
cast on a glass slide, which was easy to produce crystals under the influence of external
stimuli. No crystallization was observed in the ROT groups with 20% (w/w) content,
indicating no crystal nucleus formation. The crystallization nucleation time of the ROT
group (40%, w/w) and the ROT-Poloxamer 188 group (40%, w/w) was 19 days and 26 days,
respectively (Figure 9A). As shown in Figure 9B, crystal diameters of the ROT group (40%,
w/w) and the ROT-Poloxamer 188 group (40%, w/w) after 432 h were approximately 3.5 mm
and 2.0 mm, and crystals grew very rapidly in the ROT group (40%, w/w) with a maximum
growth rate of 2.60 µm/h. However, the crystal growth rate significantly decreased after
addition of the crystal inhibitor Poloxamer 188, reaching a maximum value of 1.91 µm/h.
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The crystallization nucleation time of the ROT group (60%, w/w) and the ROT-
Poloxamer 188 group (60%, w/w) was shortened to 5 days and 8 days, respectively. At the
same time, as shown in Figure 9C,D, the crystal diameters of the two groups reached only
about 4.0 mm and 2.5 mm at 432 h. The maximum crystal growth rate of the ROT group
(80%, w/w) increased to 6.56 µm/h. After adding the crystal inhibitor Poloxamer 188, the
maximum crystal growth rate decreased to 3.97 µm/h. When the content of ROT reached
80% (w/w), the crystallization of ROT was significantly accelerated. The crystallization
nucleation time of the ROT group (80%, w/w) and the ROT-Poloxamer 188 group (80%,
w/w) were shortened to 22 h and 36 h, respectively (Figure 9E). Meanwhile, the crystal
diameters reached 2.0 mm and 1.0 mm after only 144 h. The maximum crystal growth rate
of the ROT group (80%, w/w) increased to 18.04 µm/h. After adding the crystal inhibitor
Poloxamer 188, the maximum crystal growth rate decreased to 10.66 µm/h (Figure 9F).
Although the crystallization nucleation time and growth rate of ROT were reduced after
the addition of crystalline inhibitor Poloxamer 188, the increase in ROT concentration
significantly reduced the crystallization inhibition effect of Poloxamer 188. What concerns
us most is that the formation of ROT crystal nuclei was not observed in the ROT-Soluplus
group and the ROT-Soluplus-TPGS group with a content of 40% (w/w), 60% (w/w) and
80% (w/w) for 90 days. This phenomenon was attributed to the fact that Poloxamer 188,
as a traditional medical polymer, can form a π-sigma stacking interaction between the
alkyl C atom in its structure and the benzene ring of ROT, but this intermolecular force
was weak, limiting its crystallization inhibiting capacity. Therefore, compared with the
Soluplus group and the Soluplus-TPGS group, the nucleation time of the Poloxamer 188
group was earlier, and the crystallization rate was also faster. On the contrary, Soluplus, as
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a large molecular weight medical polymer, can form a large number of hydrogen bonds
between the oxygen atoms in its molecule and the hydroxyl groups of ROT. This strong
intermolecular force and high viscosity, as well as its long-chain reticular structure, can
effectively inhibit the crystallization of the drug, which can greatly prolong the nucleation
time of the drug. The crystal inhibitory effect of Soluplus has also been reported in other
drugs (indomethacin, glimepiride, fenofibrate, etc.). As a new type of polymer used as
pharmaceutical excipients, TPGS is often used in combination with other polymers to
synergistically exert a crystallization inhibitory effect [23]. Therefore, the crystallization
nucleation time of the Soluplus-TPGS group was the longest. This may be attributed to the
presence of multiple intermolecular interactions (hydrogen bonds, π-sigma stacking, and
π-alkyl interactions) and the lowest binding free energy (−5.3 kcal/mol) between ROT and
Soluplus-TPGS.

3.7. In Vitro Skin Permeation Study of ROT Patch

The Franz diffusion cell method was used to measure the skin penetration of ROT.
The cumulative penetration amount and permeability of the Soluplus group (20%, w/w)
and the Soluplus-TPGS group (20%, w/w) in 24 h were 37.62 µg/cm2, 31.99 µg/cm2 and
1.68 µg/cm2/h, 1.44 µg/cm2/h, respectively (Figure 10A). When ROT content increased to
80% (w/w), the cumulative penetration amount and permeability of the Soluplus group
(80%, w/w) and the Soluplus-TPGS group (80%, w/w) in 24 h increased to 331.13 µg/cm2,
255.00 µg/cm2 and 13.80 µg/cm2/h, 10.63 µg/cm2/h, respectively (Figure 10B). As ROT
content increased, the penetration effect of patch was significantly improved. Com-
pared with the Soluplus group, the cumulative transdermal penetration percentage of
the Soluplus-TPGS group was slightly lower. This may be due to the fact that Soluplus and
TPGS interact with one hydrogen bond donor and three hydrogen bond acceptors of ROT,
hindering the release of the drug from the pressure-sensitive adhesive. The cumulative per-
meation amount was in the order of Soluplus > Soluplus-TPGS. It is noteworthy that as ROT
content increased, compared with the Soluplus group (20%, w/w) and the Soluplus-TPGS
group (20%, w/w), for the Soluplus group (80%, w/w) and the Soluplus-TPGS group (80%,
w/w), the cumulative drug permeation amount in 24 h increased by 7.80 and 6.97 times.
This showed that the addition of polymers could effectively inhibit the crystallization of
high-concentration ROT and increase the loading capacity of drug to further improve the
transdermal permeation efficiency of the patch. At the same time, the lag time for drug
permeation was significantly shorter along with ROT concentration increased, which was
explained that the diffusion of drugs in the skin was passive and dependent on concentra-
tion gradients. According to Fick’s law of diffusion, the higher drug concentration leads
to increased dermal permeation as long as it remains below saturation. Furthermore, the
presence of free drug on the surface in the highly concentrated patch allows for unhindered
transdermal diffusion of free ROT, promoting drug efficacy by quickly penetrating the
stratum corneum [38].
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4. Conclusions

To effectively address the crystallization issue in ROT patches with silicone adhesive,
we selected the high-solubility adhesive Durotak® 87-4098 and screened suitable polymers
as effective crystal inhibitors. The crystallization of ROT in different polymer groups was
characterized by XRD and SEM. In the case of higher drug content (80%, w/w), no ROT
crystals were observed in the ROT-Soluplus (80%, w/w) group and the ROT-Soluplus-TPGS
(80%, w/w) group after 90 days (25 ◦C ± 2 ◦C, RH 60% ± 5%). The molecular docking
analysis explored the intermolecular interaction mechanism between different polymers
and ROT. The intermolecular binding energy of ROT-Soluplus-TPGS was −5.3 kcal/mol,
indicating its effective ability to inhibit crystallization. In vitro transdermal experiments
demonstrated favorable drug permeation performance for the Soluplus group (80%, w/w)
and the Soluplus-TPGS group (80%, w/w). This suggests that polymers, as crystal inhibitors,
can effectively prevent the precipitation of supersaturated ROT in the form of crystals,
thereby enhancing the stability and efficacy of high-ROT concentration patches. This study
provides new insights into crystal suppression in ROT patches.
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