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Abstract: Currently, there is still a lack of effective carriers with minimal side effects to deliver
therapeutic miRNA. Thus, it is crucial to optimize novel drug delivery systems. MiR-375 has proven
superior therapeutic potency in Hepatocellular carcinoma (HCC). The purpose of this study was
to fabricate 2 novel and smart nano-carriers for the transportation efficiency of miR-375 in HCC
cells and enhance its anti-tumor effects. We established the miR-375 construct through the pEGP-
miR expression vector. Two nano-carriers of solid/liquid lipids and chitosan (CS) were strategically
selected, prepared by high-speed homogenization, and optimized by varying nano-formulation
factors. Thus, the two best nano-formulations were designated as F1 (0.5% CS) and F2 (1.5% CS) and
were evaluated for miR-375 conjugation efficiency by gel electrophoresis and nanodrop assessment.
Then, physio-chemical characteristics and stability tests for the miR-375 nano-plexes were all studied.
Next, its efficiencies as replacement therapy in HepG2 cells have been assessed by fluorescence
microscopy, flow cytometry, and cytotoxicity assay. The obtained data showed that two cationic
nanostructured solid/liquid lipid carriers (NSLCs); F1 and F2 typically had the best physio-chemical
parameters and long-term stability. Moreover, both F1 and F2 could form nano-plexes with the anionic
miR-375 construct at weight ratios 250/1 and 50/1 via electrostatic interactions. In addition, these
nano-plexes exhibited physical stability after three months and protected miR-375 from degradation
in the presence of 50% fetal bovine serum (FBS). Furthermore, both nano-plexes could simultaneously
deliver miR-375 into HepG2 cells and they ensure miR re-expression even in the presence of 50% FBS
compared to free miR-375 (p-value < 0.001). Moreover, both F1 and F2 alone significantly exhibited
minimal cytotoxicity in treated cells. In contrast, the nano-plexes significantly inhibited cell growth
compared to free miR-375 or doxorubicin (DOX), respectively. More importantly, F2/miR-375 nano-
plex exhibited more anti-proliferative activity in treated cells although its IC50 value was 55 times
lower than DOX (p-value < 0.001). Collectively, our findings clearly emphasized the multifunctionality
of the two CS-coated NSLCs in terms of their enhanced biocompatibility, biostability, conjugation,
and transfection efficiency of therapeutic miR-375. Therefore, the NSLCs/miR-375 nano-plexes could
serve as a novel and promising therapeutic strategy for HCC.

Keywords: hepatocellular carcinoma; miR-375; nanostructured solid liquid lipid carrier; lyophilization;
transfection efficiency; stability; cytotoxicity

1. Introduction

Hepatocellular carcinoma (HCC) is a prevalent malignancy, ranking fifth among all
cancers and second in cancer-related deaths globally. It accounts for 90% of all primary
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liver tumors, highlighting its significance [1]. Current treatment strategies for HCC include
chemotherapy, radiotherapy, and immunotherapy; however, these methods have limited
efficacy, high toxicity, and lack tumor selectivity [2,3]. The 5-year relative survival rate for
all SEER stages combined is only about 20%, indicating a poor prognosis [4]. Therefore,
there is an urgent need for the development of more effective therapeutic approaches to
achieve better tumor control.

MicroRNAs (miRNAs) have been extensively researched as potential therapeutic
agents to combat various tumors due to their ability to act as master regulators of gene
expression at both the post-transcriptional and translational levels [5,6]. Each miRNA can
perfectly base pair with tens to hundreds of mRNA targets, directly repressing their path-
ways [7]. Nevertheless, miR dysregulation plays a fundamental role in tumor initiation and
progression [8]. Modulating the function of miRNAs, either by restoring their expression
or inhibiting their overexpression, can influence their regulatory network and potentially
halt cancer growth [9,10].

MiR-375 is a conserved noncoding RNA that is frequently downregulated in various
tumors. Its upregulation has been shown to inhibit malignant traits of cancer cells, making
it a potent onco-suppressor and one of the core down-regulated miRs in HCC [11–20]. The
hypermethylation of CpG islands of miR-375 promoter has been reported as the main cause
of its down-regulation [21,22]. Restoring the expression of miR-375 has been found to
significantly repress the major hallmarks and all signaling networks of HCC, including
cell growth, proliferation, anti-apoptosis, angiogenesis, glucose metabolism, autophagy,
drug resistance, migration, and invasion [23–30]. These suppressive effects of miR-375 are
achieved via its multi-targeting key oncogenes involved in hepatocarcinogenic pathways.
These findings potentially suggest that miR-375 may be a promising therapeutic strategy
for HCC.

Efficiently delivering functional miRNA into target cancer cells remains a significant
challenge due to its negative charge, limited penetration, short half-life, and susceptibility
to degradation by nucleases [31,32]. To overcome these critical obstacles, various viral
and non-viral delivery systems have been developed [33,34]. Non-viral-based carriers,
such as nanoparticles (NPs), have shown remarkable potential for effective miRNA-based
therapeutics [18,19,35,36]. There are several types of NPs available, including lipidic
nanoparticles, polysaccharides, and others. These non-viral delivery systems offer several
advantages in miRNA delivery [37–39].

Lipid-based nanoparticles (LBNPs) have shown remarkable potential for miRNA
delivery due to their ease of production, efficient encapsulation and stabilization of the
miRNA payload, and ability to facilitate tumor-specific delivery, high intracellular uptake,
and enhanced bioavailability with minimal toxicity [40]. In line with these, cancer cells
are known to contain a high percentage of lipids, which are characterized as landmarks of
tumor aggressiveness [41,42], Several lipid-based nano-carriers for miRNA delivery are
well-absorbed into target cells, demonstrating efficient abilities. Examples of these carriers
include nanostructured lipid carriers (NSLCs) [43], solid lipid nanocarriers (SLNs) [44],
high-density lipoproteins [45], stable nucleic acid-lipid particles [46] and cationic lipo-
somes [47].

Nanostructured lipid carriers (NSLCs) are considered the second generation of LBNPs
which are made by combining solid and liquid lipids [48]. The addition of liquid lipids
transforms the perfectly crystalline structure of SLNs into an imperfect, amorphous, and
less organized matrix [49]. This lipid matrix provides more space for drug loading, enhances
encapsulation and stability, and modulates targeted delivery [50–56]. NSLCs have been
developed as novel carriers for the effective delivery of multiple miRNAs in tumor gene
therapy. Examples of these miRNAs include miRNA-125-a-5p, anti-miR-221, miR-34a, let-
7-a, and anti-miR-21 [57–61]. On the other hand, chitosan (CS) is a cationic polysaccharide
that has been widely used in the synthesis of nanocarriers for drug delivery, including
miRNA delivery [62–64]. It is highly biocompatible, biostable and target-specific, with
a strong binding affinity for miRNA [65,66]. In addition, it is characterized as a non-
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toxic and a biodegradable delivery vehicle [67]. Mechanistically, CS amino groups are
ionized in acidic environments, allowing them to interact with other molecules through
the formation of electrostatic complexes or multilayer structures [68,69]. For instance, CS
has been reported to form a nano-complex with hyaluronan which efficiently encapsulated
vinblastine sulfate, a potential cytotoxic drug against myeloid leukemia. This optimized
cargo demonstrated active targeting and sustained therapeutic effects in vitro [70]. More
importantly, CS NP has been shown to form stable complexes with miR-217 [71], and
miR-122 [72] in the treatment of HCC, as well as with miR-200c [73,74], and miR-34a [75,76]
in the treatment of breast cancer.

Despite the progress made in developing vectors for miRNA delivery to cancer cells,
there is still a need for further development and optimization of ideal vectors for delivering
miRNA to target cells to solve the shortage of the currently available ones and dramatically
improve therapeutic outcomes. In this study, the aim was to develop a smart gene therapy
based on a miR-375 vector as a therapeutic strategy for HepG2 cells. We fabricated two
novel nanocarriers which consisted of chitosan-coated nanostructured lipid carriers. The
nanocarriers were optimized to possess several functionalities, such as high biocompat-
ibility, stability, and cell-specific targeting, while also reducing potential toxicities. By
enhancing the re-expression of miR-375 and its tumor-suppressive roles, these nanocarriers
can effectively inhibit the malignant phenotypes of cancer cells.

2. Materials and Methods
2.1. Materials

Chitosan (medium MW, 75–85% deacetylated), oleic acid, Kallichore P188 (Poly (ethy-
lene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol), Avicel (microcrys-
talline cellulose), and trehalose were purchased from Sigma-Aldrich Co. (St. Louis, MO,
USA). Precirol® ATO 5 (Glyceryl Di stearate NF/Glyceryl palmitostearate), and Gelucire
50/13 (Stearoyl polyoxylglycerides NF/Stearoyl macrogol glycerides EP) were kind gifts
from Gattefosse (Lyon, France). Mannitol, lactose, and sucrose (El-Gomhoreya, Cairo,
Egypt), Dulbecco’s Modified Eagle’s medium (DMEM, Gibco Invitrogen, Darmstadt, Ger-
many), fetal bovine serum (FBS), Trypsin EDTA, penicillin and streptomycin (Biowest,
Lakewood Ranch, FL, USA). DNaeay DNA extraction kit, Hot star taq PCR master mix (Qi-
agen, Hilden, Germany). pEGP miR-cloning and expression vector (Cell Biolabs, San Diego,
CA, USA), fast digest BamHI and fast digest NheI enzymes, T4 ligase, Gel extraction kit,
Plasmid miniprep, Turbofect transfection reagent (Thermo Scientific, Waltham, MA, USA).
HI pure endotoxin-free plasmid maxiprep (Invitrogen, Waltham, MA, USA), MTT reagent
(Sigma Aldrich, St. Louis, MO, USA). All other chemicals used were of pharmaceutical
grade or the highest commercially available grade.

2.2. Generation of Stable miR-375 Expression Construct

To prepare the HCC suppressor miR-375 for use in this study, commercially provided
E. coli cells containing pEGP miR-cloning and expression vector with a Green Fluorescent
Protein (GFP) selection marker were cultured on 1% LB Agar supplemented with ampicillin
at 37 ◦C for 32 h. A single colony was then picked and grown in 10 mL of 1% LB media
supplemented with ampicillin at 37 ◦C for 24 h. The vector was subsequently purified from
the liquid culture using a Plasmid Miniprep kit following the manufacturer’s protocol, and
the concentration of the pEGP miR vector was determined by Nanodrop at 260 nm. Double
restriction digestion of the vector was carried out using fast-digest BamHI and fast-digest
NheI enzymes. The HCC suppressor miR-375 was designed and prepared based on our
previous work [17–20]. Total genomic DNA was isolated and the pre-miR-375 sequence
was amplified using designed forward 5′ CGGACCTGAGCGTTTTGTTC 3′ and reverse 5′

TACGGTTGAGATGGCGGTG 3′, and the pure miR-375 sequence was cloned into the pEGP
miR-cloning and expression vector. The recombinant miR-375 expression construct was
verified by Sanger sequencing using specific forward 5′TTTGCACCATTCTAAAGAAT3’
and reverse 5′AAACCTCTTACATCAGTTAC3′ sequencing primers.
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2.3. Preparation and Optimization of Chitosan-Coated NSLCs

The NSLC was prepared using high-speed homogenization and contained Precirol
ATO-5, oleic acid, Gelucire, and Kolliphore P188 which were chosen for their regulatory
status (GRAS, USA, FDA), purity, chemical stability, ability to enhance the cationic nano-
formulation of miR-375, and biodegradability of these carriers after miR delivery. Both
lipid and aqueous phases were first heated separately to 60 ◦C on magnetic stir plates
and then mixed under high-speed homogenizing (IKA T25, Digital ULTRA TURRAX®,
IKA, Staufen, Germany) at 20,000 rpm for 10 min, followed by 5 min sonication. Chitosan
solution was used as a final coat for the NSLC. We prepared two concentrations of CS, 0.5%
and 1.5%, and pH was adjusted to 4–5.5 by 1 N NaOH. An equal volume of either 0.5% or
1.5% of CS was added dropwise to the mixture. The formed nano-emulsions were stirred
continuously at 100 rpm overnight at room temperature to achieve 2 positively charged
delivery systems designated as F1 and F2. The nano-formulations were examined by
various factors such as solid: liquid lipid ratio, surfactant concentration, CS concentration,
and CS pH to investigate their impact on PS, ZP, and PDI (Table 1).

Table 1. Nano-formulation factors for optimization CS-coated NSLC.

Lipid (mg) Surfctant (mg) Water
(mL)

Chitosan
(%) pH

Studied Factors

Solid Liquid

Precirol ATO-5 Oleic Acid Gelucire
50/13

Kolliphore
P188

Effect of solid: liquid lipid
ratio

100 300

70 130 10 1.0 4.0

134 266
200 200
266 134
300 100
320 80

Effect of surfactant
concentration

275 275 17 33

10 1.0 4.0
247 247 35 71
194 194 71 129
141 141 106 212

Effect of chitosan
concentration

141 141 106 212 10

0.5

4.0
1.0
1.5
2.0

Effect of pH of chitosan
solution

141 141 106 212 10 1.0

4.0
4.5
5.0
5.5

2.4. Nano-Formulation of miR-375

MiR-375 was loaded into CS-coated NSLC using the self-assembly method. First, stock
solutions of 4 mg/mL cationic NSLC colloids were prepared and filtered with a 0.45 mM
filter to increase their uniformity which were then mixed with plasmid carrying miR-375 at
different weight ratios, vortexed for 2–3 min, and incubated for 30 min at room temperature
to allow the formation of nano-electrostatic complexes.

2.5. Evaluation of Physicochemical Characteristics
2.5.1. Particle Size (PS), Zeta Potential (ZP), and Polydispersity Index (PDI)

The studied samples were diluted with distilled water at a final concentration of
0.006 mg/mL to prevent multiple scattering. Then, they analyzed using dynamic light
scattering with a Zeta-sizer Nano ZS instrument (Malvern Instruments, Worcestershire, UK)
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at a scattering angle of 173◦ and a temperature of 25 ◦C according to the manufacturer’s
recommendation [77]. Each measurement was repeated three times.

2.5.2. Morphological Evaluations

The shape and surface morphology of blank F1, F2, and F1/miR-375, F2/miR-375,
were examined by Transmission electron microscope (TEM) (Joel JEM 1230, Tokyo, Japan).
The diluted samples were negatively stained with a 2% aqueous solution of sodium phos-
photungstate for 5 min and placed on a copper grid for 10 min drying at 25 ◦C.

2.5.3. Fourier Transform Infrared Spectrophotometry(FT-IR)

To confirm the formation of the nano-structure and investigate possible interactions
between the miR drug and nano-formulation components, FT-IR spectra of the excipients,
naked miR-375, blank F1, blank F2, F1/miR-375, and F2/miR-375 were recorded. Absorp-
tion peaks were measured in the region between 450 and 4000 cm−1 using a Cary 630 FT-IR
Spectrometer (Agilent, Santa Clara, CA, USA). All samples were analyzed in their original
forms, while miR-375 was measured in the buffer for miRNA.

2.6. Gel Retardation Assay

The optimal capability of cationic F1 and F2 to conjugate miR-375 was evaluated using
agarose gel (2%, w/v) electrophoresis with ethidium bromide. The electrophoresis was
performed under a current voltage of 120 V for 25 min in a Tris-acetate (TAE) running buffer.
F1/miR-375 and F2/miR375 nano-vectors were prepared at different weight ratios by
varying the concentration of F1 and F2 (1–350 µg) while maintaining a fixed concentration
of miR-375 (1 µg) in all ratios. The conjugated nano-plexes were then incubated at 25 ◦C
for 30 min, followed by combining 15 µL of each suspension with 2.5 µL of loading buffer
(Biolabs, Hitchin, UK). Images were obtained using an ultraviolet transilluminator and a
digital Imaging system (GL 200; Kodak, Windsor, CO, USA), and the results were analyzed.

2.7. MiR-375 Loading Efficiency

The amount of miR-375 loaded into the nano-formulations was determined using
spectrophotometry. The nano-plexes were centrifuged at 10,000 rpm at 25 ◦C, and the
concentration of unconjugated miR-375 in the supernatant was analyzed using a Nanodrop®

ND1000 spectrophotometer (Thermo Scientific, USA) at 260 nm. The conjugation efficiency
(CE) (%) was calculated using a formula previously reported [78]:

(Total weight used of DNA − weight of free DNA)/total weight of DNA × 100

2.8. Lyophilization Study

The two nano-plexes F1/miR-375 and F2/miR-375 were freeze-dried to evaluate
the optimal state for their long-term stability. Cryoprotectants are often added before
lyophilization to produce a stable unimodal size distribution during the stressful lyophiliza-
tion process and the reconstitution of lyophilized formulations [79,80]. We evaluated
several promising cryoprotectants, including Avicel, mannitol, lactose, trehalose, and
sucrose, to determine their impact on the aggregation of the nano-plexes. Before the freeze-
drying process, phosphate-buffered saline (PBS) containing 4% (w/v) cryoprotectant was
added to freshly prepared F1/miR-375 and F2/miR-375. The samples were then frozen at
−80 ◦C for 24 h. and transferred to a freeze dryer under vacuum (Human Lab Instrument
Co., Seoul, Republic of Korea).

To reconstitute the freeze-dried powder, 600 µL of deionized water was added to
30 mg of the powder, except for samples containing Avicel, which were re-dispersed using
5% w/v sodium hydroxide. Finally, all reconstituted samples were subjected to PS and PDI
analysis, and compared to the frozen samples in a freezer at −20 ◦C without the addition
of cryoprotectants. Each sample batch was prepared in triplicate.
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2.9. Stability Studies
2.9.1. Storage (Physical) Stability Study

The stability of the F1/miR375 and F2/miR375 to preserve miR-375 against leakage
was monitored for 3 months and evaluated using DLS analysis. The frozen at −20 ◦C
samples were equilibrated to room temperature before the measurement. The lyophilized
samples with sucrose were reconstituted by adding nuclease-free water, gently mixed,
and then measured. Freshly prepared F1/miR-375 and F2/miR-375 colloids were used as
controls. All measurements were performed in triplicate.

2.9.2. Serum Stability Study

The protective effect and stability of the nano-formulations against degradation by
endonucleases were investigated in the presence of fetal bovine serum (FBS). Each miR-375
nano-vector, with a weight ratio of 250/1 for F1 and 50/1 for F2, was mixed with an equal
volume of 50% v/v FBS. The mixtures were then incubated at 37 ◦C for 24 h and 1 week.
The final samples were loaded onto a 1% agarose gel and subjected to electrophoresis at
120 V for 25 min and observed with an ultraviolet transilluminator and a digital imaging
system. Furthermore, the final samples were tested in HepG2 cells for the presence of green
fluorescence as detailed in the transfection efficiency section.

2.10. HCC Cell Culture

HepG2 cells which attained the major characteristics of HCC, were obtained from
the ATCC bank. It was used as an in vitro model to study the therapeutic effect of the
miR-375 nano-formulations. The cells were cultured in DMEM medium containing 10%
(v/v) heat-inactivated FBS, as well as penicillin (100 U/mL) and streptomycin (100 U/mL,
and maintained in a humidified incubator at 37 ◦C with 5% CO2. After three successive
passages, the cells were seeded at a density of 10,000 cells/well in 200 µL of growth
medium on a 96-well plate and at 80,000 cells/well in 600 µL of growth medium on 8 well
slides for fluorescence microscopy. For flow cytometry, the cells were seeded at a density
of 1 × 105 cells/well in 1000 µL of growth medium in a 24-well plate. After 24 h, the
culture medium was replaced with fresh media. This research was approved with the
corresponding ethical approval code ASU-SCI/BIOC/2023/3/1 by the ethical committee
at the Faculty of Science, Ain Shams University, Cairo, Egypt.

2.11. Transfection Efficiency and Cellular Uptake
2.11.1. Qualitative Assessment by Fluorescence Microscopy

The efficacy of cell transfection and the intracellular release of miR-375 from the nano-
formulations were examined using HepG2 cells. The cells were transfected with a naked
miR-375 vector (1 µg) using a transfection agent Turbofect, F1/miR-375, and F2/miR-375
nano-plexes at weight ratios of (250/1 and 50/1) and incubated for 48 h. Afterward, the
cells were rinsed twice with 600 µL PBS (pH 7.4) and fixed with 600 µL ice-cold methanol.
The resulting images were examined under a fluorescence microscope (Olympus, Tokyo,
Japan) to assess the green fluorescence of the co-expressed GFP marker at excitation and
emission wavelengths of 395 nm and 509 nm, respectively.

2.11.2. Quantitative Assessment by Flow Cytometry

Flow cytometry was employed to quantify the mean fluorescence intensity (MFI). Fol-
lowing 48 h of transfection, with and without pre-treatment with 50% FBS, cells were har-
vested using 150 µL of 0.05% trypsin, washed, and suspended in PBS. The cell suspension
was then analyzed on the FL1 channel for green fluorescence using a fluorescence-activated
cell sorter (FACS) to identify stable miR-375-expressing transfectants (BD Biosciences, San
Jose, CA, USA). The MFI estimated the results compared to the control.

Remarkably, the serum stability of the F1/miR-375 and F2/miR-375 nano-plexes was
assessed as follows:
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HepG2 cells were transfected with miR-375, F1/miR-375, and F2/miR-375 nano-plexes
in the presence and absence of 50% FBS pre-treatment and incubated for 48 h at 37 ◦C and
detected by fluorescence microscopy and flow cytometry as mentioned before.

2.12. Cytotoxicity Assessment

The in vitro anti-HCC activities of miR-375 nano-plexes were evaluated using the
relative cell growth ratio measured by the MTT assay. On the day of transfection, the
medium in untreated cells, which served as a blank control, was replaced with a fresh
serum-free DMEM medium. Other groups were treated with fresh medium containing
different concentrations of blank F1, blank F2 (10–500 µg/mL), 200 ng of naked miR-375,
4 µL of TurboFect transfection reagent (positive control), F1/miR-375 and F2/mir-375
nano-plexes, respectively. Doxorubicin (DOX) at concentrations of 200 ng (the same used
for miR-375) and 11 µg, at which half maximal inhibitory concentration (IC50) is reached,
was considerably used to provide a reasonable comparison [81]. After incubation for
48 h, all cells were washed with 200 µL PBS and replaced with 200 µL of growth medium
containing 20 µL of 5 mg/mL MTT in each well. This was followed by an additional
4 h incubation to allow for the formation of formazan crystals. After the incubation, the
solution in each well was removed, and the crystals were solubilized using 200 µL of
DMSO. The absorbance was measured at 570 nm using a microplate ELISA reader (Biotech
Instruments Inc., Winooski, VT, USA). The percentage of the tumor cell inhibition rate was
calculated using the following formula:

Cell viability (%) = A570 (test)/(A570 (control) × 100

Tumor cells inhibition rate (%) = 100% − cell viability (%)

A570 (test) represents a measurement from the well treated with F1, F2, F1/miR-375,
and F2/miR-375, whereas A570 (control) represents a measurement from the well of control
without treatment.

2.13. Statistical Analysis

All results were presented as mean ± standard deviation based on three repeated
experiments. Statistical analysis of the different groups was conducted using GraphPad
Prism version 8.0.0 for Windows (GraphPad Software, San Diego, CA, USA), and the
one-way ANOVA test or t-test was performed accordingly. A p-value less than 0.05 was
considered statistically significant, while a p-value less than 0.01 was considered very
significant.

3. Results
3.1. HCC Suppressor miR-375 Expression Construct

The purified pre-miR-375 sequence (127 b.p) was successfully cloned in pEGP-miR
cloning and expression vector with approximate size 5000 b.p (Figure 1). The recombinant
miR-375 expression construct was verified by Sanger sequencing.

3.2. Factors That Influence PS, ZP, and PDI of the Nano-Formulations

The two nanoemulsions forming CS-coated NSLCs comprised solid/liquid lipids core
alleviated by interfacial surfactant layers and CS coat. We carefully investigated the impact
of various preparation factors of CS-coated NSLCs as carriers for miR-375 replacement
therapy in HCC. These factors included the ratio of solid to liquid lipids, the concentration
of surfactant, and the concentration and the pH of CS, as listed in Table 2. Precirol ATO-5
and oleic acid were used as the solid and liquid lipids, respectively to create a stable nano-
structured colloid. There was a highly significant impact on the nano-lipid size by varying
their included ratio in the formulation (p < 0.001). Meanwhile, formula-C (1:1) was selected
for further investigation of other factors due to its smallest PS, strongest ZP, and modest
PDI among all.
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Figure 1. MiR-375 vector expression construct. (A) Lane 1 represents the DNA marker (5000–100 b.p),
and lane 2 represents the PCR purified pre-miR-375 sequence (127 b.p). (B) Lane 1 represents the
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To prevent agglomeration and reduce the surface energy of nanolipids, we used
Gelucire 50/13 and Kolliphore P188 as surfactants in a fixed ratio of 1:2. These surfac-
tants have different Hydrophile-Lipophile Balance (HLB) values: 11 for Gelucire 50/13
and 29 for Kolliphore P188. Gelucire 50/13 contains both hydrophobic and hydrophilic
components, such as PEG mono- and diesters with palmitic (C16) and stearic (C18) acids,
glycerides (20%), and PEG esters (80%). Kolliphore® P 188 is a non-ionic amphiphilic
copolymer with hydrophobic polyoxypropylene and hydrophilic polyoxyethylene. We ob-
served a significant decrease in PS with higher surfactant concentration (one-way ANOVA,
p < 0.001). Therefore, formula-J with 3% surfactants was selected to continue the investi-
gation of other factors because it had the smallest PS and PDI. Interestingly, decorating
NSLC with different concentrations of CS had no significant influence on PS but showed a
strong positive surface charge (p < 0.05). Formula-K was then selected for the pH study,
and the result showed that the ZP of the NP decreased significantly from 28.03 ± 2.33 mV
to 9.28 ± 4.12 mV when the pH of the CS solution increased from 4 to 5.5 by the addition of
1N NaOH (p < 0.001). Finally, we selected formula-P with 0.5% CS and formula-M with
1.5% CS for further overall study based on their modest PS and strongest ZP, and they
represented the optimized cationic NSLCs which were labeled as F1 and F2, respectively.

3.3. Nano-Formulation of miR-375

The cationic F1 and F2 could be easily loaded with anionic double-stranded miR-375
to form two electrostatic nano-plexes bearing miR-375; F1/miR-375 and F2/miR-375.

3.4. Results of Physicochemical Characterization
3.4.1. DLS Results

Table 3 summarizes the PS, ZP, and PDI of F1/miR-375 and F2/miR-375 compared to
F1 and F2 blank formulations. Results showed that the PS of F1/miR-375 and F2/miR-375
significantly increased compared to blank formulations due to miR-375 conjugation on
the surface of cationic NSLCs (p < 0.001). Meanwhile, the ZP of F1/miR-375 decreased to
7.7 ± 1.02 mV compared to 32.5 ± 3.86 mV for the blank F1, and the ZP of F2/miR-375
decreased to 5.8 ± 1.34 mV compared to 61.8 ± 2.74 mV for the blank F2, indicating that
miR-375 was well conjugated on the surface of both F1 and F2 due to the negatively charged
miR-375. Additionally, there was a slight change in the PDI of nanoplexes compared to
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blank F1 and F2. According to this overall data, blank F2 represents the optimal formula
to nano-formulate miR-375 due to its increasing CS concentration which produced more
positive charge on its surface.

Table 2. Factors influence particle size (PS), zeta potential (ZP), and polydispersity index (PDI) of the
of the CS coated NSLCs (n = 3).

Factors

Ratio
(Solid:
Liquid
Lipid)

Formulation
Code

PS
Z-Average

(nm)

ZP
(mV) PDI

Effect of
Precirol:

Oelic acid
ratio

1:3 A 243.22 ±
10.86 50.46 ± 3.33 0.48

1:2 B 157.81 ± 5.16 38.72 ± 6.80 0.45
1:1 C 116.72 ± 3.10 43.25 ± 4.71 0.42
2:1 D 199.43 ± 8.14 31.33 ± 2.40 0.17

3:1 E 246.06 ±
11.72 52.17 ± 5.34 0.55

4:1 F 137.84± 8.03 59.41 ± 6.61 0.43

Effect of Gelu-
cire/Kalliphore

concentra-
tion (w/w)

0.5% G 138.92 ± 9.67 46.72 ± 3.33 0.35
1.0% H 130.53 ± 5.02 46.56 ± 4.80 0.46
2.0% I 116.76 ± 3.10 43.28 ± 4.71 0.42
3.0% J 101.03 ± 6.14 43.71 ± 3.40 0.23

Effect of
chitosan con-

centration
(w/w)

0.5% K 89.45 ± 9.67 45.91 ± 4.03 0.31
1.0% L 101.02 ± 6.14 43.75 ± 3.40 0.23
1.5% M 100.27 ± 3.10 61.83 ± 2.74 0.40
2.0% N 103.23 ± 5.24 48.34 ± 5.01 0.41

Effect of
Chitosan

solution pH

4.0 O 98.17 ± 8.65 28.03 ± 2.33 0.43
4.5 P 65.24 ± 6.02 32.54 ± 3.86 0.25
5.0 Q 68.22 ± 2.13 16.57 ± 3.04 0.22
5.5 R 77.62 ± 6.01 9.28 ± 4.12 0.19

Table 3. Physico-chemical characterization of the two nano-plexes bearing miR-375 (n = 3).

Characterization PS (nm) ZP (mV) PDI

F1 (blank) 65.2 ± 6.02 32.5 ± 3.86 0.25
F1/miR375 * 207.33 ± 8.08 7.7 ± 1.02 0.37

F2 (blank) 100.2 ± 3.10 61.8 ± 2.74 0.40
F2/miR375 ** 243.12 ± 9.33 5.8 ± 1.34 0.31

* F1/miR375 weight ratio 250:1. ** F2/miR375 weight ratio 50:1. The results are presented as means of triplicate
reading of each CS-coated NSLC and presented as mean ± standard deviations (n = 3).

3.4.2. TEM Results

Morphology images of blank F1, blank F2, F1/miR375, and F2/miR375 were inves-
tigated by TEM as shown in Figure 2. The images indicated that the PS of the NPs was
consistent with the measurements obtained by Zeta-sizer. For instance, all the NSLCs
exhibited spherical shapes and miR-375 was observed to be conjugated on their surfaces.
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(D) F2/miR-375 weight ratio 50:1. Magnification is 100,000×.

3.4.3. FT-IR Results

Analysis of FT-IR spectra showed clearly the excipients were well integrated into the
two nano-formulations, F1 and F2. However, there is no interaction between the miR-375
drug and F1 or F2 (Figure 3). Oleic acid, an unsaturated fatty acid, exhibited a characteristic
peak at 1707.2 cm−1, corresponding to the C=O stretching vibration of the carboxylic acid
group. Kolliphore 188, a non-ionic surfactant and block copolymer of ethylene oxide
and propylene oxide, showed characteristic peaks at 2876.2 cm−1, corresponding to the
stretching vibration of the CH2 groups in the molecule, at 1465.9 cm−1 for the bending
vibration of the CH2 groups, and several peaks around 1100–1000 cm−1, corresponding
to the stretching vibrations of the C-O and C-C bonds. Gelucire, a mixture of mono-, di-,
and triglycerides of fatty acids, displayed peaks around 2920–2850 cm−1 for the stretching
vibration of the CH2 groups in the fatty acid chains. A peak at 1733.5 cm−1 corresponded to
the C=O stretching vibration of the ester groups, and a peak at 1102.7 cm−1 corresponded
to the C-O-C stretching vibration of the glycerol backbone. Furthermore, CS is a natural
poly (amino saccharide) derived from the deacetylation of chitin, consisting predominantly
of unbranched chains of (1→4)-2-acetoamido-2-deoxy-d-glucose. The previously reported
spectra of CS showed characteristic peaks at 1418.4 cm−1 related to the -NH bending
vibration, at 3362 cm−1 for the intramolecular hydrogen bonds of O-H stretching vibration,
and at 1645.8 cm−1 indicating the presence of C=O stretching of amide I [82]. Consistently,
both F1 and F2 exhibited similar bands to CS, indicating the coat of CS on their surfaces. In
addition, the absorption peaks of F1/miR-375 and F2/miR-375 in blue at 3400 cm−1 and
3200 cm−1 showed no significant interference with each nano-formulation, indicating the
maintained structure after conjugation.

3.5. Optimization of miR-375 Loaded into the CS-Coated NSLCs

The conjugation efficiency of the two CS-coated NSLC/miR-375 was investigated
by electrophoretic mobility. Gradual miRNA retardation was observed when the weight
ratio (µg/µg) was lower than 250/1 for F1/miR-375 and lower than 50/1 for F2/miR-375
nano-vectors. When the weight ratio was 250 or above for F1 and 50 or above for F2,
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the nano-vectors were retarded completely (remaining in the well and had no movement
within the gel) (Figure 4).
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3.6. MiR-375 Conjugation Efficiency

The conjugation efficiency of F1/miR-375 and F2/miR-375 nano-plexes was evaluated
using a Nanodrop spectrophotometer (Table 4). At a weight ratio of 250 or above for F1
and 50 or above for F2, the percentage of conjugation efficiency reached 100%. This result
suggested that miR-375 was fully incorporated into both F1 and F2 due to their excellent
loading efficiencies.

Table 4. Conjugation efficiency of the nano-plexes based on Nanodrop assessment (n = 3).

F1/miR-375 Conjugation (%) F2/miR-375 Conjugation (%)

1:1 70.39 1:1 92.50
20:1 75.22 20:1 98.13
50:1 80.16 50:1 100
80:1 85.57 80:1 100
100:1 90.60 100:1 100
150:1 93.79 150:1 100
200:1 95.90 200:1 100
230:1 97.0 230:1 100
250:1 100 250:1 100
300:1 100 300:1 100
350:1 100 350:1 100

3.7. Lyophilization Study

Table 5 shows the effect of different cryoprotectants on the PS and PDI of lyophilized
NSLCs/miR-375. Compared to the freshly prepared colloids, the lyophilized NSLCs/miR-
375 had much larger PS. Meanwhile, Avicel increased the freeze-drying time and aggrega-
tion of nano-plexes due to inter-and intra-molecular hydrogen bonding, resulting in PS of
2320.31 ± 1103.20 nm for F1/miR-375 and 2656.22 ± 1066.04 nm for F2/miR-375, which
were 10 and 17 times higher than the freshly prepared colloid, respectively. In comparison,
the use of sucrose resulted in shorter freeze-drying process times and significantly smaller
PS of 219.15 ± 9.85 nm in F1/miR-375 and 283.22 ± 7.06 nm in F2/miR-375 compared
to the lyophilized samples with other cryoprotectants (p < 0.001). However, there was
no significant difference in PS compared to the freshly prepared colloid in F1/miR-375
and F2/miR-375 (p > 0.05). Our finding is consistent with what was previously reported
about sucrose’s ability to reduce the diffusion coefficient of water molecules and the rate
of ice crystal growth [83]. Also, its stable amorphous form protects the NPs in a “pseudo-
hydrated” form via hydrogen bonding, which provides a shield from ice crystals that
may damage the NPs during lyophilization and later during re-dispersion [84]. The pro-
cessing time of trehalose was longer than that of sucrose because trehalose does not have
internal hydrogen bonding and needs to absorb water molecules from the surrounding
environment due to its hygroscopicity, while Avicel possesses an affinity for water from
the two hydroxyl dominant sides in its crystalline structure, and the other two sides of
crystals are wetted by lipid NPs [85–87]. The PS and PDI of the reconstituted lyophilized
F1/miR-375 and F2/miR-375 were then compared to samples frozen at −20 ◦C. The results
showed no significant difference in PS between the frozen samples and the freshly prepared
F1/miR-375 and F2/miR-375 colloid (p < 0.05). Collectively, our findings suggested that
freezing miR nano-plexes in a regular freezer at −20 ◦C provides an alternative storage
option that is less stressful than lyophilization, which can be complex and expensive.
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Table 5. The impact of several cryoprotectants on PS and PDI of lyophilized F1/miR-375 and F2/miR-
375 nano-plexes compared to freshly prepared F1/miR-375 and F2/miR-375 colloids, as well as those
frozen at −20 ◦C (n = 3).

Cryoprotectants Freeze-Drying Time
(h)

PS (nm) PDI

F1/miR-375 F2/miR-375 F1/miR-375 F2/miR-375

Avicel 6 2320.31 ± 1103.20 2656.22 ± 1066.04 0.42 0.46
Mannitol 6 872.27 ± 103.14 629.25 ± 81.53 0.58 0.53
Lactose 6 445.72 ± 110.03 574.74 ± 104.81 0.44 0.57

Trehalose 5.5 303.31 ± 79.13 330.50 ± 103.71 0.17 0.49
Sucrose 3.5 219.15 ± 9.85 283.22 ± 7.06 0.40 0.41

Freeze at −20 ◦C - 251.34 ± 3.38 264.65 ± 7.46 0.43 0.56

Freshly prepared colloid;
CS-coated NSLCs/miR-375 - 207.33 ± 8.08 243.12 ± 9.33 0.37 0.31

3.8. Stability Studies
3.8.1. Storage Stability Study

The storage stability of lyophilized and frozen at −20 ◦C nano-plexes was also investi-
gated by changes in PS, ZP, and PDI for 3 months as shown in Table 6. The results showed
that PS did not change significantly in both lyophilized and frozen formulations over the
3 months for F1/miR-375 and F2/miR-375 (p > 0.05). However, the lyophilized samples lost
their positive surface charge, while the frozen samples were able to maintain their positive
charges and miR-375 leakage was not observed throughout 3 months. The loss of positive
surface charge in lyophilized nano-plexes might be attributed to the destabilization of the
CS polymer chains, which occurred during the lyophilization process. This loss of positive
charge and more neutral surface charges around lyophilized nano-plexes during storage
might lead to aggregation due to the absence of an inter-particle repulsive force [88,89].
On the other hand, the frozen nano-plexes might have been able to maintain their positive
charges due to the preservation of the polymer chains in their native conformation. Addi-
tionally, a narrowing of the PDI was observed after 3 months, indicating the presence of
more uniform larger NPs. Overall, the nano-plexes remained stable with slightly larger
PS and reduced ZP after 3 months and they exhibited good ability to reduce miR-375
expulsion during this storage period. Based on these findings, it is recommended to store
the NLSC/miR375- nano-plexes in a freezer at −20 ◦C without lyophilization due to several
advantages, including no applied external stress on the NPs under freeze-drying process,
the availability and easy accessibility of refrigerators in research facilities.

Table 6. Three-month stability test of the lyophilized miR-375 nano-plexes (sucrose) (A), and frozen
at −20 ◦C miR-375 nano-plexes (B), compared to the freshly prepared miR-375 nano-plexes colloids
in terms of PS, ZP and PDI (n = 3).

Duration PS (nm) ZP (mV) PDI

F1 F2 F1 F2 F1 F2
A B A B A B A B A B A B

Fresh NSLC
/miR375
Colloid

207.33 ± 8.08 243.12 ± 9.33 5.8 ± 1.34 7.7 ± 1.02 0.36 0.31

Day 7 248.66
± 6.35

281.25
± 2.31

279.15
± 8.95

289.47
± 9.51

4.33
± 6.01

7.36
± 2.03

5.36
± 3.02

5.34
± 2.50 0.41 0.36 0.54 0.51

1 month 270.05
± 5.56

269.36
± 5.87

286.44
± 4.36

300.89
± 5.68

3.24
± 3.02

5.22
± 6.01

4.51
± 4.11

4.97
± 1.57 0.37 0.42 0.51 0.45

2 month 258.36
± 7.26

274.32
± 3.02

300.57
± 3.65

302.27
± 4.53

0.36
± 2.03

4.03
± 4.23

2.34
± 1.98

5.03
± 1.11 0.39 0.39 0.43 0.41

3 month 280.05
± 8.32

285.61
± 5.03

305.78
± 2.98

310.39
± 4.56

−4.56
± 3.01

4.39
± 0.42

−2.09
± 1.22

3.85
± 2.22 0.40 0.45 0.66 0.58
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3.8.2. Serum Stability Study

To investigate the stability of the nano-plexes in a complex physiological environment
and assess the ability of the studied nano-carrier to protect miR-375, F1/miR-375 and
F2/miR-375 were incubated with 50% FBS for short (24 h) and long intervals (1 week) at 37
◦C. The samples were then analyzed by agarose gel electrophoresis, as shown in Figure 5A,B.
Naked miR-375, which showed a faint band, was severely degraded by RNase present in
the FBS after 1 week, as indicated by the disappearance of the band in lane 1 of Figure 5B.
In contrast, clearer bands with brightness were observed in lanes 2 and 3, representing
F1/miR375 and F2/miR375, at both 24 h and 1 week. There was clear gel retardation of
the F1 and F2 nano-vectors compared to free miR-375, indicating that the two CS NSLCs
were maintained intact during the incubation period and effectively protected the miR-375
from degradation by serum endonucleases. This finding will be further confirmed through
qualitative analysis using fluorescence microscopy and quantitative analysis using flow
cytometry.
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Figure 5. Analysis of serum stability using gel retardation. (A) After 24 h. of incubation in 50% FBS.
Both nano-plexes showed no effect of serum, respectively. (B) After 1 week of incubation with 50%
FBS. Lane 1 represents 1 µg of naked miR-375, lane 2 represents F1/miR-375 with a weight ratio
of 250:1, and lane 3 represents F2/miR-375 with a weight ratio of 50:1. There is a verified serum
stability of both nano-vectors and there is a clearer gel retardation of F2 nano-vector which confirms
its stability even in presence of serum.

3.9. Transfection Efficiency
3.9.1. Cellular Uptake and Intracellular Localization

The cellular uptake and intracellular localization of HepG2 cells was examined using
fluorescence microscopy, to investigate the effectiveness of naked miR-375, F1/miR-375,
and F2/miR-375 in delivering miR-375 into the cells (Figure 6A). The results showed that
miR-375 in both F1 and F2 demonstrated a higher degree of transfection efficiency and
re-expression of miR-375 compared to cells treated with naked miR-375. This was indi-
cated by the greater intensity of the green fluorescent protein (GFP) marker in cells treated
with F1/miR-375 and F2/miR-375. More interestingly, the results of both fluorescence
microscopy (Figure 6B) and flow cytometry (Figure 7) together confirmed no significant de-
crease in the uptake of miR-375 after 24 h of contact with serum endonucleases. Meanwhile,
both F1/miR-375 and F2/miR-375 even in the presence of 50% FBS pre-treatment could
also be successfully absorbed by cells and displayed a stronger MFI than free miR-375.
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Figure 6. (A) Fluorescence micrographs of CS-coated NSLCs with miR-375 in HepG2 cells. (B)
Following incubation in 50% FBS for 24 h and treatment in HepG2 for 48 h at 37 ◦C. (I) Control
cells without treatment, (II) Transfected cells by naked miR-375 vector, miR-375 re-expression in
cells was revealed by the co-expressed GFP, (III) Transfected cells by F1/miR-375 at ratio 250/1,
and (IV) Transfected cells by F2/miR-375 at ratio 50/1. All of the naked miR-375, F1/miR-375, and
F2/miR-375 were localized in the cytoplasm (Magnification: 60×). The scale bar is 50 µm in all
images.
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Figure 7. The mean fluorescence intensity (MFI) was measured in the presence and absence of 50%
FBS. The measurements were taken for miR-375 (positive control), F1/miR-375 (at a ratio of 250/1),
and F2/miR-375 (at a ratio of 50/1). The measurements were also taken for miR-375-FBS, F1/miR-
375-FBS, and F2/miR-375-FBS to confirm the serum stability of the two nano-plexes compared to
naked miR-375.

3.9.2. Quantitation of Cellular Uptake

Likewise, fluorescence microscopy data and the flow cytometry result (Figure 7)
showed that cells transfected with F2/miR-375 nano-plex significantly exhibited the high-
est mean fluorescence intensity (MFI) than cells treated with free miR-375 (* p < 0.001).
Meanwhile, groups treated with F1/miR-375 and F2/miR-375 had 1.9–2.8 times higher MFI
than naked miR-375. These results confirmed that both F1/miR-375 and F2/miR-375 were
far superior to the Turbofect transfection reagent in delivering miR-375. We concluded that
these nano-formulations could be a promising tool for delivering miR-375 and enhancing
its endogenous re-expression while maintaining its elevated concentration to exert its
pharmacological action with sustained release and stability in treated cells.

3.10. In Vitro Anticancer Efficacy

The cytotoxicity rate of HepG2 cells after 48 hrs. of transfection was investigated based
on MTT assay. Both F1 and F2 nano-formulations significantly exhibited low cytotoxicity,
with 2% to 13.7% for F1 and 1.2% to 12.2% for F2 at a concentration of 10–500 µg/mL in
HepG2 cells, and the IC50 was not reached in both cases (Figure 8). Thus, these data sug-
gested that both CS-coated NSLCs can be applied as safe carriers for miR-375 nano-delivery.
Additionally, the cytotoxicity was found to decrease with increasing CS concentration in
the nano-formulation. Accordingly; F2 had a higher positive charge but less toxic effect on
the tested cells, making it a more satisfactory formula in terms of safety, and was selected
as the optimal formula.
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Figure 8. Investigation of non-cytotoxicity impact of empty F1 and F2 formulations compared to
negative control. While the anti-cancer activity of nano-plexes F1/miR-375, and F2/miR-375. Naked
miR-375 and Doxorubicin were also included as positive controls—treatment after 48 hrs. in HepG2
cells. * p > 0.05; ** p < 0.001.

In addition, as shown in Figure 8, the tumor suppression function of miR-375 in HCC
has been demonstrated. For instance, miR-375 either free or nano-formulated via F1 or
F2 significantly impaired HepG2 cell growth by 36.4%, 39.8% and 52.5%, respectively
(** p < 0.001). Therefore, the more acidic formula F2 delivered miR-375 could enhance the
highest cellular uptake and exhibit more cytotoxicity in transfected cells compared to miR-
375 alone or DOX. More importantly, it significantly exceeded the IC50 with 1.4-fold higher
cytotoxicity compared with free miR-375. These results collectively confirmed that miR-375
delivered by both F1 and F2 in treated cells was significantly showed excellent uptake
efficiency and showed a drastic increase in miR-375 and inhibition of its down-stream
oncogenic pathways and involved targets.

4. Discussion

HCC is the second most lethal tumor globally and most, if not all, of the currently
available therapeutics still do not meet the intended outcomes and have restrictive tox-
icities [1–3]. Thus, the eradication and cure of this aggressive tumor necessitates the
development of novel therapies and efficient delivery systems.

Tumor suppressor miRs have been intensively reported to hold promise as powerful
therapeutic agents for a broad variety of tumors including HCC [10,12,15,18,90–92]. This
is due to their ability to specifically silence the expression of cancer-related genes and
pathways that underlie tumor formation and progression. Accordingly, miRs exert their
regulatory effects by nearly perfect base pairing with target genes leading to mRNA
cleavage or translational repression [5,7].

Growing evidence has indicated that miR-375 is one of the most down-expressed
miRs and its downregulation crucially switches on the development and progression of
many malignant tumors including HCC [11–13,21–23]. While its overexpression has been
recognized to predominantly suppress all the core hallmarks of HCC [24,27–29]. The in-
volvement of miR-375 in each of these hallmarks proceeds by directly targeting several
important oncogenes-driven hepatocarcinogenesis like AEG-1, MDR1, P-gp, YAP1, ATG7,
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ATG14, Bcl-2, SIRT5, and AKT/Ras [14,22,25,30,93]. Therefore, miR-375 has been confirmed
to simultaneously play a strong anti-HCC effect. The clinical translation of miRNA therapy
mainly requires the development of a specific delivery system since free miRNA cannot enter
tumor cells efficiently, and may be vulnerable to nuclease degradation and poor endosomal
release [31,32]. In this regard, a variety of viral and non-viral carriers have been reported
for miRNA delivery in cancer cells [33,34]. However, nano-carriers have been largely per-
ceived increasing development over their viral counterparts due to their huge advantages as
functional vehicles [18,35–39]. Among this plethora of nano-carriers, LBNPs have shown
great improvement in the treatment outcomes of anti-neoplastic agents [94,95]. This backs
to LBNPs large-scale production, superior biocompatibility, lower immunogenicity, and
non-toxicity due to their biodegradation, high drug loading, tumor targeting, and rapid
cellular uptake [96,97]. Interestingly, LBNPs have demonstrated potential capabilities to
encapsulate, deliver, and stabilize therapeutic miRs against enzymatic degradation and
prolong their circulation half-life time as well [40]. Thus, miRNA-based therapies delivered
with LBNPs, namely nano-miRNAs, represent promising anti-tumor strategies [15–19,98].

NSLCs have been extensively shown to possess various advantages such as enhanced
physical stability over time, higher drug loading capacity, negligible drug leakage, con-
trolled release due to the diffusional barrier of the solid lipid nanostructure, and long
metabolic cycles [99]. Furthermore, the bio-distribution of NSLCs has been easily modu-
lated by different surface modifications. Thereby, they could achieve site-specific targeting
of the tumors for better efficacy and reduced dose-related toxicity [43,54,100–102].

Various nano-carriers have been developed for enhancing HCC control by thera-
peutic miR-375. Examples included fabrication of cationic lipid-coated cisplatin/miR-
375 NPs [103], lipid-coated hollow mesoporous silica and doxorubicin (DOX)/miR-375
NPs [104], DOX and miR-375 co-loaded into lipid-coated calcium carbonate NPs [105],
sorafenib (SOR) and miR-375 were co-loaded into lipid-coated calcium carbonate NPs [106],
DOX and miR-375 were co-delivered by liposomes [107]. All these miR-375 NPs acted as
potential therapeutic agents for HCC cells by the significant increase in tumor uptake and
inhibiting all malignant characteristics. Nevertheless, these NPs were found to have certain
restrictive limitations like short-term effects, immunogenicity, and toxicity [12]. Also, the
specific regulatory mechanism of miR-375 in the presence of these NPs is still unsatisfac-
tory [108]. Therefore, there is an urgent need to continuously optimize the delivery vehicles
and dose of this miR for maintenance of its therapeutic properties.

Accordingly, the importance of miR-375 replacement therapy for HCC attracted our
focus to the further development of highly potent and scalable delivery strategies that
help miR-375 to elicit stronger anti-tumor effects. Our study is the first to successfully
fabricate two cationic NSLCs for transfer of miR-375 vector into HepG2 cells and proved
its therapeutic efficiency. Initially, we optimized its nanostructures which are composed of
solid/liquid lipids and CS coats on surfaces to enhance the biocompatibility and cationic
properties which ensure the electrostatic linkage with the loaded miR-375 and importantly
safeguard it against degradation.

It has been reported that HLB value, melting point, and solubility of lipids are the
main parameters of its selection for NSLC preparation [100]. Precirol ATO-5 and oleic
acid were the solid and liquid lipids that formulated our NSLC at a ratio of 1:1 and
dramatically had the smallest PS, strongest ZP, and modest PDI. Whereas when the content
of either lipid was exceeded, the PS increased abruptly (Table 2). Our explanation for the
PS increase is in agreement with the previous report showing the expulsion of the excess
lipid [109]. Considerably, it has been reported that the HLB value and optimized amount
of the surfactant relative to the lipid in NSLC preparation are necessary for its selection.
Meanwhile, its HLB value should be equal to or greater than the required HLB value of lipid
such that its value should be more than 10 [110,111]. In addition, it is commonly used by
only 1–5% to stabilize the dispersion of NSLC by minimizing its aggression and importantly
preventing the cell death effect [109]. In line with this, for our two NSLCs, we used 3%
surfactants; Gelucire 50/13 and Kolliphore® with HLB values 11 and 29. Interestingly, both
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surfactants could provide optimized enhancement on the surface of each NSLC which
allowed its binding to the nano-lipid chains and ultimately there was an overall reduction
in PS, an increase in surface area, and an improvement of the biocompatibility via stable
ZP and PI.

Chitosan (CS), which is a natural and cationic polysaccharide, has been utilized by
0.5% and 1.5% to coat the surface of our NSLCs and gain benefit from its reported biocom-
patibility, biostability, biodegradability, target specificity [62,66,69,112–117]. Moreover, as
we presented its promoted ability to form electrostatic nano-complex with miR-375 in the
presence of optimized acidic pH enhance its intracellular stability as well.

Various factors have been studied by optimizing the amount of lipids and CS in our
prepared NSLCs to improve their properties [118–120]. Although all nano-formulations
had reasonable properties (Table 2), F1 and F2 were specially chosen for this study because
they displayed the best physio-chemical properties, stability, conjugation efficiency, and
importantly the desired cell death activity by miR-375 in target HepG2 cells.

According to Table 3, the two CS-coated NSLCs, F1 and F2, had PS 65.2 nm and
100.2 nm with a ZP of 32.5 mV and 61.8 mV, respectively, and accepted PDI which indicated
no agglomeration of both cationic nano-formulations due to the increased repulsive force
between particles and their spatial blocking as well. Besides, both F1 and F2 were found
to exhibit spherical structures as shown in Figure 2 of TEM analysis. Also, it indicated
the nanostructure emulsion of lipid and aqueous compartments which enabled the easy
loading of miR-375.

The overall physicochemical data suggested that both F1 and F2 could nano-formulate
the anionic miR-375 and stabilize its conjugation efficiency as well via electrostatic inter-
action. For instance, The PS, ZP, and PDI of F1/miR-375 were 207.3, 7.7, 0.37 and that of
F2/miR-375 was 243.17, 5.8, and 0.31. In addition, these characterizations were confirmed
by TEM and FTIR. The results of the electrophoretic mobility indicated that miR-375 was
retarded with an increasing amount of CS 0.5% in F1 and 1.5% in F2, and both remained
at the top of the gel at a weight ratio of 250 and 50, suggesting that F1 and F2 formed
nano-plexes completely with miR-375 at those ranges (Figure 4). In addition, the impor-
tance of surfactants in F1 and F2 nano-formulations was in agreement with the Barzegari
et al. (2019) study, which showed that PEG blocks can partially affect the lack of motion
of the miR nano-plexes along the gel [121]. In addition, the formed nano-plex was more
efficient in F2 with a higher percentage of CS and this may be due to the formation of more
entanglements between CS and the double-stranded miR-375 vector. Furthermore, the sig-
nificantly high CE, which reached 100% (Table 4) at the mentioned weight ratios, suggested
that both F1 and F2 are highly secure nanocarriers to simultaneously nano-formulate the
cargo and thus prevent its possible leakage. This finding was confirmed by the stability
test of F1/miR-375 and F2/miR-375 nano-plexes which could attain longer storage stability
up to 3 months (Table 6). Remarkably, these storage stability results indicated the potential
ability of our two CS-coated NSLCs to overcome the main difficulty of SLNs in terms of the
polymorphic modification that occurs on its crystal structure during storage time [51,53].
Correspondingly, our NSLCs could reduce polymorphic modifications, and subsequently
increase miR-375 loading capacity and stability during 3 months of storage. Also, they
could stabilize PS, and shape, and prevent particle aggregation.

It has been shown that the colloidal stability of NPs in complex physiological media is
very challenging and the miRNA is labile in serum [32,122]. Accordingly, the representative
protective effect of our fabricated CS-coated NSLCs on miR-375 plasmid from endonuclease
degradation and maintaining its stability were examined by subjecting F1/miR-375 and
F2/miR-375 to 50% FBS as a model enzyme. Then, Gel electrophoresis confirmed that
these nano-plexes are stable and well tolerated even after 1 week (Figure 5). Additionally,
there was observed fluorescence in treated HepG2 cells with these nano-plexes which
consequently verified the integrity of miR-375 with time (Figure 6).

The importance of the ingredients used in our NSLCS has been noted in previous
reports as we discussed here. Precirol is a surface-active partial glyceride that facilitates
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emulsification and the formation of a solid matrix with a perfect lattice [123]. In addition,
its reported formulations showed large PS due to the large spaces among its particles
and increasing viscosity. Moreover, its formulations exhibited a negative charge due to
the liberation of anionic fatty acids [124]. Various SLNs consisting of Precirol had been
developed to form lipoplexes with DNA plasmids and chemotherapeutics for their delivery
and mediating cytotoxic effects in cancer cells. However, they were found to be insufficient
for drug loading or exhibited drug expulsion [125–128].

Up on Precirol incorporation with liquid lipid, massive crystal-order disturbances have
been created sufficient to accommodate drug molecules. This desirable change is consistent
with our NSLCs which had smaller PS and moderate polarity, resulting in increasing
the miR-375-loading capacity (Table 3). In addition, these NSLCs are characterized by
high viscosity and strong interfacial film due to the presence of Precirol and thereby they
could control the release capability of miR-375 to sustain its long-term effect in target cells.
Thus, our study is consistent with that of Chen et al.’s (2010) study which showed the
success of NSLC containing Precirol in increasing lovastatin loading efficiency, delivery,
and therapeutic effects [123].

Oleic acid (OA), an unsaturated fatty acid, has been reported to be included in the
content of various NSLCs. These nanocarriers have been shown to exhibit a dramatic
decrease in PS by increasing the OA amount and they significantly enhanced the delivery
and transfection efficacy for both siRNA and miRNA [129]. Meanwhile, this study by Wang
et al. (2013) fabricated LBNP containing OA which efficiently delivered miR-122 in HCC
cells. Another NSLC consisting of OA had successfully co-delivered DOX and SOR and it
induced immunogenic cell death and tumor microenvironment (TME) remodeling [129].
Additional galactosylated NSLC containing OA had been demonstrated as a targeted
delivery of 5-fluorouracil (5-FU) in HepG2 cells. This NSLC had PS 139.2 nm, ZP–18 mV,
loading efficiency of 34.2% and importantly it caused cytotoxic effects by reducing the 5-FU
dose to half its concentration [109]. In comparison with all these reports of effective NSLCs,
our cationic NSLCs achieved better CE, long-term physical stability, transfection efficiency,
sustained stability, and stronger anti-cancer activities of F1/miR-375 and F2/miR-375 nano-
plexes in target HepG2 cells. All these effects mainly refer back to the nanostructures of F1
and F2.

Lyophilization has the advantage of enhanced stability of pharmaceutical nano-
products in a freeze-and-dry state [130]. However, it often requires the addition of cryopro-
tectants to prevent NP aggregation [79,80]. In line with this, our study showed that the
lyophilized F1/miR-375 and F2/miR-375 in the presence of sucrose exhibit the smallest
PS of 283.2 ± 7.063 nm and 219.1 ± 9.854 nm, modest ZP, and PDI, respectively compared
to lyophilized samples in presence of other cryoprotectants. Thus, sucrose serves as the
best cryoprotectant, and its lyophilized samples were very similar to the non-freeze-dried
colloid. Unexpectedly, we also presented for the first time that the NSLC/miR-375 nano-
plexes could be more stable and easier to store by freezing at −20 ◦C based on the obtained
physicochemical properties which are much closer to the fresh colloid (Table 6).

Regarding cellular uptake, our finding is consistent with all transfection efficiency
validation [104,131]. Meanwhile, the cationic F1 and F2 nano-formulations could deliver
the therapeutic payload to target cells in a controlled and stabilized manner. Accordingly,
the green fluorescence which is predominately distributed in the cytoplasmic region of
F1/miR-375 and F2/miR-375 treated cells compared with free miR-375 indeed referred to
the enhanced internalization of miR-375, its efficient release and upregulated expression of
its mature form (Figure 6A).

Moreover, there was a significant increase in MFI in cells treated with F1/miR-375
and F2/miR-375 nano-plexes compared to those treated with free miR-375 (* p < 0.001)
(Figure 7). More importantly, both nano-plexes could protect miR-375 against degradation
and maintain its nano-delivery and re-expression in treated cells. Meanwhile, following
24 h incubation with 50% FBS and cell transfection, there was observed fluorescence and no
significant change in MFI in the treated cells compared to those treated with free miR-375.
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Safety is a critical issue in the development of miR therapeutics and cationic LBNP
delivery has been debated due to its probable cytotoxicity [132,133]. However, our prepared
blank; F1 and F2 significantly exhibited negligible cytotoxicity in HepG2 treated cells even
at a high concentration of 500 µg/mL, in comparison with negative control (Figure 8).
Interestingly, at this high concentration, the determined % of cytotoxicity of F1 and F2
(13.7% and 12.2%) were significantly lower than that of chitosan-lipid nanocarrier (nearly
15%) in a variety of tumor cells [134]. Our obtained results back to the strategic selection of
NSLC components and its optimal combination with M.Wt CS which alone was shown to
need a very high concentration of 1850 µg/mL to reach IC50 in HepG2 cells [82]. Overall,
our developed cationic nano-formulations are unlike the previously reported ones [135,136]
by exhibiting diminished cytotoxicity and biodegradation fate in target cells.

Since proliferation is the most distinctive and indispensable hallmark of cancer cells
to maintain their viability [137,138], therefore, we were interested in evaluating the anti-
proliferative effects of our two miR-375 nano-plexes in HepG2 cells. Excitingly, we showed
for the first time the exact percentage of cell viability inhibition by F1/miR-375 and F2/miR-
375 nano-plexes compared with free miR-375, respectively (** p < 0.001) (Figure 8). In
addition, this free miR-375 was found to significantly suppress cell proliferation better than
previously reported [26]. Considerably, the enhanced effect of our therapeutic nano-plexes
has been confirmed by comparing it with 11 µg of DOX, the previously reported IC50
in HepG2 cells [81]. We found more potent anti-proliferative activity in the F2/miR-375
treated cells although its IC50 value (0.2 µg) is 55 times lower than that of DOX. This means
F2 could enhance much stronger and more durable inhibitory effects of miR-375 in the
presence of higher CS concentration. Collectively, our data support the previous studies
that genomic loss of miR-375 promotes advanced proliferation in cancerous cells [21,139],
whereas its overexpression by NPs can exert predominant improvement of the anti-HCC
effects [40]. Besides, the overall findings confirmed our main objective that the miR-375
either free or nano-formulated is taken up by HepG2 cell and is stably re-expressed from
the generated pEGP-pre-miR-375 vector. In turn, it is efficiently released in the cytoplasm to
function properly in the RNAi machinery and continuously mediates its tumor suppression
via the reduction of its downstream oncogenic targets and networks of HCC.

Focusing on the mechanism of miR-375 delivery, the free miR is well-known to be
taken in target cells by diffusion, however, the immediate entry of its large volumes may
prevent further import [121]. On the contrary, the nano-formulated miR has been showed
to penetrate cells by endocytosis [104,132]. Likewise, our miR nano-plexes, F1/miR-375
and F2/miR-375, caused uniformity in miR-375 absorption into HepG2 cells and its slow
release for the long term. In addition, this enhanced internalization of miR-375 is in
agreement with previously reported LBNPs due to the cell membrane affinity to nano-
lipids of both F1 and F2 facilitating endocytosis, escape from endosome/lysosome thus
avoiding degradation and enhancing enormous re-expression of functional miR-375 [104].
Moreover, both F1 and F2 like previously reported NSLCs specifically transport the drug
payload to the tumor cells through passive targeting, active targeting, and co-delivery
mechanisms [51,124]. The passive mechanism called the EPR effect takes advantage of the
tumor microenvironment [140]. Thus, NSLCs have shown high permeability to traverse
across leaky vasculature and passively accumulate in tumor cells [53]. In this context,
NSLCs have been widely used for effective targeted cancer chemotherapeutics [141–143].
Our NSLCs are particularly used for effective miR-375 delivery owing to the acidic pH of
both F1 and F2 which are selective to tumor cells. The active mechanism of NSLCs has
been shown to involve its surface functionalization with different ligands or miR [144]. A
variety of NSLCs have been developed to improve loading efficiency, targeting capability,
and effective gene silencing of multiple miRs through endocytosis. Examples of these miRs
included miRNA-125-a-5p, anti-miR-221, miR-34a, let-7-a, and anti-miR-21 [57–61]. Our
suggested co-delivery mechanisms of miR-375 by the fabricated NSLCs to target HepG2
cells are also aided by the CS coat. This is because our result was in line with previous
studies which have suggested that cationic CS NPs possess penetration enhancer properties
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that allow them to have an electrostatic affinity for negatively charged cell membranes,
leading to their selective accumulation in tumors, such as liver tumors by passive and
active targeting [53,66,68,69,112–116,145]. Overall, as shown from our collected data, the
two fabricated CS-coated NSLCs pave promising evidence to make them ideal strategies
for miR-375 replacement therapy in HCC cells.

5. Conclusions

In summary, our study emphasizes the significance of the two fabricated CS-coated
NSLCs/miR-375 as smart therapeutic strategies for HCC via the innovative and optimized
NSLCs and the stable miR-375 expression construct. These cationic NSLCs exhibited desir-
able physicochemical properties corroborating their high compatibility and conjugation
efficiency for the miR-375 vector which reached 100%, storage stability without significant
leakage of miR for up to 3 months, and serum stability against degradation after 1-week
incubation. Furthermore, these nano-carriers were non-toxic in target HepG2 cells, enhanc-
ing its biosafety for miR-375 nano-delivery. Interestingly, the NSLCs improve the specific
delivery of miR-375 to cells through passive and active targeting and also enhance the
intracellular stability of the released miRNA and its therapeutic effects. The miR-375 nano-
plexes, especially F2/miR-375, exhibited excellent anti-proliferative efficacy and exerted
predominant inhibition of tumor cell growth higher than the free form of miR-375 and
the standard treatment using doxorubicin. Therefore, our novel nano-delivery systems
are highly efficient to provide promising breakthroughs for further in vitro and in vivo
applications shortly.
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