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Abstract: Nanoparticle-based drug delivery systems hold promise for cancer treatment by enhancing
the solubility and stability of anti-tumor drugs. Nonetheless, the challenges of inadequate targeting
and limited biocompatibility persist. In recent years, cell membrane nano-biomimetic drug deliv-
ery systems have emerged as a focal point of research and development, due to their exceptional
traits, including precise targeting, low toxicity, and good biocompatibility. This review outlines
the categorization and advantages of cell membrane bionic nano-delivery systems, provides an
introduction to preparation methods, and assesses their applications in cancer treatment, including
chemotherapy, gene therapy, immunotherapy, photodynamic therapy, photothermal therapy, and
combination therapy. Notably, the review delves into the challenges in the application of various
cell membrane bionic nano-delivery systems and identifies opportunities for future advancement.
Embracing cell membrane-coated biomimetic nanoparticles presents a novel and unparalleled avenue
for personalized tumor therapy.

Keywords: cell membrane-coated nanoparticles; drug delivery; biomimetic; tumor targeting

1. Introduction

Cancer, a grave and increasingly prevalent disease, is anticipated to account for ap-
proximately 1.96 million new cases in 2023 [1]. Recent advancements in medical science
have led to the development of various cancer therapies, including surgery, radiotherapy,
chemotherapy, and immunotherapy. Despite their efficacy in curbing tumor growth, these
treatments often result in significant side effects, compromising therapeutic efficacy, progno-
sis, and increasing the likelihood of disease recurrence. In this context, nanoparticles (NPs)
emerge as a promising alternative, offering stability, efficiency, and ease of modification
as drug carriers. NP-based drug delivery systems (DDSs) enhance targeted drug delivery,
minimize drug leakage, and facilitate sustained and controlled release. This contributes to
prolonged bloodstream circulation and an improved therapeutic index.

However, drug-loaded NPs still encounter challenges related to targeting efficiency
and biocompatibility [2]. Scientists have vigorously pursued active targeting strategies,
aiming to precisely direct drugs by modifying NPs with target ligands (aptamers, peptides,
antibodies, etc.). Regarding biocompatibility, NPs are often coated with various polymeric
materials to serve as a “stealth” shield, preventing their detection by the immune system.
One of the popular options is polyethylene glycol (PEG) polymers—an inert amphiphile
known for its low cytotoxicity and high biocompatibility. By conjugating with PEG, NPs
can dramatically lower immunogenicity and enhance the extracellular blood plasma half-
life [3]. However, a study by Lubich et al. [4] indicated that repeated administration of
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PEG-conjugated NPs in rats led to accelerated blood clearance and a less advantageous
biodistribution profile. As alternatives, other polymers, including dextran, chitosan (CS),
polyvinyl pyrrolidone (PVP), and poly(lactic-co-glycolic acid) (PLGA), have also been
employed as stealth coatings.

Among the various methods for NPs’ surface modification, biomimetic strategies are
garnering increasing attention, due to their non-toxic and stealth properties, which draw
inspiration from the concept of “learning from nature” [2,5]. Following the biomimetic
strategy, cell membrane-coated nanoparticles (CMC@NPs) have been devised, forming a
core–shell structure. This structure features NPs as the inner core (liposomes, inorganic
particles, polymers, etc.) and a cell membrane coating as the external shell. NPs camou-
flaged with cell membranes inherit the ability to “disguise themselves”, enabling them
to evade the reticuloendothelial system [6]. Furthermore, cell membranes sourced from
various origins provide NPs with distinct biological functionalities. For example, neu-
trophil membrane-coated nanoparticles (Nm@NPs) are shown to home in on inflammation
sites [7], while cancer cell membrane-coated nanoparticles (CCm@NPs) have demonstrated
effective homotypic binding [8].

In this review, we aim to establish a comprehensive overview of CMC@NPs for
tumor therapeutics. We begin by discussing the preparation methods, followed by an
introduction to the features and applications of various cell membrane-based drug delivery
systems. Following this, we highlight the notable benefits that CMC@NPs have shown in
cancer treatment. Finally, we delve into the challenges and potential future trends in the
application of CMC@NPs.

2. Classification of Cell Membrane-Coated Nanoparticles

According to the type of source cell membranes, CMC@NPs are mainly classified as
red blood cell membrane-coated nanoparticles (RBCm@NPs), platelet membrane-coated
nanoparticles (PLTm@NPs), white blood cell membrane-coated nanoparticles (WBCm@NPs),
stem cell membrane-coated nanoparticles (SCm@NPs), CCm@NPs, and hybrid membrane-
coated nanoparticles (Hym@NPs).

As shown in Figure 1, the first CMC@NPs were coated with red blood cell membranes
(RBCm). In 2011, Hu et al. [9] prepared RBCm@NPs using a top-down method by extruding
PLGA NPs with preformed RBCm-derived vesicles. The RBCm@NPs exhibited a circulation
half-life of 39.6 h, significantly outperforming PEG-coated NPs, which had a half-life of
15.8 h. In 2013, Parodi et al. [10] developed WBCm@NPs, by coating nanoporous silicon
microparticles with membranes purified from leukocytes. They discovered that white
blood cell membrane (WBCm)-based NPs reduced phagocytic uptake, adhered to the
inflamed endothelium, and enhanced drug accumulation at tumor sites. Building on the
study of RBCm@NPs, Hu’s group introduced PLTm@NPs in 2015 [11], incorporating the
platelet membrane with Doxorubicin (DOX)-loaded nanogels for breast cancer treatment.
PLTm@NPs not only demonstrated prolonged circulation, but also showed exceptional
targeting of cancer cells. In 2016, Rao et al. [12] developed CCm@NPs using upconversion
NPs cloaked with cancer cell membrane (CCm)-derived vesicles for diagnosis and therapy.
These NPs were uniquely capable of targeting tumor cells due to homologous adhesion
and exhibited immune escape abilities. Concurrently, Gao et al. [13] introduced SCm@NPs,
employing stem cell membranes (SCm) to wrap gelatin nanogels loaded with DOX, thereby
enhancing their chemotherapeutic efficacy. The coated nanogels exhibited a high affinity
for tumors and a reduced clearance via the reticuloendothelial system. In a pioneering
study by Dehaini and co-workers [14] in 2017, the concept of Hym@NPs was introduced,
combining RBCm and platelet membranes (PLTm) to cloak PLGA NPs. The Hym@NPs
exhibited characteristics of both source cells.



Pharmaceutics 2024, 16, 531 3 of 33Pharmaceutics 2024, 16, 531 3 of 32 
 

 

 
Figure 1. The representative development and features of CMC@NPs (created by the authors using 
Adobe Illustrator 2023® software). 

Beyond the widely used option of cell membranes, several unconventional choices 
have emerged for coating NPs, such as bacterial membranes [15], viral-mimicking 
membranes [16], neural cell membranes [17], and fibroblast cell membranes [18], among 
others. These investigations open up additional avenues for the design of biomimetic NPs. 
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undergo hypotonic lysis [19], physical homogenization [20] or repeated freeze–thaw 
cycles [21] to disrupt the membrane. Subsequently, differential centrifugation is used to 
eliminate the intracellular contents, resulting in the collection of membrane fragments. 
These fragments can be resized into vesicles by extrusion through a polycarbonate membrane, 
if desired. The membrane fragments or vesicles are then coated onto the surface of NPs 
predominantly using co-extrusion, sonication, or microfluidic electroporation (Figure 2). 
Moreover, membrane coating can also occur spontaneously through electrostatic 
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Figure 1. The representative development and features of CMC@NPs (created by the authors using
Adobe Illustrator 2023® software).

Beyond the widely used option of cell membranes, several unconventional choices
have emerged for coating NPs, such as bacterial membranes [15], viral-mimicking mem-
branes [16], neural cell membranes [17], and fibroblast cell membranes [18], among others.
These investigations open up additional avenues for the design of biomimetic NPs.

3. Preparation of Cell Membrane-Coated Nanoparticles

Currently, the preparation of CMC@NPs is primarily conducted through a top-down
approach. The initial step involves the isolation of cell membranes, where collected cells un-
dergo hypotonic lysis [19], physical homogenization [20] or repeated freeze–thaw cycles [21]
to disrupt the membrane. Subsequently, differential centrifugation is used to eliminate the
intracellular contents, resulting in the collection of membrane fragments. These fragments
can be resized into vesicles by extrusion through a polycarbonate membrane, if desired.
The membrane fragments or vesicles are then coated onto the surface of NPs predomi-
nantly using co-extrusion, sonication, or microfluidic electroporation (Figure 2). Moreover,
membrane coating can also occur spontaneously through electrostatic attraction between
the charges of NPs and membrane vesicles [22].
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3.1. Co-Extrusion

Co-extrusion is a common method for constructing CMC@NPs, where cell membrane
vesicles and NPs are extruded through polycarbonate membranes with progressively
smaller pore sizes. This process generates a force that can alter the membrane’s structure
and allows it to reassemble on the surface of NPs. CMC@NPs created via co-extrusion not
only demonstrate uniform distribution, but also effectively preserve the cell membrane
proteins and their biological functions. Li et al. [23] produced RBCm@NPs by physically
co-extruding Ag2S quantum dots (inner core) with erythrocyte vesicle membranes. While
co-extrusion is popular in laboratory settings, scaling it up to large-scale production poses
challenges due to its labor-intensive and time-consuming nature.

3.2. Sonication

Sonication stands out as both facile and time-efficient compared to co-extrusion, fusing
membrane vesicles and nano-vehicles through ultrasonic waves. Chen et al. [24] innova-
tively cloaked mesoporous silica-coated bismuth nanorods with PLTm using sonication.
In research by Cai et al. [25], Hym@NPs crafted via sonication exhibited enhanced stabil-
ity and smaller dimensions, relative to those produced using co-extrusion. Achieving a
uniform distribution and a thorough coating necessitates the optimization of several pa-
rameters, including amplitude, frequency, and duration. Furthermore, vigilant monitoring
of potential temperature increases during sonication is essential, as they may cause the
denaturation of the membrane proteins.

3.3. Microfluidic Electroporation

Microfluidic electroporation has gained increasing popularity among researchers since
its conceptual demonstration in 2001. Microfluidic chips designed for electroporation
offer enhanced transfection efficiency and reduced voltage requirements [26]. Each chip
features two inlets, enabling the introduction and thorough mixing of NPs and membranes
within the channel. As the mixture travels through the electroporation zone, electrical
pulses create small pores in the membranes, facilitating the entry of NPs, with the resultant
CMC@NPs collected at the outlet [27]. Wu et al. [28] successfully coated magnetic NPs with
neutrophil vesicles using an electrophoresis microfluidic chip. This technique facilitates
the high-throughput production of CMC@NPs, characterized by excellent encapsulation
and high stability [29]. Despite its cost, microfluidic electroporation presents significant
potential for practical applications.

4. Application of Cell Membrane-Coated Nanoparticles in Cancer Treatment

Over the past decade, CMC@NPs have been explored in various anti-tumor strategies,
showcasing broad benefits and significant potential (Table 1). Here, we describe the
properties and mechanisms of different classifications of CMC@NPs, including RBCm@NPs,
PLTm@NPs, WBCm@NPs, SCm@NPs, CCm@NPs, and Hym@NPs and introduce recent
advances in tumor therapy.

Table 1. List of recent studies on CMC@NPs across different cancer models.

Type of CMC@NPs Cancer Models References

RBCm@NPs

Melanoma [30,31]

Cervical cancer [32,33]

Breast cancer [34,35]

Colon cancer [23]

Liver cancer [36,37]

PLTm@NPs Melanoma [38,39]
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Table 1. Cont.

Type of CMC@NPs Cancer Models References

PLTm@NPs

Breast cancer [40–42]

Colon cancer [42,43]

Liver cancer [44]

Nm@NPs

Breast cancer [7,28]

Liver cancer [45]

Pancreatic cancer [46,47]

Mm@NPs

Breast cancer [48–50]

Osteosarcoma [51]

Glioma [52]

Tm@NPs

Melanoma [53,54]

Liver cancer [55]

Glioma [56]

Lymphoma [57]

DCm@NPs

Melanoma [58,59]

Breast cancer [60,61]

Liver cancer [62]

Glioma [63]

NKm@NPs

Breast cancer [64]

Liver cancer [65]

Glioma [66,67]

SCm@NPs

Liver cancer [68]

Bone cancer [69]

Prostate cancer [70]

CCm@NPs

Melanoma [71–73]

Cervical cancer [74,75]

Breast cancer [76,77]

Colon cancer [78]

Osteosarcoma [79,80]

Colorectal cancer [81]

Oral squamous cell carcinoma [82]

Bladder cancer [83]

Hym@NPs

Melanoma [84]

Breast cancer [85–87]

Liver cancer [88]

Colon cancer [89]

Osteosarcoma [25]

Glioma [90–93]

Ovarian cancer [94]

Gastric cancer [95]
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4.1. Red Blood Cell Membrane-Coated Nanoparticles (RBCm@NPs)

Red blood cells (RBCs), the most abundant cells in blood, primarily function to trans-
port oxygen to organs and cells and can circulate in the bloodstream for up to an average of
120 days. Initially, erythrocytes were explored as carriers for transporting various bioactive
compounds [96] and Hu et al. [9] were the first to extract the RBCm for biomimetic coating.
With a concentration of approximately 5 billion per milliliter in the blood, erythrocytes offer
plentiful material for isolation, facilitated by their lack of a nucleus and complex organelles.

RBCm stand out as a promising biomimetic material for enhancing the residence time
of NPs in the bloodstream. This advantage is attributed to the “self-marker” proteins on
the membrane surface, enabling the NPs to evade the reticuloendothelial system. CD47 is a
key marker that interacts with the inhibitory receptor SIRPα (a signal-regulating protein
present on macrophages) and is recognized as a “do not eat me” signal, thus shielding
RBCm@NPs from phagocytosis [6,97]. Owing to their capabilities for immune evasion and
prolonged circulation, RBCm@NPs have been extensively researched for anti-tumor drug
delivery, as detailed in Table 2. However, their clinical application is constrained by poor
targeting [6]. Fang et al. suggested a lipid insertion method to enhance the tumor-targeting
efficiency of cell membrane-based NPs without affecting protein biodistribution, where
target ligands such as folic acid, tumor-targeting peptides, or neurotoxin-derived peptides
are integrated into CMC@NPs as ligand–linker–lipid conjugates through lipid tethers.

Table 2. List of RBCm@NPs applied in cancer therapy.

Source Cell Inner Cores Therapeutics Key Functions References

RBCs

Curdlan Chemotherapy,
immunotherapy Long circulation,

immune evasion
[31]

Melanin PTT Long circulation, good
biocompatibility

[36]

PLGA/AIEgen/Poly(I:C) PDT, immunotherapy Long circulation,
homing to spleen

[30]

Fe3O4@Cu2−xS MRI, PTT Immune evasion [32]

UCNP Tumor imaging Good biocompatibility [34]

Ag2S MRI, SDT Long circulation, good
biocompatibility

[23]

PLGA Chemotherapy Long circulation,
immune evasion

[35]

PEG-b-PDLLA Chemotherapy, PDT Long circulation [33]

Immunotherapy suppresses tumor proliferation by restoring normal immune re-
sponses and, when synergized with chemotherapy, it demonstrates increased anticancer
efficacy. Curdlan, a non-branched β-glucan, activates receptors on macrophages to in-
duce the production of pro-inflammatory cytokines [98] and transforms tumor-associated
macrophages (TAMs) into an inflammatory phenotype [99]. Low molecular weight curdlan
(lCUR) served as an immunomodulatory drug carrier in research conducted by Lin and
co-workers [31]. They engineered RBCm-coated lCUR loaded with DOX for melanoma
treatment (lCUR-DOX@RBC), as illustrated in Figure 3. To evaluate the immune evasion
capability of RBCm coatings, DOX, lCUR-DOX, and lCUR-DOX@RBC were separately
incubated with bone marrow-derived macrophages (BMDMs), with the least fluorescence
observed in lCUR-DOX@RBC-treated samples, indicating reduced macrophage uptake.
In vivo studies showed that lCUR-DOX@RBC achieved prolonged blood circulation and
significantly enhanced tumor growth inhibition after 12 days of treatment.
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Photodynamic therapy (PDT) and photothermal therapy (PTT), viewed as promising
tumor therapeutic approaches, boast broad applicability, non-invasiveness, and straight-
forward implementation [100]. Melanin, known for its excellent PTT properties, has been
identified as a potent agent [101]. Zhang et al. [36] extracted melanin NPs (HNPs) from
human black hair for liver cancer PTT. Modified with the cRGD peptide via the lipid
insertion approach, RBCm was coated onto HNPs (HNP@RBCm-cRGD) to enhance their
circulation time and achieve a greater accumulation efficiency, without compromising the
PTT conversion capability of HNP.

4.2. Platelet Membrane-Coated Nanoparticles (PLTm@NPs)

Platelets (PLTs) are derived from the cytoplasmic fragmentation of mature megakary-
ocytes and represent the smallest cells in the blood. PLTs have a complete cell membrane
structure but lack a nucleus, facilitating the isolation of the PLTm. Similar to RBCm@NPs,
the inclusion of the CD47 protein on the modified PLTm coating helps to prevent phagocyte
detection. Moreover, PLTm are endowed with a range of functional antigens, receptors, and
proteins, such as CD55, CD59, P-selectin, and glycoprotein (GP) Ib, which are instrumental
in tumor targeting and metastasis, bacterial infections, thrombosis, and more [11].

The applications of PLTm@NPs in cancer therapy are detailed in Table 3. Bahmani
et al. [42] crafted polylactic acid (PLA) cores encapsulating resiquimod (R848), a Toll-like
receptor (TLR) agonist, and then coated these cores with PLTm, exploiting the ability of
PLTm to selectively bind to cancer cells in the tumor microenvironment (TME). PLTm@NPs
have the capability to respond to thrombotic signals that attract PLTs. This observation led
Wang and coworkers [43] to devise a strategy that utilizes specific coagulation to navigate
drug delivery to the tumor site and boost anti-tumor efficacy. They formulated a fusion
protein, truncated tissue factor-Arg-Gly-Asp (RGD) (tTF-RGD), as a catalyst to trigger
the coagulation cascade, and anti-PD-1 antibody-conjugated PLTs (P-aPD-1) that react to
coagulation signals. When tTF-RGD was administered via either the intravenous (i.v.) or
peritumoral (p.t.) route, it enhanced coagulation signals at the tumor site, attracting P-aPD-
1. PLTs activated by the coagulation cascade then secrete platelet-derived microparticles
(PMPs) and discharge aPD-1 antibodies to rejuvenate T cells (Figure 4). In this thrombosis-
mediated navigation, maintaining moderate coagulation is critical, as excessive coagulation
could pose risks.
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Table 3. List of PLTm@NPs applied in cancer therapy.

Source Cell Inner Cores Therapeutics Key Functions References

PLTs

PLA Immunotherapy Tumor targeting, good
biocompatibility [42]

- Chemotherapy,
immunotherapy

Tumor targeting, responds to
coagulation signals [43]

PLGA PDT Long circulation, tumor targeting [40]

Cu2O PDT, cuproptosis Long circulation, tumor targeting [41]

PLGA-ss-HA Chemotherapy Tumor targeting [38]

MSN Chemotherapy Tumor and damage vessel
targeting [44]

MOF Gene therapy Tumor targeting [102]

MSN Hypoxia-sensitive
chemotherapy

Tumor and damage vessel
targeting [103]

HGN PTT Long circulation, tumor targeting [104]
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PLTm@NPs are utilized to deliver photosensitizers or photothermal agents. Xu
et al. [40] created a PLTm coating on photosensitizer (verteporfin)-preloaded PLGA NPs
(NP-Ver@P). NP-Ver@P exhibited a significantly higher tumor uptake compared to their
RBCm-coated counterparts, yet maintained a similar systemic circulation. In subsequent
research, PLT vesicles were engineered with Cu2O NPs encapsulating an aggregation-
induced emission (AIE) photosensitizer (TBP-2), facilitating a prolonged blood circulation
and an improved tumor targeting capability, as demonstrated by Ning and co-workers [41].
They introduced a cuproptosis sensitization system that triggers multiple tumor cupropto-
sis inductions, effectively suppressing lung metastasis of breast cancer in both cell lines
and mouse models.
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In addition to cancer therapy, PLTm@NPs are broadly applied in disease diagnosis and
treatment, leveraging the unique biological functions of PLTm. These include applications
in conditions like atherosclerosis, thrombotic, acute kidney injury, hypoxic pulmonary
hypertension, and intracerebral hemorrhage, among others.

4.3. White Blood Cell Membrane-Coated Nanoparticles (WBCm@NPs)

White blood cells (WBCs), also known as leukocytes, play a pivotal role in recogniz-
ing and eliminating pathogens, while regulating the immune system, which is essential
for maintaining physiological function. These cells are drawn to inflammation sites by
chemokines and since chronic inflammation is a hallmark of cancer—with an abundance of
chemokines being overexpressed—it leads to the targeted accumulation of WBCm@NPs in
tumor tissues [105]. Furthermore, specific immune recognition proteins on the WBCm can
bind to molecules on cancer cells, offering precise site-specific targeting [106]. Additionally,
NPs camouflaged with WBCm have the ability to evade immune detection. These capabil-
ities position WBCm@NPs as a promising anticancer drug delivery system, exemplified
by Nm@NPs, macrophage membrane-coated NPs (Mm@NPs), T cell membrane-coated
NPs (Tm@NPs), dendritic cell membrane-coated NPs (DCm@NPs), and natural killer cell
membrane-coated NPs (NKm@NPs). The applications of WBCm@NPs in cancer therapy
are cataloged in Table 4.

Table 4. List of WBCm@NPs applied in cancer therapy.

Source Cell Inner Cores Therapeutics Key Functions References

Neutrophils

PPDG Chemotherapy,
immunotherapy

Inflammation targeting, immune
induction [7]

IMN Isolation and analysis of
CTCs Tumor targeting, immune evasion [28]

Lip-GEM Nanosecond pulsed electric
field, chemotherapy Tumor targeting [46]

PLGA PDT Tumor targeting, immune evasion [45]

PEG-PLGA Chemotherapy Tumor targeting [47]

Macrophages

PEG-PDPA Immunotherapy Tumor targeting, immune induction [48]

- Immunotherapy Tumor and macrophage targeting [51]

PLGA Immunotherapy Tumor targeting, BBB crossing,
immune induction [107]

Fe3O4
Chemotherapy,
phototherapy Tumor targeting, immune induction [49]

Polydopamine PTT, immunotherapy Tumor and inflammation targeting [108]

PLGA MRI, chemotherapy,
chemodynamic therapy

Long circulation, BBB crossing, tumor
targeting [52]

UCNP PDT, immunotherapy Tumor targeting, immune evasion,
immune induction [50]

T cells

AIE Gene editing, PTT Tumor targeting, BBB crossing, good
biocompatibility [56]

HA Chemotherapy,
immunotherapy

Tumor targeting, immune induction
and evasion [53]

MSN Gene editing, PTT Tumor targeting [55]

PLGA Immunotherapy Tumor targeting, immune induction [54]

PLGA PTT Tumor targeting [57]
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Source Cell Inner Cores Therapeutics Key Functions References

Dendritic cells

PLGA Immunotherapy Tumor targeting, BBB crossing,
immune induction [63]

MSN PDT, immunotherapy Tumor targeting, immune induction [62]

PLGA Immunotherapy Immune induction [58]

AIE PDT, immunotherapy Tumor targeting, immune induction [60]

PLGA Click chemistry,
immunotherapy Immune induction [59]

Polymer NPs Immunotherapy, PTT Immune induction and evasion [61]

Natural killer
cells

PLGA Chemotherapy,
immunotherapy

Long circulation, tumor targeting, BBB
crossing [66]

AsHMS-TA/FeIII
Thermodynamic–
chemodynamic

therapy
Long circulation, tumor targeting [65]

AIE Fluorescence imaging, PTT Tumor targeting, BBB crossing [67]

PLGA Fluorescence imaging, MRI Tumor targeting [64]

mPEG-PLGA PDT, immunotherapy Tumor targeting, immune induction [109]

4.3.1. Neutrophil Membrane-Coated Nanoparticles (Nm@NPs)

Differentiating from hematopoietic stem cells (HSCs) in bone marrow, neutrophils
represent the most prevalent type of WBCs in peripheral blood, comprising 55–70% of
the total and serving a crucial role in pro-inflammatory reactions and immune responses
to pathogens. Chemokines, such as the CXC chemokine family, summon neutrophils to
inflamed joints to mitigate inflammation and facilitate tissue repair [110]. Capitalizing
on this mechanism, Yang et al. and Zhang et al. [111,112] developed NPs coated with
neutrophil membranes (Nm) for precise drug delivery, aimed at rheumatoid arthritis
therapy. Additionally, Zhang et al. [113] engineered antibiotic-loaded Nm@NPs coupled
with natural microalgae for antibiotic delivery in the lungs, significantly reducing mortality
with minimal toxicity in a mice model.

In the management of pancreatic diseases, the presence of the blood–pancreas barrier
often results in a limited drug distribution at pancreatic sites. Coating NPs with Nm enables
them to overcome this barrier, as shown by Cao et al. [47]. Nm-coated PEG-PLGA NPs
were utilized to deliver celastrol for maximum internalization in the pancreas, exhibiting
significant anti-tumor activity in both ectopic and orthotopic models.

Nm@NPs have been explored in cancer treatment experiments for their potential to
suppress tumor growth and metastasis. Xia and co-workers [7] developed a sponge-like
Nm-coated nanocarrier (NM/PPcDG/D), aimed at disrupting postoperative inflammatory
immunosuppressive areas and blocking the formation of pulmonary pre-metastasis niches
by reducing the infiltration of myeloid-derived suppressor cells to boost treatment effi-
cacy for metastasis and relapse. In vivo imaging revealed that the NM/PPcDG/D group
achieved a higher accumulation rate at the post-operative tumor region than PPcDG/D,
demonstrating a significant inflammatory tropism. Furthermore, it was noted that the
NM/PPcDG/D-treated group significantly inhibited tumor recurrence and presented fewer
metastatic nodules in lung tissues (Figure 5).

Circulating tumor cells (CTCs) are the generic term for tumor cells shed from primary
solid tumors that enter the blood circulation [114]. Detecting CTCs is important for early
tumor diagnosis, as well as for predicting recurrence and metastasis, and the required
blood samples are more convenient and non-invasive than other biopsy strategies. Wu
et al. [28] developed Nm-coated immunomagnetic NPs to ensure the targeting ability for
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CTCs in blood, resulting in significant improvements in both the efficiency and purity of
CTC isolation.
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Figure 5. (A) In vivo living images after various treatments in tumor-excising mice. (a), PBS; (b),
PPcDG/DiD; (c), NM/PPcDG/DiD. (B) In vivo imaging of tumors after tumor resection and at the
end of therapy. (C) Typical tumor images in various groups at the end of therapy. (D) Representative
pictures of lung tissues in various groups at the end of therapy (some metastatic nodules were in
the back). (E) Full scanning of the H&E staining sections of the lung tissues in the PBS group and
the NM/PPcDG/D group. Black circles indicated the typical metastasis in the PBS group (Scale
bar: 1000 µm). Reprinted with permission from Ref. [7]. Copyright © 2024 Acta Materialia Inc.:
Oxford, UK.

4.3.2. Macrophage Membrane-Coated Nanoparticles (Mm@NPs)

Macrophages, which derive from HSCs and mature from monocytes, have the capa-
bility to survive for months, or even longer. They play a key role in the innate immune
response and protect the body by phagocytosing microorganisms, apoptotic cells, and
presenting antigens [115]. The adhesion molecules expressed on macrophages’ surface,
such as integrins, selectins, and antigens, facilitate adhesion to inflammatory and cancer
cells [116]. Consequently, macrophage membrane (Mm)-coated NPs can specifically target
tumor and inflammatory tissues, bypass immune system clearance, achieve prolonged
circulation in the blood, and, additionally, activate anticancer immunity.

The application of Mm@NPs for anti-tumor therapies is chiefly concentrated on the
TME and TAMs. The TME represents a complex, integrated system, resulting from the
interaction of tumor cells with surrounding tissues and immune cells, contributing to
tumor malignant progression, immunosuppression, drug resistance, and invasive metas-
tasis [117]. It is characterized by conditions such as hypoxia, reductive states, acidic pH,
and hydrogen peroxide (H2O2) overexpression, which foster tumorigenesis and prolif-
eration [118]. Building on this understanding, Wen and co-workers [119] developed an
Mm-coated mesoporous silica nanoplatform, loaded with catalase, DOX, and R848. This
platform is capable of producing oxygen on-site, inducing immunogenic cell death (ICD),
and boosting dendritic cells’ activity, respectively, to amplify the immunotherapeutic effi-
cacy. Experimental results showed that the immunosuppressive TME could be mitigated
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by oxygen generation in the tumor area, suggesting that integrating it with immunotherapy
offers a viable strategy for combating tumors.

As a major component of the TME, TAMs can be polarized into two phenotypes,
as follows: anti-tumor M1 type and pro-tumor M2 type. Polarizing TAMs from M2 to
M1 is an effective strategy to remodel the TME for tumor treatment. TLR agonists have
been reported to induce polarization of TAMs to M1 [120]. Huang et al. [51] created
(pMETTL14+RS09)@cRGD-M, an Mm-coated nanovesicle modified with the cRGD pep-
tide, to co-deliver the TLR4 agonist and anti-cancer drug (METTL14), aimed at tumor
inhibition and TME remodeling. The nanovesicles, assisted by Mm, can dual-target tu-
mors and macrophages, and cRGD modification enhances their targeting ability. After
21 days of treatment in mice, (pMETTL14+RS09)@cRGD-M showed excellent anti-tumor
effects (Figure 6). In another study, Yue et al. [108] developed Mm-coated NPs with a
polydopamine core, which serves as a photothermal transduction agent, to carry TMP195
(an epigenetic modulator that repolarizes M2 into M1), targeting the cancer area after PTT
through inherited inflammation-mediated chemotaxis from Mm, enhancing the tumor
elimination rate.

Tumor cells secrete macrophage colony stimulating factor 1 (CSF1), which binds to the
receptor (CSF1R) on TAMs, leading to polarization towards the M2 immunosuppressive
phenotype [121]. Chen et al. [50] isolated a TAM membrane (TAMm) and enveloped it
around upconversion NPs with a conjugated photosensitizer (NPR@TAMM) to integrate
PDT and immunotherapy in cancer treatment. As shown in Figure 7, the TAMm coating
mimics the source cells, binding with CSF1 to counteract the polarization of M2, and
enhances drug delivery to tumor sites through its homing ability to TAMs, thereby boosting
anti-tumor immune efficacy. Similarly, Song et al. [49] developed an M1 membrane-
coated magnetic PTT nanocore for immunotargeting and photoacoustic imaging-guided
cancer treatment.
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4.3.3. T Cell Membrane-Coated Nanoparticles (Tm@NPs)

T cells, a type of lymphocyte originating from lymphoid stem cells, participate in the
innate immune system [122]. They have multiple receptors that specifically identify and
bind to tumor-derived antigens on the membrane [123], which allows them to eliminate
tumor cells directly or by producing various growth factors and cytokines, thereby enhanc-
ing immune efficacy. Due to the high tumor affinity of T cell receptors, Tm@NPs represent
a promising nano-platform for targeted tumor drug delivery.

Tm@NPs are capable of devastating cancer cells in a way that resembles cytotoxic T
lymphocytes (CTLs). Kang et al. [54] developed T cell-mimicking NPs by creating PLGA
NPs and loading them with anticancer drugs, such as dacarbazine. Tm@NPs actively target
tumor cells through adhesion proteins, eliminating cells by generating a Fas ligand signal
and releasing drugs. They also restore CTL functions by blocking immune checkpoint
interactions and scavenging for immunosuppressive molecules. In a B16F10 tumor-bearing
mouse model, it was observed that Tm@NPs were more effective in retarding tumor
growth with negligible systemic toxicity, especially when compared to immune checkpoint
blockade (anti-PD-L1 antibody) treatment.

To combat the inter- and intra-heterogeneity of tumors, researchers have adopted a
dual-targeting strategy for more effective drug delivery to malignant sites. As reported,
Ac4ManN-BCN (a novel [6.1.0] bicyclo nonyne-modified unnatural sugar) can be artificially
introduced into various tumor cells [124]. Han et al. [57] modified T cell membrane (Tm)
with the azide (N3) through glycometabolism, enveloped it in PLGA polymeric cores loaded
with indocyanine green (ICG), and developed N3-TINPs for PTT. As depicted in Figure 8,
N3 anchors to tumor cells previously administered with BCN-sugar, Ac4ManNBCN, via a
bioorthogonal reaction, while Tm targets the tumor through retained immune recognition
receptors, achieving dual targeting. Subsequently, tumors are eradicated through ICG-
mediated PTT.

In a subsequent experiment, chimeric antigen receptor T (CAR-T) cells were engineered
to enhance targeting efficiency. Ma et al. [55] created mesoporous silica NPs containing
IR780, encased in a CAR-T cell membrane. This membrane is specifically designed to
recognize Glypican-3 expression in hepatocellular carcinomas (HCCs), thereby enabling
targeted PTT treatment.

Wang et al. [56] specifically developed Tm@NPs with AIE (CM@AIE) for brain cancer
theranostics. Through genetic engineering, Tm was tailored to bind to CD133-positive
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glioblastoma stem cells and epidermal growth factor receptors, targeting both GSCs and
glioblastoma cells. In vivo fluorescence imaging showed that mice injected with Cy5.5-
labeled CM@AIE exhibited a significantly brighter fluorescence in the GBM area compared
to bare AIE NPs, with the tumor signal being nearly four times stronger, highlighting Tm’s
exceptional targeting capability (Figure 9). Zonula occludens-1 (ZO-1), crucial for maintain-
ing tight junction (TJ) structures and integrity, was found to be down-regulated in tumor
blood vessels following Tm and CM@AIE treatment, suggesting Tm’s ability to disrupt TJ
tightness and silently cross the blood–brain barrier (BBB). CM@AIE effectively inhibited
GBM proliferation through 980 nm laser irradiation (0.70 W/cm2, 10 min), resulting in
no noticeable tumor cell growth in the group that had been intravenously injected with
CM@AIE after 60 days.
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4.3.4. Dendritic Cell Membrane-Coated Nanoparticles (DCm@NPs)

Dendritic cells (DCs) are pivotal antigen-presenting cells (APCs), essential for inducing
and regulating innate and adaptive immune responses in the human body [125]. DCs can
recognize, engulf, and modify foreign antigens; present these antigens through major
histocompatibility complexes (MHCs); and, subsequently, activate various T lymphocyte
subtypes to target tumor cells. However, the TME can promote the emergence of tolerogenic
DCs that aid tumor immune evasion by either inducing anergy and apoptosis in CD8+ T
cells or activating regulatory T cells [126]. Consequently, the development of DC-mimicking
NPs, also known as nano-vaccines, capable of antigen processing, T cell priming, and
stimulating anti-tumor immunity, is garnering growing interest.

Sun et al. [61] cultivated immature DCs with tumor antigens for 24 h, utilizing TLR-3 to
induce their maturation, followed by harvesting the mature dendritic cell membrane (DCm).
Intelligent DCs (iDCs) were then synthesized by coating NPs, which carried PTT agents,
with DCm, to create a synergistic PTT–immunotherapy approach for anti-tumor effects.
iDCs are capable of stimulating T cells both in situ and in lymph nodes. Additionally,
cytokines secreted by activated CD4+/CD8+ T cells enhance the sensitivity of cancer cells
to heat stress. With 808 nm laser radiation for mild PTT therapy (42–45°C), tumor cells,
sensitized to the treatment, were efficiently eradicated while sparing immune cells, thereby
reactivating the tumor immunity cycle (Figure 10).
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Xu et al. [60] developed DCm-coated photosensitizer (AIE) lipid droplets to traverse bi-
ological barriers and efficiently accumulate at tumor sites. Additionally, DCm@NPs demon-
strated significant potential in inhibiting glioma. Ma et al. [63] engineered RAPA-loaded
PLGA encapsulating DCm (with DCs induced to mature in vitro), termed aDCM@PLGA/
RAPA. As depicted in Figure 11, using a transwell BBB model, it was observed that
aDCM@PLGA/RAPA effectively crossed the BBB, evidenced by a higher fluorescence
intensity in C6 cells after crossing the bEnd.3 monolayer. Following 19 days of treatment,
enhanced CD3+CD8+ and CD3+CD161+ expression were quantified in brain tumors, in-
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dicating an increased T cell and NK cell activity, as shown using flow cytometry in the
aDCM@PLGA/RAPA group. Moreover, aDCM@PLGA elicited a robust memory effect;
post pre-immunization with various groups and subsequent injection of C6-LUC cells,
minimal tumor volume was detected in the aDCM@PLGA group through bioluminescence
imaging, in contrast to saline and PLGA.
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formulas (** p < 0.01, *** p < 0.001). Reprinted with permission from Ref. [63]. Copyright © 2024
American Chemical Society: Washington, DC, USA.

4.3.5. Natural Killer Cell Membrane-Coated Nanoparticles (NKm@NPs)

Natural killer cells (NKs), functioning as lymphocytes of the innate immune system,
have the ability to recognize and eliminate aberrant cells, without prior antigen stimulation,
a capability distinct from that of T cells. Contrarily, NKs can promote the maturation
of APCs and secrete a variety of cytokines to modulate immune responses [127]. It is
reported that CMC@NPs formulated with natural killer cell membrane (NKm) enable
NPs to specifically target tumors and to induce and enhance M1 macrophage polarization,
thereby producing anti-tumor immunity [64,109].

NKm@NPs are utilized to transport photosensitizers or anticancer drugs for brain
cancer due to their ability to cross the BBB. Deng et al. [67] developed NKm coated with
a polymeric core carrying AIE, while Zhang et al. [66] encapsulated cRGD-decorated
NKm with PLGA-coated temozolomide and interleukin-15 (IL-15) NPs. Both delivery
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systems provided a highly efficient BBB crossing and performed well in inhibiting brain
tumor growth.

Free radical-based anti-tumor therapy, which induces tumor cell death through oxida-
tive stress, is widely utilized [128]. However, glutathione, the primary endogenous antioxi-
dant, can neutralize free radicals in tumor cells. Employing a photothermal-augmented
thermodynamic–chemodynamic approach, Lin et al. [65] developed a nanogenerator
(AsHMSTA/FeIII@NK) that both generates free radicals and consumes intracellular glu-
tathione (GSH). This approach effectively amplifies oxidative stress, thereby enhancing
anticancer therapy. As illustrated in Figure 12, an increased green fluorescence emission
was noted in the AsHMS-TA/FeIII@NK group with NIR laser irradiation, relative to other
groups, indicative of elevated free radical production. Further, live/dead cell staining
and apoptosis analyses confirmed the AsHMS-TA/FeIII@NK nanogenerator’s significant
efficacy in promoting tumor cell death predominantly via apoptosis.
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4.4. Stem Cell Membrane-Coated Nanoparticles (SCm@NPs)

Stem cells (SCs), also known as mesenchymal stem cells (MSCs), offer significant
advantages due to their ease of acquisition and isolation and their ability to be derived
from a variety of tissue types [129]. MSCs are inherently capable of evading the immune
system, due to their low immunogenicity [130], and they have the ability to migrate
to malignant tissues, including glioma, breast cancer, and HCCs, through chemokine–
receptor interactions and endothelial adhesion [131]. Consequently, MSC membrane-coated
nanoparticles (MSCm@NPs) demonstrate substantial potential in anti-tumor applications.
A list of SCm@NPs utilized in cancer therapy is detailed in Table 5.
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Yang et al. [68] developed DOX-loaded PLGA NPs coated with MSC membranes
(MSCm) derived from umbilical cord MSCs, aimed at targeted chemotherapy delivery for
tumors. This study was the first to demonstrate the feasibility of using umbilical cord MSCm
in creating nanocarriers. Following this, Zhang’s group [69] employed umbilical cord-
derived MSCm@NPs for the chemo–photothermal treatment of malignant bone diseases.
These MSCm@NPs retained the biological function of natural MSCm, exhibiting remarkable
biocompatibility, stability, and synergistic efficacy in cancer cell eradication. Furthering
this research, Mu’s group [70] engineered MSCm@NPs to deliver DOX and PD-L1 siRNA
for chemoimmunotherapy of prostate tumor bone metastases. Their work demonstrated
outstanding efficacy in both in vitro and in vivo studies.

Cell–cell interactions play a crucial role in both tissue regeneration and tumorigenesis,
from development to maturation [132]. Drawing inspiration from this, Kim et al. [133]
developed SCm-derived NPs (referred to as CMNPs), which incorporate a Notch-1 antag-
onistic aptamer for tumor angiogenesis suppression. These CMNPs aim to provide the
following dual benefits: counteracting laryngeal cancer and promoting chondrogenesis.
CMNPs were sourced from tonsil-derived MSCs, isolated using a series of filters with
progressively smaller pore sizes. These NPs enhance cell–cell interactions and facilitate a
tighter membrane-to-membrane contact, leading to a hypoxic environment conducive to
both cartilage growth and cancer cell proliferation. Given that blood vessels are vital for
cancer growth but unnecessary for cartilage development, the presence of the Notch-1 ap-
tamer in CMNPs ultimately results in the death of laryngeal cancer cells and the promotion
of chondrogenesis.

In another study, Sancho-Albero et al. [134] utilized the natural biogenesis pathway to
obtain small extracellular vesicles (sEVs) loaded with NPs derived from SCs. These sEVs
were employed in a multinodular intraperitoneal model to evaluate their selective delivery
capabilities. The findings revealed that sEVs exhibited a high delivery efficacy, even in
scenarios of multinodular dissemination, heralding a new avenue for the advancement of
biomimetic NPs.

Table 5. List of SCm@NPs applied in cancer therapy.

Source Cell Inner Cores Therapeutics Key Functions References

Stem cells

PLGA Chemotherapy Tumor targeting [68]

Polydopamine Chemotherapy–
PTT

Tumor targeting,
long circulation,
immune evasion

[69]

Polydopamine Chemotherapy,
gene therapy Tumor targeting [70]

Fe3O4@PDA MRI, PTT, gene
therapy Tumor targeting [135]

4.5. Cancer Cell Membrane-Coated Nanoparticles (CCm@NPs)

Utilizing CCm to fabricate CCm@NPs for homologous cancer therapy presents sub-
stantial advantages. These NPs leverage tumor homotypic binding for specific targeting
and efficient internalization by the originating tumor cells. This ability stems from the
overexpression of homotypic adhesion antigens on CCm surfaces, including the E-cadherin,
Galectin-3, and TF antigens [136]. CCm’ low immunogenicity permits the NPs to avoid
immune detection, thus prolonging their circulation in the bloodstream. Furthermore,
modifying these NPs with cancer antigens enhances immune responses, which is beneficial
for immunotherapy. Additionally, the ease of proliferating tumor cells in vitro cell culture
supplies ample resources for CCm@NP development [137]. As a targeted drug delivery
platform, CCm@NPs have been employed across various therapeutic strategies against
cancer. A list of CCm@NPs used in cancer therapy is provided in Table 6.
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Table 6. List of CCm@NPs applied in cancer therapy.

Source Cell Inner Cores Therapeutics Key Functions References

Cancer cells

Nanogel Chemotherapy,
immunotherapy

Homologous targeting,
long circulation [8]

Silica Chemotherapy Homologous targeting [81]

Cu-ZnO NO therapy Tumor targeting,
immune evasion [74]

MSN Tumor vaccine,
immunotherapy Immune induction [71]

PEI Tumor vaccine, gene
editing

Homologous targeting,
immune induction [72]

HMnO2
Immunotherapy,

chemodynamic therapy
Long circulation,

homologous targeting [79]

Fe-PDAP SDT, immunotherapy Tumor targeting [76]

CMOx PTT, immunotherapy Tumor targeting,
immune evasion [77]

TiO2 SDT, PTT Tumor targeting [75]

Wang et al. [81] created mesoporous silica nanorods with colorectal CCm@NPs (C-
Z@CM), demonstrating a superior cellular uptake compared to uncoated counterparts in
HT-29 cells. A powerful anti-tumor effect has been demonstrated with nitric oxide (NO)
gas therapy. In Xu and colleagues’ research [74], as depicted in Figure 13, a copper-based
metal–organic framework (MOF) material was synthesized. This material triggers the
generation of hydroxyl radicals (•OH), with ZnO doping enhancing NO production from
endogenous S-nitrosoglutathione (GSNO) at tumor sites. The concurrent release of reactive
oxygen species (ROS) and NO led to the formation of lethal reactive nitrogen species
(ONOO-). Treated with C-Z@CM, treatment in a U14 tumor-bearing mouse model resulted
in markedly elevated ROS, NO, and ONOO- levels.
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Immunotherapy, combined with other treatments such as magnetic resonance imaging
(MRI), sonodynamic therapy (SDT), PTT, and chemotherapy in CCm@NPs, has gained
traction in anti-tumor therapies. Yang et al. [71] synthesized a nano-vaccine by coating
B16-F10 melanoma membrane onto mesoporous silica NPs and incorporating adjuvant
cytosine–phosphate–guanine (CpG) and propranolol (a β-AR inhibitor). This approach en-
hanced T cell infiltration into tumors and modulated the immunosuppressive TME. Shang
et al. [8] developed a chemo-immunotherapy nanosystem by coating a pH-responsive
nanogel loaded with paclitaxel (PTX) and interleukin-2 (IL-2) onto CCm, targeting triple-
negative breast cancer. This strategy facilitated an increased drug concentration and a swift
release at the target site, leading to rapid immune activation and amplified anti-tumor
efficacy. In a separate study, Liu et al. [72] created DBE@CCNPs, incorporating polyethylen-
imine (PEI25K) containing unmethylated CpG into a CCm modified with CD47KO/CRT.
They utilized gene editing to produce dual-bioengineered tumor cells, cultivated with
calreticulin to induce ICD, enhancing antigen phagocytosis. The integration of this nano-
vaccine with anti-PD-L1 therapy in a mouse model effectively counteracted T lymphocyte
immunosuppression, resulting in a significant anti-tumor response.

Fu et al. [79] developed a nanoplatform for MRI-guided immuno-chemodynamic ther-
apy of osteosarcoma, comprising hollow manganese dioxide (HMnO2) NPs modified with
alendronate and coated with CCm to encapsulate ginsenosides Rh2 (immune activators).
Upon internalization by tumor cells via homophilic targeting, the HMnO2 framework de-
pletes GSH and generates •OH, effectively inducing ICD and activating T cells to mitigate
the tumor. In their study, Jiang et al. [76], introduced a CCm-coated, catalase-mimicking,
Fe-doped polydiaminopyridine (Fe-PDAP) containing chlorin e6 (Ce6), termed MFC, for
efficient SDT-immunotherapy. MFC minimizes unnecessary H2O2 consumption and profi-
ciently generates ROS at the tumor site, enhancing the release of tumor-associated antigens
during SDT, to promote the maturation of APCs and trigger an immune response.

Jana et al. [77] developed a redox nanozyme (CMOR@4T1) for synergistic PTT and
immunotherapy. As depicted in Figure 14, a Cu-doped MoOx (CMO) nanozyme was
initially synthesized using a metal–polyphenol coordination method. Subsequently, it
was coated with the 4T1 cell membrane and loaded with R848, resulting in CMO-R@4T1.
Following the injection of different NPs into tumor-bearing mice at the 12 h mark, the
CMO-R@4T1 and CMO groups exhibited the highest fluorescence intensity, respectively,
with the signal of CMO@4T1 being approximately 1.6 times higher. This suggests that
CCm enhance the NPs’ targeting ability, allowing for their effective accumulation at tumor
sites. In a bilateral tumor mouse model, treatment with CMO-R@4T1 combined with NIR-II
irradiation significantly inhibited tumor growth and enhanced CD4+ and CD8+ T cell
infiltration in both primary and distant tumors.
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highlighted (yellow circle) (Scale bar: 5 mm). (C,D) Tumor growth curves of primary and distant tu-
mors on bilateral tumor-bearing mice after various treatments (*** p < 0.001). (E) Immunofluorescence
staining of CD8+ T cells (green) and CD4+ T cells (red) from both primary and distant tumor tissues
of mice after different treatments (Scale bar: 100 µm). Reprinted with permission from Ref. [77].
Copyright © 2024, Wiley-VCH: Weinheim, Germany.

4.6. Hybrid Membrane-Coated Nanoparticles (Hym@NPs)

By fusing cell membranes isolated from various cell sources into a hybrid membrane
(Hym), it is possible to integrate multifunctionality into a single platform. Consequently,
creating Hym@NPs opens up broad prospects for the application of bionic NPs in tumor
therapy. Table 7 presents a compilation of Hym@NPs utilized in cancer therapy.

Table 7. List of Hym@NPs applied in cancer therapy.

Source Cell Inner Cores Therapeutics Key Functions References

PLTm-Nm Gold nanocage Chemotherapy, PTT High affinity for CTCs
and exosomes [85]

Mm-CCm Fe3O4

Chemodynamic
therapy,

immunotherapy, PDT

Immune evasion,
homologous targeting [86]

Mm-CCm-mH CPC@MTIC Chemotherapy
BBB crossing,

homologous and
inflammation targeting

[90]

CCm-CCm OA-LnNPs PTT BBB crossing,
homologous targeting [91]

DCm-CCm HPMC Chemotherapy,
immunotherapy

Homologous targeting,
immune induction [92]

RBCm-CCm TK-PPE PTT, immunotherapy Long circulation,
homologous targeting [94]

RBCm-CCm PLGA Chemotherapy, PDT Long circulation,
homologous targeting [89]

WBCm-CCm Fe3O4
Isolation and analysis

of CTCs
Tumor targeting,
immune evasion [87]

Mm-Nm Ag2S Immunotherapy
Homologous and

inflammation targeting,
BBB crossing

[93]

Ye et al. [85] developed PNMAuDIs to enhance the chemo-PTT treatment efficacy
in breast cancer therapy. In their research, Hym (named PNM) was synthesized from
PLTm and Nm through 10 min of sonication, with the resulting PNM subsequently en-
veloping a gold nanocage core loaded with DOX and ICG. Further analysis revealed
that this fusion retained cell membrane proteins from both PLTs and neutrophils. Con-
sequently, the PNMAuDIs demonstrated a strong affinity towards CTCs and migrating
tumor-derived exosomes, markedly reducing tumor growth and metastasis. Similarly,
Chen and colleagues [138] crafted a Hym@NP combining RBCm and CCm, named Hyb-NP.
This construct was designed to extend circulation time and enhance tumor recognition, en-
capsulating monensin—a metastasis inhibitor. Hyb-NP efficiently delivers monensin to the
Golgi apparatus, thereby extending circulation time and significantly reducing spontaneous
metastasis in an orthotopic breast cancer model.

Similarly, Zhang et al. [86] focused on developing TRM (CCm-Mm) hybrid Fe3O4 NPs
loaded with ICG and imiquimod (R837), named RIFe@TRM, for a combination therapy
approach in breast cancer treatment. In vitro studies demonstrated that the TRM hybrid
membrane coating exhibited excellent self-targeting capabilities, as evidenced by enhanced
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fluorescence in 4T1 cells indicative of a higher uptake, compared to others, when incubated
with DiO-labeled RIFe@TRM (Figure 15). These fluorescence images further suggest that
TRM significantly extends the circulation life of the NPs. Upon administering RIFe@TRM
combined with laser irradiation and a magnetic field (MF) for 5 min in a mouse model, the
temperature in the targeted area increased to 48.6 ◦C, leading to pronounced tumor cell
apoptosis and necrosis, as confirmed by H&E staining.
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Figure 15. (A) In vivo real-time fluorescence images (Scale bar: 20 µm). (B) In vitro fluorescence
images of tumors and major organs. (C) Infrared thermography of tumor-bearing mice. (D) H&E
staining of the tumor sections (I: Saline, II: Fe3O4, III: R837, IV: ICG, V: RFe, VI: RIFe + NIR, VII:
RIFe@TRM, VIII: RIFe@TRM + NIR, IX: RIFe@TRM + NIR + MF, Scale bar: 20 µm). Reprinted with
permission from Ref. [86]. Copyright © 2024 American Chemical Society: Washington, DC, USA.

Recently, Huang et al. [90] innovatively developed triple-fused cell membranes (mUMH)
that encapsulate supramolecular micelles, enabling them to cross the BBB for GBM treatment
(Figure 16). In their research, cell membranes from glioblastoma, macrophages, and microglia
(mH) were selected and fused in a 2:1:1 ratio through co-extrusion, aiming to boost brain
tumor targeting efficiency. The mUMH demonstrated superior intracellular uptake and
tumor targeting capabilities compared to individual membrane types.

A wide range of cell membrane combinations has been investigated for preparing
Hym to encapsulate nanomaterials. Beyond the examples previously discussed, research
has explored hybrids of cancer–cancer [91], DC–cancer [92], RBC–PLT [139], mitochondria–
cancer [140], bacteria–cancer [141], and embryonic–bacteria [142], among others.
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5. Advantages and Limitations

Biomimetic nanoplatforms coated with cell membranes possess tremendous poten-
tial as delivery nanocarriers, fusing various cell types with versatile nanomaterials and
encapsulating diverse drugs (Figure 17). The cell membrane bestows biomimetic properties
and unique functions upon conventional NPs. The use of CMC@NPs in cancer therapy
has yielded encouraging achievements, offering benefits such as immune evasion, tumor
targeting, and enhanced immune responses.
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Most NPs, as exogenous substances, are quickly recognized and cleared by the immune
system upon entry into the body. The application of a membrane coating effectively
disguises NPs as “self” entities, enabling them to avoid detection by the reticuloendothelial
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system and extending their circulation time in the bloodstream. This results in enhanced
extravasation into tumor tissue through the Enhanced Permeability and Retention (EPR)
effect. Several types of CMC@NPs have been shown to increase biocompatibility and evade
immune detection, notably RBCm@NPs. An experiment by Su et al. [143] demonstrated
that RBCm@NPs extended circulation nearly 5.8 times longer than bare NPs.

Tumor targeting is essential for a drug delivery system to achieve maximum efficacy
in cancer treatment. Scientists are increasingly focusing on enhancing active targeting
modification, as opposed to passive targeting, which may lead to drug resistance. Certain
cell types, such as cancer cells, WBCs, and PLTs, innately possess tumor homing abili-
ties. This phenomenon can be attributed to proteins or ligands on the cell membrane that
recognize and bind to tumor cell receptors, facilitated by recruitment through chemoattrac-
tants. Consequently, the cell membrane has been extensively exploited for active targeting
modification. Notably, CCm@NPs, whether used solely or in combination with other
membranes, demonstrate improved tumor-specific targeting capabilities and an enhanced
cellular uptake. Han et al. [144] developed a glioma membrane-coated PEI nano-core
loaded with plasmid DNA, indicating high accumulation and transfection efficiency in tu-
mor cells, leading to a significant reduction in tumor size. NPs coated with cell membranes
enhance tumor targeting efficiency, offering the potential to achieve precision medicine and
minimize side effects.

Coating NPs with WBCm or CCm holds promise for immune activation. DCm@NPs
can mimic APCs and promote the differentiation of CD4+/CD8+ T cells; Tm@NPs can
bind to immunosuppressive molecules (e.g., TGF-β) and PD-L1 on tumor cells, effectively
restoring T cells’ cancer-killing capabilities. Similarly, NPs coated with TAMm can drive M1
phenotype polarization by depleting macrophage colony-stimulating factors (e.g., CSF1)
secreted by tumor cells, thereby reshaping the TME. Furthermore, following lysosomal
degradation or laser irradiation, CCm@NPs discharge CCm fragments that serve as tumor
antigens, encouraging the maturation of APCs and stimulating the immune response.

Cell membrane-coated biomimetic NPs have shown exceptional therapeutic efficacy
in various anti-tumor strategies, owing to their unique advantages. However, limitations
exist as well. Specifically, RBCm@NPs offer high biocompatibility and an extended plasma
half-life, yet their tumor-targeting capability is limited. PLTm@NPs can target tumors
effectively and sustain circulation, but carry a potential risk of thrombosis. WBCm@NPs
demonstrate precise targeting and immune activation, but exhibit high heterogeneity.
SCm@NPs possess a strong affinity for tumors, yet lack the desired specificity. CCm@NPs
are capable of actively targeting cancer cells and modulating the immune response, but
raise safety concerns, such as oncogenic risks. Hym@NPs combine various functionalities,
yet may lead to diminished effects.

During the manufacture of CMC@NPs, the scarcity of certain source cells can lead to
increased costs for membrane harvesting. Moreover, the thorough removal of intracellular
contents and genetic material is essential to ensure membrane purity, especially with cancer
cells, due to potential carcinogenic risks. Furthermore, keeping the preparation process at a
low temperature is vital to maintain the stability and integrity of surface proteins, which are
crucial for biological functions and minimizing endogenous immune reactions. Although
various methods for preparing CMC@NPs exist, most are confined to lab-scale experiments,
posing challenges for upscaling to industrial production because of their laboriousness, low
efficiency, and inconsistent results. To fulfill clinical application standards, the continuous
improvement and optimization of the preparation process is necessary.

The storage of CMC@NPs presents another challenge for clinical applications. Strate-
gies are needed to ensure their long-term preservation and to prevent a loss of stability
and therapeutic effectiveness. Furthermore, rigorous protocols are required to protect
CMC@NPs from contaminants such as endotoxins, viruses, and pyrogens.

Although CMC@NPs have shown exhilarating potential in laboratory settings with
model animals, the transition to effective therapeutic applications in human patients is
fraught with significant challenges, especially in terms of operational complexity, time
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efficiency, and financial cost. The process spanning from the extraction of cell membranes to
the preparation of drug-encapsulated NPs necessitates meticulous operations, demanding
high technical proficiency, precise manipulation, and stringent quality control, increasing
both complexity and technical demands in clinical settings. Consequently, the procedures
must be streamlined and standardized. Furthermore, given the urgency of treatment for
cancer patients, the time efficiency in preparing CMC@NPs is critical, as any delays could
significantly impact therapeutic outcomes. Scientists are investigating pre-preparation
and storage techniques for cell membrane biomimetic NPs or contemplating the use of
generic cell membranes suitable for multiple patients. However, these strategies also face
challenges related to long-term storage stability and the uncertainty of treatment outcomes
due to individual patient differences. Interim therapeutic measures may be necessary to
compensate for the preparation time. Finally, the substantial economic cost associated with
this technology—stemming from the requirement for specialized equipment, materials, and
skilled labor—considerably limits its accessibility, which further complicates the process of
translating these advancements into clinical practice.

6. Conclusions and Prospects

This review aims to outline the preparation, features, functions, and potential applica-
tions of CMC@NPs, and several challenges were discussed. With the efforts of scientists,
cell membrane-based DDSs have made significant progress in recent years. As innovative
drug carriers, cell membrane-camouflaged NPs have demonstrated tremendous potential
in cancer therapy, offering advantages such as excellent biocompatibility, immune evasion,
prolonged blood circulation, a high biodistribution profile, enhanced immune response,
active tumor targeting, and increased drug accumulation at tumor sites.

Although the transition of CMC@NPs from laboratory research to translational medicine
faces numerous challenges, there is an undeniable optimism that advances in cell engineer-
ing and biomimetic nanotechnology will gradually address these issues. Recently, scientists
have discovered a method to improve the full coating ratio of CMC@NPs by enhancing
membrane fluidity [145]. In another study, bacteria were co-cultivated with host cells and
subsequently exposed to UV light, triggering apoptosis and resulting in the spontaneous
coating of bacteria with cell membranes [146]. Both studies pave the way for more efficient
and easily adaptable coating techniques.

Personalized healthcare represents a promising direction for the clinical application of
CMC@NPs. NPs coated with self-derived cell membranes can maximally avoid immune
system activation. The development of Hym@NPs and advances in biological membrane
modification offer boundless opportunities for this innovative biomimetic platform. More-
over, NPs based on EVs, such as exosomes and microvesicles, are attracting attention for
their cargo transport capabilities and inherent functional properties.

In summary, although there are still some hurdles to be solved from bench to clinical
practice, cell membrane-based biomimetic systems represent a feasible approach to decorate
nanoparticles and hold great promise for cancer therapy.
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NPs Nanoparticles
DDSs Drug delivery systems
PEGs Glycol polymers
PLGA Poly(lactic-co-glycolic acid)
CMC@NPs Cell membrane-coated NPs
MRI Magnetic resonance imaging
SDT Sonodynamic therapy
RBCs Red blood cells
RBCm Red blood cell membrane
DOX Doxorubicin
PDT Photodynamic therapy
PTT Photothermal therapy
HSCs Hematopoietic stem cells
Nm Neutrophil membrane
PLTs Platelets
PLTm Platelet membrane
R848 Resiquimod
TLR Toll-like receptor
WBCs White blood cells
WBCm White blood cell membrane
DCs Dendritic cells
APCs Antigen presenting cells
DCm Dendritic cell membrane
BBB Blood–brain barrier
NKs Natural killer cells
SCs Stem cells
CTCs Circulating tumor cells
Mm Macrophage membrane
TME Tumor microenvironment
TAMs Tumor-associated macrophages
H2O2 Hydrogen peroxide
CSF1 Colony-stimulating factor 1
CTLs Cytotoxic T lymphocytes
ICG Indocyanine green
CAR-T Chimeric antigen receptor T
HCCs Hepatocellular carcinomas
AIE Aggregation-induced emission
MHCs Major histocompatibility complexes
MSCs Mesenchymal stem cells
ROS Reactive oxygen species
ICD Immunogenic cell death
Hym Hybrid membrane
Nm@NPs Neutrophil membrane-coated nanoparticles
CCm@NPs Cancer cell membrane-coated nanoparticles
RBCm@NPs Red blood cell membrane-coated nanoparticles
PLTm@NPs Platelet membrane-coated nanoparticles
WBCm@NPS White blood cell membrane-coated nanoparticles
MSCm@NPs MSC membrane-coated nanoparticles
SCm@NPs Stem cell membrane-coated nanoparticles
Hym@NPs Hybrid membrane-coated nanoparticles
Mm@NPs Macrophage membrane-coated nanoparticles
Tm@NPs T cell membrane-coated nanoparticles
DCm@NPs Dendritic cell membrane-coated nanoparticles
NKm@NPs Natural killer cell membrane-coated nanoparticles
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