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Abstract: A particular attribute of the brain lies in the ability to learn, acquire information from
the environment, and utilize the learned information. Previous research has noted that various
factors (e.g., age, stress, anxiety, pathological issues), including antipsychotic medications, affect
the brain and memory. The current study aimed to reveal the effects of chronic metformin treat-
ment on the cognitive performance of rats and on commonly measured markers for oxidative stress.
Wistar male rats (n = 40) were randomly divided into four groups: CTR (n = 10)–control group,
METF (n = 10)–animals receiving metformin 500 mg/kg, HAL (n = 10)–animals receiving haloperidol
2 mg/kg, and HALMETF (n = 10)–animals receiving haloperidol 2 mg/kg and metformin 500 mg/kg.
The medication was administered daily by oral gavage for 40 days. Memory and learning were
assessed using the Morris Water Maze (MWM) test. At the end of the MWM, the rodents were
decapitated under anesthesia, and the brain and blood samples were assayed by liquid chromatogra-
phy for markers of oxidative stress (malondialdehyde, MDA, reduced/oxidized glutathione ratio,
GSH/GSSG). The quantification of brain-derived neurotrophic factor (BDNF) was performed using
the conventional sandwich ELISA technique. In the HALMETF group, metformin attenuated the
negative effects of haloperidol. Brain and plasma MDA levels increased in the HAL group. Brain
and plasma GSH/GSSG ratios and BDNF levels did not reveal any differences between groups. In
conclusion, metformin treatment limits the deleterious cognitive effects of haloperidol. The effect
on oxidative stress markers may also point toward an antioxidant-like effect of metformin, but this
needs further tests for confirmation.

Keywords: oxidative stress; cognition; metformin; malondialdehyde; glutathione

1. Introduction

Numerous preclinical studies suggest the use of metformin to ameliorate the symp-
toms of neurodegenerative diseases due to its neuroprotective effect [1–6]. In addition,
the idea of using it in other age-related diseases has been suggested [7]. Regarding the
mechanism of action of metformin, there is much controversy, but the activation of AMPK
is the result of the interaction of the biguanide compound with the mitochondrial complex
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I [8–10]. However, metformin is also associated with the modulation of other cellular sig-
naling pathways, including caspase 3, Bcl-2, and mTOR pathways, which may explain the
anti-apoptotic, antioxidant, and pro-autophagic effects [11]. There are data that highlight
its aforementioned effects on the brain due to its property of crossing the blood–brain
barrier [12,13], thus promoting neurogenesis and neurotrophin synthesis [14], improv-
ing spatial memory [15,16], having antioxidant effects [17], and being neuroprotective
with inhibition of neuronal apoptosis [18], with positive results in the case of models of
neurodegenerative diseases [19].

Memory and learning are essential functions for good psychosocial integration, al-
lowing one to recognize past experiences to improve future choices and actions, while
previous research has demonstrated dopamine’s involvement in memory formation [20].
Also, previous research has noted that various factors (age, stress, anxiety, pathological
issues), including antipsychotic medications, affect the brain and memory [21–28].

For mental health disorders (delusions and hallucinations) and schizophrenia, an-
tipsychotics were developed as a therapeutic class. Thus, for positive symptomatology,
haloperidol is one of the most prescribed therapeutic alternatives [29], although it is a
first-generation neuroleptic and has well-known extrapyramidal side effects [30], and
blocking D2 receptors also impacts working memory [31]. However, long-term treatment is
associated with various unwanted effects, both from the motor sphere (tardive dyskinesia,
akathisia, bradykinesia) and from the psychosocial sphere, leading to the impairment of
memory and cognitive abilities [32].

Therefore, it is hypothesized that dopamine has cortical and hippocampal implica-
tions [33], and the inhibition of dopaminergic neural circuits directly influences memory,
the ability to learn, and the ability to use accumulated information [34] via D1 and D2
dopaminergic receptors [35]. Furthermore, studies on experimental animals demonstrated
the decline of cognitive performance after the intrahippocampal injection of D2 antagonists,
followed by the attenuation of these performances as a result of the administration of D2
agonists, supporting the hypothesis of the involvement of dopamine in the previously
mentioned processes (memory, learning) [36].

Due to the increased turnover of dopamine, the level of oxidative stress in the brain
is increased, and this effect is mainly observed in the hippocampal neurons [37–39]. In
addition, classical neuroleptics, including haloperidol, are known to generate reactive
species, with multiple negative neurological effects. Given the above, the cognitive and
memory deficits that occur in the treatment of classical antipsychotics should be taken into
account, as well as the influence of oxidative stress on these evolutionary features [40].

Essential roles in the pathophysiology of these phenomena related to oxidative stress
are the accumulation of molecules resulting from oxidative processes (lipid peroxidation),
such as malondialdehyde (MDA), and the alteration of the reduced glutathione/oxidized
glutathione ratio (GSH/GSSG). Multiple studies claim that antipsychotics, particularly
haloperidol, cause adverse effects due to oxidative stress. Thus, an attempt was made to
alleviate oxidative stress by administering betaine, rice bran oil, or cannabidiol [41–43].
These studies confirm that the long-term use of haloperidol disrupts the balance of antiox-
idant systems, while the above-mentioned compounds alleviate the adverse effects and
oxidative stress generated.

A decrease in brain-derived neurotrophic factor expression was observed with haloperi-
dol use [44,45]. BDNF has been shown to play an important role in neurogenesis, neuronal
plasticity, and memory formation [46,47].

The main aim of the study was to evaluate the effects of metformin administration
in chronic haloperidol treatment, on memory and its possible antioxidant effects by de-
termining the level of MDA and GSH/GSSG, and to evaluate whether metformin could
be an option for the management of cognitive decline and oxidative stress in chronic
haloperidol treatment.
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2. Materials and Methods
2.1. Animals and Treatment

In order to test the hypothesis, 40 male Wistar rats (430–450 g) from our university’s
animal facility were allocated randomly into four distinct groups: CTR (n = 10), which
served as control group and received distilled water, METF (n = 10), which recieved
metformin at a dosage of 500 mg/kg, HAL (n = 10), which received haloperidol at a
dosage of 2 mg/kg, and HALMETF (n = 10), which received a combination of haloperidol
at 2 mg/kg and metformin at 500 mg/kg. Animals were randomized with the aid of a
computer-based random order generator. Treatments were administrated orally via gavage,
adjusting the dosage according to each animal’s pre-measured body weight. The regimen
continued for 40 consecutive days, with each dose administered in a volume of 1mL/kg,
conducted in a designated separate room. Dose selection for haloperidol was based on
previous reports that demonstrated the occurrence of oxidative stress by affecting several
antioxidant enzymes in the brain [48]. For metformin, previous studies have also confirmed
the antioxidant effects in rats at a dose of 500 mg/kg [49–52].

The animals were acclimatized for a period of 7 days by being handled daily for
stress reduction before the start of the experiment. The environmental conditions were
standard (12/12 h light–dark cycle, temperature 20 ± 2 ◦C, 60% ± 10% humidity) with
food and water ad libitum. For dosing adjustments, body weight was recorded once a
week. All experimental procedures complied with European Directive 2010/63/EU and
were approved by the Ethics Committee for Scientific Research of the George Emil Palade
University of Medicine, Pharmacy, Science and Technology of Targu Mures (approval no.
533/22.11.2019) and by National Sanitary Veterinary and Food Safety Authority (approval
no. 42/2020). All measures have been taken to minimize the suffering of the animals.

This study was designed to assess and correlate the long-term effects of haloperidol
use with metformin on cognition, memory, and learning. The timeline in Figure 1 shows the
tests performed for testing memory, learning, and coordination skills in order to determine
cognitive abilities.
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Figure 1. Schematic representation of the chronology of the experimental design.

2.2. Chemicals and Reagents

Haloperidol (Haloperidol Richter 2 mg/mL, Gedeon Richter, Targu Mures, Romania)
and metformin (Glucophage, 500 mg/tablet, Merck Santé, Semoy, France) were acquired
from the domestic pharmaceutical market. Haloperidol oral solution contained methyl p-
hydroxybenzoate, n-propyl p-hydroxybenzoate, and lactic acid as inactive ingredients. The
metformin tablets were composed of carmellose sodium, hypromellose, and magnesium
stearate. Powdered tablets were added to distilled water that served as a solvent, resulting
in an extempore suspension. Metformin is highly soluble in water (>300 mg/mL) at room
temperature. As a result, the extempore suspension from tablets was homogeneous in
terms of metformin content. For the HPLC analysis, the same reagents as those used for
the validation of the determination methods were used.

2.3. Behavioral Assessment

The behavioral assessment was performed 8 h after the medication was administered
in order to eliminate the sedative and cataleptic effects of haloperidol. The investigators
were not blinded to animal groups during experiments, but in order to reduce bias, the
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offline behavioral analysis was performed by other two experienced researchers to assess
inter-observer reliability.

Morris Water Maze

This method of assessment was chosen because it requires an intact hippocampal
function, involving several important processes for memorization and learning (coding of
information, consolidation, preservation, and reuse). The maze consisted of a circular pool
(60 cm in height, 90 cm in diameter) filled with water to a depth of 35 cm and maintained
at room temperature (25 ± 1) ◦C. The pool was divided into four equal quadrants with
printed geometric cues placed in the test chamber as clues. On the first day, a platform
with a diameter of 9 cm was submerged 1 cm below the water level in the middle of a
specific quadrant, and the rats were subjected to four trials per day for four consecutive
days (roughly the same time each day), being forced to find the platform in 120 s with an
interval between trials of 60 s [53]. If the rat managed to find the platform in 120 s, it was
allowed to stay on it for 30 s. Animals that failed to find the platform were guided to it
and allowed to remain there for 30 s. The starting position was changed for each trial, and
quadrant 4 (Q4) was considered to be the place of the fixed platform [54]. The experimental
design is shown in Table 1. On the fifth day, the probe test was performed, in which the
platform was removed and each rat was placed for 120 s from the opposite quadrant where
the platform was positioned. Regarding the time spent in the target quadrant and the
number of crossings through the target quadrant, the 120 s were used in the statistical
analysis (distance traveled, swimming speed, frequency of entries into the target quadrant,
etc.). During the 4 days of training, the reference memory was tested, and on the last day,
the spatial memory and retrieval capabilities were tested. The activity of each rat was
monitored using a top-view camera at 30 fps. All trials were analyzed with EthoVision XT
(Noldus IT, Wageningen, The Netherlands, version 11.5).

Table 1. Pool placement sequence by day, during the training period.

Day 1 Q1 Q2 Q3 Q4
Day 2 Q2 Q3 Q4 Q1
Day 3 Q3 Q4 Q1 Q2
Day 4 Q4 Q1 Q2 Q3

2.4. Experimental Procedures for Collecting Samples

After the MWM test, the rodents were decapited under anesthesia with ketamine/
xylazine in a dose mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg). Their
brains were rapidly excised, washed with ice-cold saline solution (0.9% NaCl), weighed,
immersed in liquid nitrogen, and stored at −80 ◦C for further analysis. Trunk blood
samples were collected upon decapitation in K3 EDTA-coated tubes and centrifuged using
a cooled centrifuge (4 ◦C) at 3500 rpm for 15 min. The obtained plasma was transferred to
polyethylene tubes and maintained at −80 ◦C until analysis.

2.4.1. Determination of MDA

The degree of lipid peroxidation was determined by measuring brain and plasma
MDA levels. MDA was determined by measuring thiobarbituric reactive species, combined
with an HPLC method, according to the method that was previously reported by our
group [55].

Briefly, for MDA analysis, brains were homogenized for 5 min in IKA Ultra-Turrax
Tube Drive (Königswinter, Germany). After homogenization, for protein precipitation, ace-
tonitrile (ACN) was added (1:3, v/v). The samples underwent centrifugation at 10,000× g
for 10 min, and the resulting supernatant was then diluted with pure water at 1:1 ratio, v/v.
Subsequently, 600 µL thiobarbituric acid in concentration of 4 mg/mL and 1000 µL solution
of sulfuric acid in concentration of 2.66 µL/mL were added to 400 µL sample. The mixture
was heated at 100 ◦C for 60 min using a TS-100C, Thermo-Shaker (BioSan, Riga, Latvia).
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Following the heating process, the samples were transferred in HPLC vials and promptly
analyzed following the derivatization reaction. For the analysis of plasma samples, a similar
procedure was followed, with strict modifications [56]. Representative chromatograms of
plasma and brain MDA analysis are shown in Supplementary Figures S1 and S2.

2.4.2. Determination of GSH/GSSG Ratio

The quantification of GSH/GSSG ratio was carried out according to a validated
method previously reported by our group [57]. Brains were homogenized (for 5 min) in
the previously mentioned apparatus and centrifuged (10,000× g for 10 min). The samples
underwent centrifugation, and following this step, 500 µL supernatant was retrieved and
mixed with 500 µL Ellman’s reagent. For GSSG samples, the mixture was heated for 60 min
at 80 ◦C in the same device as previously mentioned. Meanwhile, GSH samples were left
at room temperature for 10 min. Subsequently, 300 µL of TCA 20% was added to both
the GSH and GSSG sample series. The samples were centrifuged at 13,000× g for 10 min.
Following centrifugation, the supernatant was carefully retrieved and transferred into
HPLC vials. Representative chromatograms of plasma and brain MDA analysis are shown
in Supplementary Figures S3 and S4.

2.4.3. Immunoassay for BDNF

Quantification of brain-derived neurotrophic factor (BDNF) was performed using con-
ventional sandwich ELISA technique (ELISA Dynex DSX), according to the manufacturer’s
instructions (0266F0750, Sigma-Aldrich, St. Louis, MO, USA). The concentration of samples
was extrapolated from a standard curve (R2 = 0.98).

2.5. Statistical Analysis

The obtained data were evaluated with GraphPad Prism software (San Diego, CA,
USA, ver. 8). Shapiro–Wilk test was used to assess the normality of data. One-way analysis
of variance (ANOVA) followed by Tukey’s multiple comparison post-hoc test was used for
analyzing continuous parameters that were normally distributed. Two-way ANOVA was
applied for repeated-measure parameters. Kruskal–Wallis test followed by Dunn’s multiple
comparison test was performed over the one-way ANOVA test where the raw data was not
normally distributed. Normally distributed data was expressed as mean ± SEM; otherwise,
median with interquartile range was used. The significance level was set at p < 0.05.

3. Results

All animals survived the 40-day exposure to haloperidol and metformin and were sac-
rificed according to the schedule. The clinical signs of the animals did not show behavioral
alterations. Throughout the study, body weight and blood glucose levels were monitored,
but no changes were observed. Body weight changes were included in Supplementary
Table S1.

3.1. Morris Water Maze
3.1.1. Escape Latency

The results of the escape latency are illustrated in Figure 2. On day 1, both the
treatment effect F(3, 144) = 13.31, p < 0.0001 and the quadrant effect F(3, 144) = 4.258,
p = 0.0065 were significant. On days 2, 3, and 4, only the treatment effect was significant:
F(3, 144) = 22.1, p < 0.0001; F(3, 144) = 21.22, p < 0.0001, and F(3, 144) = 11.27, p < 0.0001,
respectively. Following the post-hoc tests, it was revealed that the HAL and HALMETF
groups initially exhibited higher average latency. However, this latency decreased, with
HALMETF group demonstrating significantly better performance compared to HAL (day
2, Q1: 94.26 ± 14.56 vs. 39.07 ± 13.33, p = 0.0054; day 3, Q1: 64.61 ± 17.74 vs. 6.96 ± 1.9,
p = 0.001; day 3, Q2: 69.49 ± 14.31 vs. 28.88 ± 11.69, p = 0.0387.
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Statistically significant differences compared to the CTR group (n = 10) are noted with * p < 0.05,
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3.1.2. Distance in Quadrant

The distances traveled by the animals can be visualized in Figure 3. It can be
seen that the longer distances were traveled by the rats in the HAL and HALMETF
groups. Differences in statistical importance can be observed, so the following results
can be presented: quadrant 1, treatment effect F(3, 134) = 4.914, p = 0.0029; day effect
F(3, 134) = 42.11, p < 0.0001; quadrant 2, treatment effect F(3, 137) = 3.211, p = 0.0250; day
effect F(3, 137) = 20.11, p < 0.0001; quadrant 3, treatment effect F(3, 135) = 5.986, p = 0.0007;
day effect F(3, 135) = 6.086, p = 0.0006; quadrant 4, treatment effect F(3, 134) = 8.258,
p < 0.0001; day effect F(3, 134) = 4.634, p = 0.0041. It is observed that the differences tend to
decrease for each treated group, regardless of the starting quadrant or the training day.
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3.1.3. Swim Speed

The swimming speed was also analyzed in the four days of training by averaging
the speeds after release from each quadrant, as can be seen in Figure 4. Differences in
statistical importance can be observed based on statistical determinations: treatment effect
F(3, 623) = 18.03, p < 0.0001, day effect F(3, 623) = 20.76, p < 0.0001. Except for the first
day of training, where there were also the highest speeds of swimming, probably due to
the stress of the new environment and the ignorance of the task, statistically significant
differences can be observed. The HAL group had lower speeds than the HALMETF group
on both day 3 (p < 0.05) and day 4 (p < 0.01).
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Figure 4. The effect of HAL and METF treatment on swimming speeds during the four days of
training. Values displayed are means ± SEM. Statistically significant differences compared to the CTR
group are noted with ** p < 0.01, **** p < 0.0001. Statistically significant differences compared to the
METF group are noted with # p < 0.05, ## p < 0.01, ### p < 0.0001. Statistically significant differences
compared to the HALMETF group are noted with + p < 0.05, ++ p < 0.01.

3.1.4. Probe Trial

On the probe day, statistically significant differences (p < 0.05) were observed be-
tween the groups of interest in terms of number of crossings through the target quadrant
(Figure 5A). Two things were noted: one is that all groups showed significant differences
compared to the HAL group, which had the lowest frequency of crossing through the target
quadrant, and the second observation was that the HALMETF group showed no differences
compared to CTR and METF groups. A similar trend was also observed for swimming
speed, as shown in Figure 5B. Another parameter followed was the distance traveled in
the target quadrant, in which case, the same trend as the ones for the parameters dis-
cussed above was found (Figure 6), F(3, 144) = 25.95, p < 0.0001; quadrant F(3, 144) = 11.17,
p < 0.0001. All four groups (CTR, METF, HAL, HALMETF) spent approximately the same
time in the target quadrant, with the time being lower in the case of the HAL group but
without statistical differences, as can be seen in Figure 7.
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Figure 5. Differences in entries frequency in Q4 (A) and swimming speed (B). Values displayed
are means ± SEM. Statistically significant differences compared to the CTR group are noted with
**** p < 0.0001. Statistically significant differences compared to the METF group are noted with
### p < 0.001, #### p < 0.0001. Statistically significant differences compared to the HALMETF group
are noted with ++ p < 0.01, +++ p < 0.001.
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Figure 6. The distances traveled by the four groups in each quadrant. Values displayed are
means ± SEM. Statistically significant differences compared to the CTR group are noted with
* p < 0.05, ** p < 0.01, **** p < 0.0001. Statistically significant differences compared to the METF
group are noted with # p < 0.05, ## p < 0.01, ### p < 0.001. Statistically significant differences compared
to the HALMETF group are noted with + p < 0.05, +++ p < 0.001.
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are means ± SEM.

3.2. Biochemical Parameters
3.2.1. Plasma and Brain Level of MDA

MDA is the most common marker of oxidative stress, and the impact of haloperidol
and metformin administration on plasma and brain MDA levels was analyzed. Significant
differences were noted between the plasma levels of MDA among the experimental groups
of rats, p < 0.01, as shown in Figure 8A. In addition, significant differences were also
observed between MDA levels in the brain, p < 0.05.
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3.2.2. Plasma and Brain GSH/GSSG Ratio

No significant differences were observed among the experimental groups regarding
the GSH/GSSG ratio, both in the plasma and brain tissue homogenate. The results indicated
that glutathione metabolism remained unchanged, regardless of the applied treatment, as
shown in Figure 9.
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3.2.3. Plasma Level of BDNF

Following the determinations made using the ELISA technique, no significant differ-
ences were observed. However, lower BDNF levels were found in the haloperidol-treated
group compared to the other groups (Figure 10).
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4. Discussion

The present experimental work was designed to investigate the potential antioxidant
effect of metformin on haloperidol-induced oxidative stress and memory deficits in rats.
Metformin acts by blocking the mitochondrial complex I [8] and decreasing the production
of ROS [58]. We have found that metformin was able to attenuate haloperidol-induced
oxidative stress. This effect was observed on the antioxidant parameters measured, i.e.,
plasma and brain MDA levels. On the other hand, the MWM test showed that metformin
improved learning and memory in rats, which is consistent with previous studies [59,60].
Haloperidol treatment was demonstrated to increase MDA levels, decrease antioxidant
enzyme activity such as GPx, and alter the GSH/GSSG ratio, as reported earlier [61,62].
In the present study, a significant increase in plasma and brain MDA was found in rats
receiving haloperidol treatment. However, the GSH/GSSG ratio showed no differences
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between groups. The mechanism of action of haloperidol is based on the continuous block-
ade of D2 receptors, to which the blockade of adrenergic, cholinergic, and histaminergic
neurotransmissions is added [63]. Therefore, the administration of haloperidol accelerates
oxidative processes, leading to oxidative stress. This was also observed in other studies
where rats received haloperidol even for shorter periods (21 and 31 days) [64,65]. In a study
by Dhingra et al., 21-day treatment decreased glutathione levels [66]. Conversely, in a study
conducted by Pillai et al., rats chronically treated with haloperidol showed no changes in
GPx activity, as observed in the current study [67], while in other studies, chronic treat-
ment decreased GPx activity [61,68]. Overall, supplementation with antioxidants targeting
glutathione metabolism could be a potential therapeutic intervention, as an alteration of
the balance of this compound maintains the oxidative state. Multiple studies have shown
the anti-inflammatory and neuroprotective effects of metformin [69,70], with one of these
mechanisms being based on the ability to limit the production of ROS and/or to scavenge
free radicals [58,71]. At the same time, through the antioxidant effect, memory deficits
could be prevented, a fact also demonstrated in a study in which metformin promoted the
proliferation and survival of neurons associated with memory improvement [72].

It has been established that lipid peroxidation is indicative of oxidative stress due
to increased brain lipid content, but the status of GSH homeostasis, which is crucial to
cellular defense, remains unclear. The GSH/GSSG ratio, a key antioxidant measure, was
not significantly altered in whole brain tissue homogenate in the current study, possibly due
to regional variations. Contrasting findings in studies analyzing specific brain regions like
the hippocampus or striatum underscore the importance of localized assessments [73–77].
Also, if, in the case of human samples, the level of GSH in the brain can vary pre- and
post-mortem, the same can happen in experimental animals [78].

Measuring the GSH/GSSG ratio in blood primarily reflects extracellular (plasma)
sources synthesized by the liver, hence serving as a gauge for hepatic antioxidant ca-
pacity [79,80]. In erythrocytes, intracellular GSH synthesis occurs, offering heightened
sensitivity to disruptions in GSH homeostasis, making intracellular GSH measurement
more accurate. Notably, GSH exhibits hormetic responses, potentially enhancing activity in
the presence of oxidative stressors like haloperidol. This response involves the activation
of pathways such as the pentose phosphate pathway, ensuring GSH levels necessary for
antioxidant enzyme function [81–84]. Similar ratios despite haloperidol administration
suggest a preserved physiological response to maintain redox balance. Thus, while the
GSH/GSSG ratio is indicative of oxidative stress, its assessment during stress exposure
remains challenging due to intricate regulatory mechanisms. However, complexities in
assessing GSH levels during oxidative stress warrant further investigation.

The MWM test relies on spatial and recognition memory, which are associated with
hippocampus and prefrontal cortex functions. In the current study, behavioral analysis
showed that haloperidol-treated animals had lower performances in spatial and recognition
memory, demonstrated through longer distances traveled to the escape platform, increased
mean latency to escape, and decreased number of platform area crossings. Consistent
with the present study, previous research has shown that haloperidol treatment negatively
affects memory in rodents [85–87]. However, for the rats from the HALMETF group,
metformin attenuated the negative effects of haloperidol, demonstrated by the rats’ ability
to learn the task. Interestingly, this group exhibited a shorter escape latency, indicating
an improvement in spatial learning. The mean number of crossings and the percentage
of time spent in the target quadrant were both enhanced. Taken together, metformin
treatment could enhance memory impairments induced by haloperidol. As previously
reported, haloperidol-induced memory impairment is associated with an impairment of
neurogenesis [88]. BDNF was shown to be a crucial factor for neurogenesis [89,90]. Also,
another study suggested that loss of BDNF function in the hippocampus is associated
with impairment of spatial learning [91,92]. In the present paper, a slight reduction of
BDNF in haloperidol-treated rats was noted, but no significant difference was observed
between groups.
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Understanding the role of BDNF in neuroplasticity has led to various strategies to
enhance its expression, such as BDNF infusions, exercise, enriched environments, and
metformin [93–96]. However, the effectiveness of these approaches appears to be influ-
enced by stressors like social isolation, with the type and duration of stress playing a
crucial role [97,98]. Peripheral measurements of BDNF may not accurately reflect brain
levels due to variations in detecting pro and mature forms [99]. The relationship between
BDNF expression and oxidative stress is complex and inconsistent across studies. The
histone H3 acetylation of the BDNF gene could shed light on regulatory mechanisms, given
the importance of histone modifications in gene expression [100]. Despite efforts, some
studies yield inconclusive results on BDNF expression, underscoring the need for further
research [101–105]. The results of our study regarding the lack of significant differences in
BDNF are in line with those obtained in another study [106], with the difference that in the
present work, cognitive changes were observed. Also, similar results, without significant
differences in BDNF expression, were obtained in a six-week study [107]. Nevertheless,
while progress has been made in understanding BDNF modulation, comprehensive investi-
gations are necessary to fully unravel its complexities and explore its therapeutic potential.

Thus, regardless of the cell type, AMPK activation occurs by inhibiting the mito-
chondrial complex I. By means of AMPK, peroxisome proliferator-activated receptor λ

coactivator (PGC1-α) is phosphorylated and deacetylated with the help of sirtuin1 (SIRT1),
thus increasing the activity of PGC-1α, which activates nuclear factor erythroid 2-related
factor (Nrf2). Nrf2 translocates into the nucleus, where it attaches to the antioxidant-
responsive element (ARE), increasing endogenous antioxidant activity [108]. Associated
with this mechanism is the blocking of nuclear factor-kappa B (NF-kB), preventing the
synthesis of pro-inflammatory factors that generate oxidative stress [4]. The mammalian
target of the rapamycin (mTOR) pathway is involved in the pathogenesis of neurodegen-
erative diseases and schizophrenia, without being limited to them [109]. Also, on the
AMPK pathway, metformin inhibits mTOR complex 1 (mTORC1) and favors autophagy
(increases the concentration of beclin-1, the protein important in the formation and matu-
ration of the autophagosome ATG5, the protein involved in the formation of autophagy
vesicles) [110,111]. Autophagy is important for memory formation in hippocampus neu-
rons [112,113]. Therefore, the mitigation of the negative effects of haloperidol by metformin
is due to a combination of antioxidant, anti-inflammatory factors, mTOR inhibitors, and
autophagy promoters, with AMPK at the center of them. However, it is out of the scope of
the current study to discuss the potential benefits of associating metformin with haloperidol
treatment in patients.

5. Limitations of the Study

Although the study design focused on identifying optimal experimental conditions,
aspects that limited the study were also identified. Despite efforts to minimize stress
during drug administration via gavage, it remains a source of physical discomfort and
psychological stress for animals. For this reason, the study had a period of seven days in
which the animals were acclimated to handling and gavage. Throughout the study, the well-
being of the animals and their state of health were monitored. Individual housing induced
social isolation stress, potentially influencing results affecting behavior responses. Socially
isolated animals exhibit reduced exploration opportunities. Thus, this can impact the BDNF
level. On the other hand, constraints on the number of animals used limited statistical
representation within groups. Including a larger number of subjects would enhance
representativeness, support statistical power, and diminish random errors, rendering
the study more robust. Additionally, a larger sample size reduces individual variability,
facilitating clearer data observation. In addition, in the present study, AMPK levels were
not determined. By including the analysis of AMPK expression, a correlation between its
activation by metformin and the influence on oxidative stress markers can be achieved.
Regarding the analysis of markers of oxidative stress, the analysis being carried out on
the whole brain reduces the possibility of observing the existence of some differences
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between treatments, due to functional variation. Thus, a clearer picture of the impact
of oxidative stress and how different functions are influenced can be obtained. Further
studies are needed to confirm the antioxidant effect of metformin, whether there are other
markers influenced, such as mitochondrial permeability, and the enzyme activity of the
most important antioxidant enzymes (SOD, CAT, GPx, GSHr). In addition to oxidative
stress, caspase activity should be evaluated in order to assay if any apoptosis process
occurs. Also, a histological study should be included in order to identify whether there are
modifications in the normal morphology of specific brain regions.

6. Conclusions

In summary, the present study showed that haloperidol treatment is linked to oxidative
stress, demonstrated through significant lipid peroxidation in chronic treatment. However,
metformin decreased plasma and brain MDA concentrations and improved some memory
function. Further studies on the age, dose, and duration of metformin use are needed
to clearly uncover the effects of chronic metformin treatment on haloperidol-induced
cognitive deficits.
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brain GSH analysis of rats.
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