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Abstract: There is an increasing accumulation of data on the exceptional importance of mitochondria
in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there
are both energetic and non-bioenergetic functional features of mitochondria. This analytical review
examines three specific features of adaptive mitochondrial changes in several malignant tumors. The
first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to
the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional
succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a
low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into
fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate.
In this scenario, complex I becomes the only generator of energy in mitochondria. The second
feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral)
benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial
membrane, the function of which in oncogenic transformation stays mysterious. The third feature
of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed
cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs
in mitochondria. These three features of mitochondria can be targets for the development of an
anti-cancer strategy.

Keywords: mitochondria; cancer; tumor; energetics; hypoxia; fumarate reductase; ROS; TSPO;
peripheral benzodiazepine receptor; rhodoquinone

1. Introduction

The role of mitochondria in oncogenesis has been scrutinized in a huge number
of experimental and analytical works. Here we will limit ourselves to analyzing those
problems relevant to this topic that rarely become the subject of consideration, but their
significance and understanding are no less important than other, very often considered,
aspects of mitochondrial involvement in the occurrence and therapy of cancer, which will
only very briefly be considered in our analysis.

2. Major Energetics-Related and Non-Related Changes in Cancer Cells

To more fully assess the role of mitochondria in the occurrence and treatment of any
pathology, including cancer, it is necessary to move away from the magnetism of a one-sided
view of the mitochondria as exclusively an energy machine in the cell. The role of non-
energetic functions of mitochondria is wide and includes several unique synthetic functions
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that guide the processes of cellular signaling aimed at energetics itself, thermogenesis, cell
death, detoxification, etc. [1,2]. From these alternative functions of mitochondria comes
a greater importance in the regulation of oncogenesis than directly from the oxidation
associated with phosphorylation, that is, the synthesis of ATP. The synthesis of ATP by the
mitochondria of tumor cells can be strongly inhibited, but mitochondria are still present
in these cells, which indicates that the ATP synthesizing function of mitochondria is not
dominant in the tumor cell and that mitochondria are needed to perform functions other
than ATP synthesis.

The most widely discussed change in energy metabolism in tumor cells is an increased
glycolytic capacity [3–13]. Theoretically, this could be caused by the fact that the growth of
tumor cells outruns the development of the circulatory system and limited angiogenesis,
which ensures the growth of blood vessels that bring the oxidative substrates and oxygen
necessary to perform oxidative phosphorylation into the tumor tissue (especially in the
stage of a solid tumor). As a result, hypoxia becomes an attribute of a developing tumor,
which requires the inclusion of an alternative, even less effective, mechanism of energy
formation, that is, glycolysis. However, this evolutionarily developed mechanism of energy
generation in a tumor cell exists a priori and is ahead of the onset of real hypoxia; the
predominance of the glycolytic pathway over oxidative phosphorylation is observed even
in the presence of a high concentration of O2 [3–13]. In some cases, as in hepatoma cells,
the rate of glycolysis is ten times higher than in normal hepatocytes [5,13]. An increase in
the expression of glycolysis enzymes and glucose transporters in different tumor cells has
been proven [14].

It has been suggested that this increase in glycolytic flow is a metabolic strategy of
tumor cells to ensure survival and growth in environments with low O2 concentrations [12].
Several mechanisms of glycolysis enhancement in tumor cells have been developed and
documented. It should be emphasized that there is no reason to automatically apply the
mechanisms described below to all cancer cells; each particular line of tumor cells has its
own combination of mechanisms and degree of expression to enhance glycolysis.

At first glance, it seems that the glycolytic energy metabolism of a cancer cell can be
a principal target, using glycolysis inhibitors to kill the cell. However, given the under-
standing that the tumor cell forms a microenvironment designed to fight the cancer cell in
which immune cells are present [15], which also become glycolytic when activated, the use
of glycolysis inhibitors to kill the cancer cell is not appropriate.

One of the most important problems in cancer therapy is the extremely high hetero-
geneity of the cells in a tumor. The metabolism in one tumor may be different from that in
another, though they may be similar in nature. As a result, the possibility of a universal
approach to therapy seems remote. There are significant differences even in the behavior of
particular glycolytic enzymes in different tumors, so the targets for exposure require an
individual approach. On the other hand, it should be noted that the generally accepted
opinion that all cancer cells are glycolytic is dogmatic; analysis shows that some cancer
cells can derive energy from glycolysis, and some (for example, lung carcinoma, breast
cancer, melanoma, sarcoma, ovarian and uterus carcinoma, etc.) primarily use oxidative
phosphorylation for this purpose. As such, the above statement, which has been made by
Warburg in 1956 [16] and his followers (e.g., see [3,4,17]), is not strictly correct.

One of the proven ways to suppress respiration is the activation of kinase, which can
phosphorylate a key mitochondrial enzyme on which the flow of reduced equivalents into
the Krebs cycle depends, namely pyruvate dehydrogenase. This leads to its inhibition
and reduces the oxidation of pyruvate in the Krebs cycle, thereby increasing the forma-
tion of lactate from pyruvate [18,19]. A powerful inducer of this kinase is HIF-1α, which
rapidly degrades in normoxia; in hypoxia, it is stabilized and begins to work as a tran-
scription factor for several genes, including those that activate the expression of glycolytic
enzymes [20,21]. However, in a tumor environment, which may not necessarily be hypoxic,
a state of pseudohypoxia may occur with the same result as in hypoxia, due to increased
lactate generation during anaerobic glycolysis, which also stabilizes HIF-1α [22]. A similar
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effect of HIF-1α stabilization is observed with the inhibition of succinate dehydrogenase,
accompanied by the accumulation of succinate (the latter was confirmed with the use of
mitochondria-targeted vitamin E [23], which has an anti-cancer effect).

Several mechanisms have been described that explain the activation of glycolysis
in several tumors, most of which are localized in the mitochondria. Among them are
an increase in the expression of glycolytic enzymes and glucose transporters, decreased
expression of mitochondrial enzymes of oxidative metabolism, a decrease in the number of
mitochondria in the cell, inhibition of oxidative phosphorylation by glycolysis (the Crabtree
effect), an increase in the amount of protein inhibitor (IF1) in mitochondria, and higher
sensitivity of mitochondrial DNA to oxidative stress [14].

Ultimately, it becomes clear that targeting the mitochondria of a cancer cell is one of the
main strategic ways to combat this global problem. We will consider several mitochondrial
targets that are not often amenable to analysis. One intrinsic feature of cancer cells is their
excessive generation of reactive oxygen species (ROS) [24–26]. It is known that, in low
concentrations, ROS perform vital signaling functions, but elevated levels of ROS cause
oxidative modifications that can be harmful or even fatal [27]. However, these concentration
dependences are extremely specific and, in several cells that specialize in the generation of
ROS for the elimination of pathogens (such as immune cells or alveolar lung epithelial cells),
there is an elevated protection against ROS due to the inherent high concentration of ROS
inside the cell and in its environment. It is this seemingly paradoxical situation that has
been noted in the cells of the naked mole rat, known for its extraordinary longevity, which
ultimately provides the cells with high resistance to the damaging effects of ROS [28–32].
The logical conclusion from these facts is to exploit this property for therapeutic purposes
by changing the cellular redox status [33].

3. Fumarate Reductase

It is clear that under hypoxic conditions (when the oxygen concentration is below
cytochrome oxidase affinity), the electron transfer chain in mitochondria cannot function
because there is no final electron acceptor. Under normoxic conditions, dioxygen interacts
with cytochrome oxidase, receiving four electrons from it, followed by an interaction with
protons to form two molecules of water. In the absence of oxygen, cytochrome oxidase
does not function, meaning that both the coupling site associated with cytochrome oxidase
and the coupling site upstream of cytochrome oxidase (bc1 complex) lose their ability to
provide energy for ATP synthesis.

As a result, the mitochondrial system under hypoxia adapts to this situation with two
main goals: to ensure at least a small production of ATP due to the functioning of complex
I and to prevent the formation of an excessive amount of NADH.

The main reformatting of energetics in hypoxia occurs at the level of functioning of the
Krebs cycle, which can only work under conditions of constant outflow of NADH formed
in the Krebs cycle, and which cannot be performed with a non-functional respiratory chain.
The evolutionary solution to these issues was to use the available components but with cer-
tain additions. If, under normoxic conditions in the Krebs cycle, succinate is converted into
fumarate catalyzed by succinate dehydrogenase, then, under hypoxic conditions in anaero-
bic bacteria and eukaryotes (e.g., in nematodes such as Ascaris lumbricoides or Caenorhabditis
elegans), a reverse reaction of fumarate formation into succinate occurs. Such catalysis is
provided by fumarate reductase, which is different from succinate dehydrogenase [34].

It must be understood that, for thermodynamic reasons, it is not very easy to support
this reaction (fumarate–succinate); due to that canonical quinone (ubiquinone), which is
reduced by the complex I, with the redox potential (E = +110 mV) supporting a direct
succinate/fumarate reaction. Evolutionarily, to ensure fumarate respiration, the hypoxic
system acquired another but low potential quinone (rhodoquinone, E = −63 mV), which
cannot drive the succinate–fumarate reaction, but can drive the reverse reaction (fumarate–
succinate) [33]. Under normoxic conditions, succinate dehydrogenase oxidizes succinate to
form fumarate and reduced FAD, followed by the reduction of ubiquinone, which further
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participates in the respiratory chain. On the other hand, under hypoxic conditions, complex
I reduces low-potential rhodoquinone instead of ubiquinone. The latter interacts with the
succinate dehydrogenase complex, reducing FAD and triggering the fumarate-succinate
reaction [34,35] (Figure 1).
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Figure 1. Changes in mitochondrial energetic metabolism under hypoxia. In red, the aerobic
energy metabolism is shown; in green, the adaptive pathway of mitochondrial energetics to hypoxic
conditions is schematically depicted. PEP, phosphoenolpyruvate; Pyr, pyruvate; OA, oxaloacetate;
Mal, malate; RQ, rhodoquinone; Suc, succinate; Fum, fumarate; TCA, tricarboxylic acid cycle; CI, CII,
CIII and CIV are respiratory complexes I–IV.

It should be noted that the activation of the fumarate reductase pathway in hypoxia,
which clear yielding a low extraction of energy from mitochondrial activity, is accompanied
by a certain increase in the membrane potential of mitochondria. This indicates that under
hypoxic conditions, both the reversal of ATP synthase activity and the coupled activation
of fumarate reductase is the driving force for building the mitochondrial membrane poten-
tial [36,37]. This has been shown to be both a critical factor for and mandatory attribute of
mitochondrial functioning [38].

It remains unclear whether there is an identical mechanism in the cancer cell (Figure 1).
Unfortunately, it must be stated that in cancer cells, although the presence of a fumarate
reductase pathway [31,38–42] leading to an increased level of succinate [43–45] has been
proven, the question as to whether cancer cells endowed with rhodoquinone or other
low-potential quinone has not yet been clarified. In addition to the two representatives of
nematodes cited, there is evidence of the presence of this quinone in M. edulis (mussel),
C. angulata (oyster), L. stagnalis (snail), F. hepatica (liver fluke), and D. viviparus (worm).
As Chinopoulos wrote in his paper, “fumarate reductase remains to be discovered in
mammalian mitochondria” [45].

We must admit that helminths switch from ubiquinone to rhodoquinone synthesis prin-
cipally via changes in the alternative splicing of COQ-2, gene coding polyprenyltransferase
COQ-2 [46], that involved in the kynurenine pathway of rhodoquinone synthesis [47,48].
The relevance of this system to solid cancer cells has not yet been elucidated.

Whatever the mechanism of existing fumarate reductase activity in cancer cells [33,39–44],
it should be accompanied by the absence of succinate oxidase activity and the reversal of
succinate dehydrogenase activity (succinate: quinone oxidoreductase). Note that even though
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they functionally carry out two reversible reactions, succinate dehydrogenase and fumarate
reductase both represent two separate oligomeric enzymes [49]. Quite recently, a reasonable
idea was presented, suggesting that fumarate reductase is a common name for different
representatives of the fumarate reductase family, covering different representatives of
prokaryotes and eukaryotes whose structure and functionality were adapted to different
environments, which means a high plasticity of the organization of such a mechanism for
switching energetics under a decrease in ambient oxygen [50]. Details of the fumarate
reductase pathway observed in cancer cells have not yet been properly developed.

Mitochondrial Complex II can allow both succinate dehydrogenase and fumarate
reductase activity to operate in both direct (succinate-fumarate) or reversed (fumarate-
succinate) modes depending on metabolic shift of compromised bioenergetics and environ-
mental factors [14,43,44,51,52]. One of the most remarkable features of such a rewiring is
that while the production of ROS is insignificant in a direct reaction, it sharply increases
with the activation of the reverse pathway [53,54]. ROS, in this case, originate from a
FAD binding area and not from the electrons of Fe-S centers or bound quinones. Hypoxia,
being either physical (a drop in ambient O2) or chemical (inhibition of cytochrome oxidase
by some drugs), leads to the reversal of the work of Complex II and the reduction of
the ubiquinone in the Q-cycle. This yields an increase in the probability of one-electron
leakage from the reduced ubiquinone to available O2, the concentration of which, although
small under conditions of physical hypoxia, is insufficient to obtain four electrons from
cytochrome oxidase with subsequent formation of water [53–56]. The product of single
electron transfer, superoxide anion radical is a member of the ROS family and can be the
initial component for production of other ROS.

Paradoxically, on the one hand, tumor mitochondria produce more ROS, which are an
important factor for ensuring the characteristic increased proliferation of cancer cells [24].
On the other hand, one of the strategies for combating cancer cells is the use of so-called
mitocans (i.e., mitochondria directed anticancer drugs [57,58]), one of the mechanisms of
action of which is in enhanced generation of ROS in tumor cells, triggering their apopto-
sis [59–61]. Therefore, the ROS strategy to cope with cancer cells can take two forms, either
to reduce the formation of ROS in them to prevent their proliferation or to sharply increase
their level in cells to trigger apoptosis.

Considering the knowledge of the mechanism that provides a cell resistance to hypoxia,
several targets immediately arise to destroy this mechanism and with it the host cell.
These targets are: 1. fumarate reductase (it is required to inhibit it); 2. rhodoquinone
or other quinones supporting fumarate-succinate conversion if found in tumor cells (to
slow down their synthesis as follows for rhodoquinone from [47,48]); 3. succinate (see a
strategy to alleviate its effects in the next chapter); and 4. ROS (use antioxidants, including
mitochondria-directed ones or respiratory inhibitors [62–65], to neutralize ROS or instead
to activate their production [24,59–61]). Whether all or some lines of strategy can be applied
to a cancer cell must be developed and evaluated. In addition to these four options, and
based on their specific anti-cancer activities, mitocans have been classified and organized
in groups [58].

4. Succinate and Cancer

The question of the fate of succinate, formed because of a decrease in the activity of
succinate dehydrogenase (conversion of succinate to fumarate) or an increase in activity
leading to the activation of a reverse reaction in which fumarate is converted to succinate,
is quite reasonable. In the first scenario, inhibition of succinate dehydrogenase activity may
occur, in particular, because of mutations in succinate dehydrogenase subunits (SDHB or
SDHD) characteristic of hereditary tumors and sporadic cancer, or with a decrease in the
expression of the same subunits, which is a hallmark of various types of cancer [66–70].
Another mechanism for increasing succinate levels is the process of glutaminolysis [71].

In any of these scenarios, succinate accumulates in the tumor cell. In principle, the
accumulation of succinate inside the cell (its content levels in the cell can rise from mi-
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cromolar to millimolar levels) is not harmful for the cell. When working with isolated
mitochondria, the usual working succinate concentration is 5–10 mM. However, it is at
such succinate concentrations that a process is observed, namely the reverse transfer of
electrons to the components of complex I with enhanced generation of reactive oxygen
species, and most mitochondrial experts recognize that this is the most powerful source of
ROS in mitochondria [72,73]. We will return to this issue below, but we must note that this
process is so far limited to in vitro data and has not yet been detected in cells.

There is another mechanism for increasing the levels of succinate in the cell, which is
described in detail in macrophages (M1), that, upon activation, rearrange metabolism so
that a certain analogue of succinate, itocanate, can be formed from cis-aconitate [74,75] (see
Figure 2); and itocanate has powerful anti-inflammatory potency [76]. Two populations
of macrophages are known to be proinflammatory and anti-inflammatory (M1 and M2,
respectively), and both populations are present in the tumor microenvironment. Hypoxic
changes in the tumor lead to stimulation of the formation of the M2 phenotype, which sup-
ports tumor growth and progression. In the cytosol of activated macrophages (M1), there
is an increase not only succinate and itaconate, but also citrate, indicating that the Krebs
cycle is seriously compromised [77]. Note the high degree of infiltration of macrophages
into the tumor; as a result, the mass of macrophages in the tumor can comprise up to 50%
of a tumor’s mass [78]. Therefore, in the tumor microenvironment, there is a significant
increase in itaconate. The latter blocks succinate dehydrogenase, thereby inducing the onco-
genic process due to an increase in the tumor growth-potentiating succinate and itaconate
in the microenvironment [79,80]. In addition to retardation of succinate dehydrogenase,
inhibition of citrate dehydrogenase is observed in tumor-associated M1 macrophages [77].
We observe an unusual signaling of Krebs cycle metabolites, in particular succinate, in the
tumor, unrelated to mitochondrial energetics, in which the tumor microenvironment and
in particular macrophages play an important role [81].

Outside the cell, succinate appears due to its release into the extracellular space using
a dicarboxylate transporter located in the plasmalemma (MCT-1). Succinate released
from cells may have beneficial effects due to its transfer to cells that are not deficient in
oxygen and are quite capable of using it in the succinate dehydrogenase reaction followed
by oxidation to water and CO2. For example, such a transfer is described for energy
communication between the retina, which chronically experiences problems with oxygen
delivery to the eye, and oxygen-rich eye cells (retinal pigment epithelium-choroid) [82]. A
similar transport, mediated by MCT-1, has been described for muscle tissue, in which, as a
result of active muscle work, there is also an accumulation of succinate. The latter, being
released from myofibrils, activates non-muscle resident cells such as stromal, endothelial,
and satellite cells, causing remodeling of muscle cells after interaction with the succinate
receptor SUCNR-1 [83]. The value of SUCNR-1 which has the common name G protein
coupled receptor 91 (GPCR91), is not limited to its known role in kidney function [84].
Currently, a large body of data has been accumulated on the involvement of GPCR91 in
several diseases, including cancer. One of the extremely important pathogenetic factors in
oncogenesis, mediated by an increased content of succinate in the blood of cancer patients,
is its role in the organization of the tumor environment. There, succinate plays the role of
a paracrine factor that enhances the migration of tumor cells and angiogenesis in tumors,
that is, to be a promoter of tumor growth and metastasis (reviewed in [85], minimal scheme
is given in Figure 3).

One of the important pathogenetic mechanisms induced by succinate is the inhibition
of oxidative hydroxylation of HIF-1α, halting the degradation of this important transcrip-
tion factor. As a result, even under normoxia conditions, HIF-1α is present and activates
the transcription of several genes encoding proliferative, metabolic angiogenic, and proin-
flammatory proteins [86,87]. Extracellular succinate increases HIF-1α expression via the
SUCNR-1–PI3 K/Akt signaling pathway [88].
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Figure 2. Particular features of the tricarboxylic acid cycle (TCA) in conditions of limited access
to oxygen associated with the accumulation of succinate. The dotted lines show the reactions of
the conventional course of the Krebs cycle under aerobic conditions. Solid lines show the course of
reactions under hypoxic conditions leading to the accumulation of succinate. AcCoA, acetyl CoA;
Cit, citrate; cisAc, cis-aconitate; Itac, itaconate; IsoCit, isocitrate; IDH, isocitrate dehydrogenase;
α-ketoG, α-ketoglutarate; SucCoA, succinateCoA; Suc, succinate; SDH, succinate dehydrogenase;
Fum, fumarate; Mal, malate, OxAc, oxaloacetate. The up arrow near the succinate box indicates an
increase in its level.

Elevated intracellular and extracellular succinate levels can potentially cause serious
changes in proteins due to their succinylation. Protein succinylation, which is reduced
to the addition of a succinyl residue to the ε-group of lysine, is a powerful modulator of
protein activity (e.g., see [89–91]). The structure of modified protein dramatically changes
due to a change in the isoelectric point of a protein (instead of one intrinsic positive charge,
the lysine residue acquires a negative charge). Succinyl-CoA, formed as a result of the Krebs
cycle or amino acid metabolism, serves as a donor for such posttranslational modification,
which can be both enzymatic and non-enzymatic ([92], reviewed in [93]).

Thus, the appearance of succinate in the circulation is not only an indicator of pathol-
ogy, in particular mediated ischemia [94], but also an initiator of the development of
several pathologies.

A reasonable conclusion to tackle the cancer suggests itself: it is necessary to limit the
release of succinate from ischemic, in particular cancerous, cells. In principle, based on
their mechanism of succinate travel from formation to appearance in the bloodstream, it
is first necessary to understand the inevitability of succinate formation in ischemic areas,
particularly inside solid tumors. However, it is possible to limit the potential adverse effect
of high levels of intracellular succinate. It can be achieved by reducing the generation of
ROS caused by the reverse transport of electrons along the respiratory chain by adding
so-called “mild” uncouplers. It is well known that this extensive class of agents significantly
reduces the generation of ROS in mitochondria, while its therapeutic effect in oncology is
understood [95–101].
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Figure 3. The minimal scheme of succinate signaling. Two cells (1 and 2) are given, one of which,
due to several influences, becomes a super producer of succinate. From the mitochondria (Mch),
where succinate is primarily formed, it exits into the cytosol through the dicarboxylate carrier DCC.
Succinate leaves the cell in a protonated form through the MCT-1 transporter, and in a cell in which
the pH is low (hypoxic or cancerous), the probability of succinate protonation is high. Acidification
of the cytosol is mainly determined by the ATPase reaction. Extracellular succinate interacts with
the SUCNR-1 of both the donor and surrounding cells, triggering expression of several genes in the
nucleus (N) and the up arrows near the boxes indicate an increase in their levels. SA, succinylated
protein adduct mediated by succinyl CoA formed in Krebs cycle and amino acid metabolism (see
the text).

Second, as indicated above, succinate leaves the cell in a largely protonated state,
which is caused by a lower pH value in the tumor cell [102]. Once again, we note that this
acidification is largely explained by the imbalance between ATP generation and its use,
given that the ATPase reaction is accompanied by the release of a proton, while the lower
the ATP level (higher the ADP level) the greater the acidification (see the reaction scheme
in Figure 3). Once again, it should be noted that the acidification of the cytosol can in no
way be explained by switching metabolism to the glycolytic pathway of energy formation
(see explanation in [103]). To prevent undesirable acidification and the inability to reduce
energy levels, it is necessary to increase the buffering capacity of the cytosol. It is possible
to normalize the cytoplasmic pH in a tumor cell by, for example, adding dipeptides [104].

The third line of anti-cancer/anti-succinate defense may be in limiting the transport
of succinate into the extracellular space by inhibiting MCT-1. Recent publications provide
an example of the use of a specific inhibitor of this carrier (AZD3965), demonstrating the
positive effects of currently ongoing clinical trials [105,106].

Fourth, the succinate receptor SUCNR-1 (GPCR91) may be another target for limiting
the regulation of cancer cell proliferation. So far, the possibility of suppressing this receptor
has not been widely discussed in the literature, but indirect actions indicate that this is a
possibility. When analyzing the suppressive effect of exosomes derived from mesenchymal
stem cells on metastasis of rectal cancer tumor cells, it was noted that these exosomes
contain microRNA-1827 (mir-1827), which inhibits SUCNR-1 [107].
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5. Mammalian Mitochondrial (Peripheral) Benzodiazepine Receptor

One of the intriguing components of mitochondria is a specific protein, strikingly sim-
ilar to that which in modern nomenclature is listed as the tryptophan-rich-sensory protein
(TSPO [108]) in Rhodobacter sphaeroides, or the protein involved in carotenoid biosynthesis
(CrtK) [109] in Rhodobacter capsulatus. Currently, all these different but related proteins have
a common name, TSPO. This protein, which has a small mass (about 18 kDa), is localized
within the outer mitochondrial membrane. Previously known as the peripheral benzo-
diazepine receptor (PBR), it functions as a counterweight to the central benzodiazepine
receptor localized in the brain [110]. Its mitochondrial protein partners are at least two
proteins, with one also belonging to the outer membrane, a voltage-dependent anionic
channel (VDAC), and an inner membrane protein, a translocator of adenine nucleotides
(ANT) [111] (Figure 4). Note that all three components belong to the mitochondrial struc-
tures known as contact sites; these have a very interesting history of elucidation due to their
participation in the organization of nonspecific permeability of mitochondria, taking part in
cell death [112–116]. The identical sensitivity of ion channel activity formed by contact sites
to PBR ligands and inhibitors of mitochondrial nonspecific permeability (mitochondrial
permeability transition pore, MPT) suggests that mitochondrial permeability is the func-
tional state of PBR [117,118]. However, it should be noted that there is currently no clear
understanding of the structural organization of MPT in the scientific community, although
the model of involvement of ATP synthase (in the form of a dimer) in the organization of
MPT currently prevails [119]. There is a strong and reasonable objection to this model [120],
which states that the phenomenon of mitochondrial permeability transition does exist, but
that the material base responsible for this phenomenon is unclear.
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Figure 4. Tryptophan-rich-sensory protein (TSPO)/peripheral (mitochondrial) benzodiazepine recep-
tor. OMM and IMM, outer and inner membranes of mitochondria (Mch), respectively. (A) the architec-
ture of the TSPO environment: voltage dependent anion channel (VDAC); creatine kinase/adenylate
kinase (CrK/AK); adenine nucleotide transporter (ANT), bcl-2 and bcl-xl (bcl); mitochondrial perme-
ability transition pore (MPT pore). (B,C) relative levels of TSPO in normal and highly proliferating
cells correspondingly. (D) the relationship between TSPO levels and cancer cell proliferation and
survival of cancer patients.

Some synergistic effect between TSPO and its partners on the mitochondrial contact
site can be assumed. As with TSPO, a direct association of the level of VDAC and the
degree of cancer aggressiveness is known. VDAC is a predictive biomarker for some types
of cancer [121–123], although this association is VDAC isoform-specific. We also note that
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other partner/partners on the contact site, namely bcl-2/bcl-xL, are known to ensure cell
longevity [124,125]. Another TSPO partner found at the mitochondrial contact site is hex-
okinase [114,115,126,127], a well-known hub between oxidative and anaerobic energetics
pathways [16,128]. Many functions are attributed to the TSPO, which has received the
name polytopic protein due to fact that PBR ligands affect several processes in the cell.
Given its increased distribution in steroidogenic tissues and secretory glands, PBR was
credited with participating in the synthesis of steroids (which are known to be synthesized
in mitochondria [129]) by using cholesterol transported from cytosol to the mitochondrial
matrix [130]. In addition, it was proposed that PBR plays a role in the mitochondrial
transport of porphyrins, including protoporphyrin IX and heme [131], which is also syn-
thetized in mitochondria [1]. In addition, it plays some role in immune responses [132,133],
energy metabolism [134,135], production of reactive oxygen species [136], apoptosis [137],
and cell proliferation [138]. The idea that the PBR serves as an oxygen sensor is quite
intriguing. In bacterial cells, CrtK serves as an oxygen sensor that regulates the expression
of several genes depending on the oxygen tension. In bacteria with the corresponding gene
knocked out, the introduction of the human PBR gene restored the lost functions of oxygen
sensing [139].

The relevance of TSPO to cancer is very high, although the reason for this is incompre-
hensible. The levels of TSPO mRNA, as well as the protein itself, in cancer cells are usually
much higher than in normal cells, indicating that transcription of TSPO increases in hyper-
plastic tissue [140]. Increased TSPO level was observed in several types of neoplastic tissue,
including breast cancer [141,142], colon cancer [143,144], brain cancer [145,146], prostate
cancer [147], esophageal cancer [148], endometrial carcinomas [149], ovarian cancer [150],
and several other types of cancer cells. TSPO gene amplification has been witnessed in
human breast cancer cell lines [151] and metastases [152]. In addition, there was a definite
association between the level of aggressivity of cancer and the levels of TSPO in these
cancer cells; this suggests that levels of TSPO can be a good indicator of an aggressive
phenotype in several cancers [153]. Generally speaking, high levels of TSPO in malignant
tumors were found to be associated with a worse prognosis [154]. The normalization of
PBR to the mass of mitochondria did not lead to a definite correlation between these two
parameters [155]; this allows us to present the scheme shown in Figure 4. The content of this
protein in individual mitochondria increases regardless of the increase in the mitochondria
mass, which often occurs in a number of tumors. The abundance of TSPO in cancer cells
has been used in positron emission tomography (PET)-imaging with TSPO-specific ligands
to detect tumor cells [156–159].

An abundance of TSPO in cancer cells is used in photodynamic therapy after recruit-
ment of photo-sensitive TSPO ligands [158,159]. The same characteristic feature of an
abundance of TSPO in aggressive tumors was exploited for practical purposes by using
TSPO ligands as anti-cancer drugs [160–162]. In this sense, the TSPO ligands can also
be considered as mitocans. However, the practical use of TSPO ligands is beyond the
fundamental knowledge of the relevance of this protein to oncogenic transformations [163],
which requires an immediate solution.

The above-mentioned role of TSPO in the transport of cholesterol in the mitochondria
may play one of the key roles in tumorogenesis, given the significant amount of data on
the participation of this lipid in tumor growth [164–166]. There are noticeable changes
in cholesterol homeostasis in tumor cells; this is accompanied by an increase in cellular
cholesterol, which is formed in mitochondria. This is the result of the activation of genes
involved in the synthesis of cholesterol and an increase in its absorption by cells mediated
by low-density lipoprotein receptors and abnormal cholesterol metabolism (reviewed
in [166]). Ultimately, one potential anti-cancer strategy is the use of substances that reduce
the cholesterol content in the tumor (reviewed in [167]).
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6. High Retention of Cationic Dyes in Cancer Cells

We will briefly consider a rather old topic that is not very widely discussed in modern
research. With a full understanding of the mechanism underlying an important previously
discovered phenomenon, it would be possible to obtain several practical aspects in the anti-
cancer defense. The starting point of this line of research is the discovery of the phenomenon
of retention of cationic dyes in tumor tissues [168]. This work came out of a laboratory
led by Lan Bo Chen, who was the first to propose the use of rhodamine 123 for imaging
mitochondria in cells [169]. This gave a powerful impetus to determine the direction of non-
invasive or minimally invasive vital detection of mitochondria, implemented in the form of
modern development and development of chemical agents carrying a delocalized positive
charge. The intensity of fluorescence emitted by these probes under ideal conditions
reveals the magnitude of the mitochondrial membrane potential; it is a vital indicator of the
functional state of mitochondria, i.e., the higher the fluorescence of these probes, the higher
the transmembrane potential is on the inner mitochondrial membrane [170]. Combining
two studies published in 1980 and in 1982 [168,169], when the latter revealed the unusual
property that retention of cationic dye in tumor cells was significantly higher than in related
non-cancer cells, it was concluded that the mitochondrial membrane potential is higher
in tumor cells than in non-tumor cells; this argument was used by the same laboratory
in later publications [171–173]. The main argument for this statement was based on the
data from experiments in which fluorescence remained at a significant level after one
day of incubation after loading cancer cells with rhodamine 123 and placing them in a
rhodamine-free medium, while it quickly disappeared from normal cells. However, this
interpretation does not consider the mechanism of the accumulation of the amphiphilic
cation probe, which must be distributed in full accordance with the value of ∆Ψ and, being
a slow or “redistributive” probe, reaches a steady state quickly in the absence of binding to
matrix structures or changes in permeability properties [174]. Therefore, the interpretation
of the increase in fluorescence accumulated in the mitochondria of the probe as a reflection
of the increased membrane potential has been argued [175].

In general, the mechanism of retention of various chemicals in tumor cells and/or
tissues remains unclear even in the historically more developed branch of medicine as
photodynamic therapy, which in practical terms has been used for quite a long time. Several
photosensitizers have been developed, and each group has its own mechanism of specific
accumulation in different cellular compartments. Mitochondrial photosensitizers normally
carry a total positive charge, allowing them to accumulate in the organelles [176]. However,
there are other mechanisms that allow photosensitizers to accumulate in mitochondria
by binding to protein components (for example, with the above-mentioned TSPO [177]
or other mitochondrial proteins [178–180]), as well as with lipids with the characteristic
mitochondrial lipid, cardiolipin, being the mechanism by which nonyl acridine orange
binds to mitochondria [181,182].

The development of mitochondrial-directed photosensitizers continues, and, consid-
ering its long history, it has an obvious future [183–189]. Unfortunately, the mechanisms
of specific accumulation and retention in tumor tissues remain unclear, and their under-
standing lags behind the available practical application. However, recent studies have
outlined some trends in determining future directions in the study of the possibility of
using mitochondrial-directed compounds as an anti-cancer strategy [175]. It was shown
that the previously detected retention of rhodamine 123 in tumor cells is associated with
various modifications of probe molecules (including those with participation of cytochrome
P450) with the possibility of the formation of forms whose exit from mitochondria is dif-
ficult or associated with binding to mitochondrial components [190–192]. As one of the
possibilities, the deesterification of the rhodamine molecule with the formation of a zwitter
ion (rhodamine 110), whose permeability through phospholipid membranes is significantly
lower than that of the parental cation [193], may be one of the reasons for the long retention
of the fluorescent molecule (see Figure 5; note that the fluorescent properties of rhodamines
110 and 123 are the same). This indicates the need to study enzymes that modify the xeno-
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biotic molecule in such a way that it is retained in the tissue and maintains its anti-tumor
properties [194,195], thus contributing to the accelerated death of a cancer cell.
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with the release of methyl alcohol, several modifications of the initial probe and its product can take
place, possibly with involvement of cytochrome P450 (for details, see [175]).

As we noted above, the distinctive anchoring of several molecules in the mitochondria
of tumors may be due to difficulty in exiting because of thermodynamic limitations (for
example, if a hydrophilic/amphiphilic agent carries a total negative charge, as a result
of which the membrane potential (minus inside) retains this agent in the mitochondrial
matrix). The second possibility is a stronger (electrostatic and maybe even covalent) binding
of mitochondrial components with the characteristic mitochondrial lipid, cardiolipin. To
better visualize mitochondria, an approach has been applied in recent work that may well
be used to solve the question of the mechanism and practical use of lipid mitochondrial
probes. Two-stage staining of mitochondria was applied, first with one cardiolipin-specific
probe (a derivative of nonyl acridine orange), which was subsequently conjugated with
another, and second with a fluorescent agent [196]. Given the high fluorescent stability
of this system, and consequently the high quantum yield of fluorescence of the proposed
agents, it is unlikely to be used in photodynamic therapy. However, it is also possible to
build a chemical system based on this same principle in which an agent anchored with
mitochondria is conjugated with a toxic substance, ultimately killing mitochondria and
subsequently the host cell.

7. Brief Conclusions

To date, a large amount of data has accumulated regarding the special role of mito-
chondria not only in the occurrence of cancer but also about the possibility of applying a
strategy for the treatment of this disease. It is based on knowledge of known biochemical
mechanisms whose activity changes during oncogenic transformation and structural and
functional features of mitochondrial energetics and other mechanisms indirectly related
to energetics [196–199]. The three lines of enquiry presented in the review, which can be
further investigated and used to tackle cancer, are too far away from being comprehensive
in the fight against this pathology, the distinctive feature of which is the exceptional het-
erogeneity of cellular metabolism. Given the limited possibilities of this review, we only
mentioned the switch in several cancer cells from predominantly oxidative to anaerobic
energy production, pointing out the possible elements involved in this switch. The energy
metabolism of various cells, in particular cancer cells, can use a combination of these two
basal energetics, the so-called aerobic glycolysis (e.g., [200,201]), thus producing energy
depending on the environment with different availability of oxygen and substrates. In
any case, the main goal of a cancer cell is to perform its own proliferation in any way
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possible, which requires energy and building materials. In addition to the reversal of the
succinate dehydrogenase reaction in a cancer cell discussed above, another pathway has
been demonstrated in a recent study, formally consisting in the reversal of another partial
reaction (namely malate dehydrogenase) in the Krebs cycle. As a result, NAD+ is formed,
which drives reactions that promote the entry of substrates necessary for building new
cells [202].

The three pathways selected in this review are rarely reviewed aspects that can help
determine the targets and additional elements of anticancer strategy, thereby stimulating
general interest to the role of mitochondria.
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published version of the manuscript.
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