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Abstract: Population pharmacokinetic (pop-PK) models constructed for model-informed precision
dosing often have limited utility due to the low number of patients recruited. To augment such
models, an approach is presented for generating fully artificial quasi-models which can be employed
to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained
in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a
covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty
quasi-models were subsequently generated for each model type, and nonparametric maximum a
posteriori probability Bayesian estimates were established for each patient. A significant difference in
performance was found between one- and two-compartment models. Acceptable agreement was
found between predicted and observed piperacillin concentrations, and between the estimates of the
random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK
models or the quasi-models as priors. The mean squared errors of the predictions made using the
quasi-models were similar to, or even considerably lower than those obtained when employing the
pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment
pop-PK models containing few support points, to make individual pharmacokinetic estimates in the
clinical setting.

Keywords: therapeutic drug monitoring; piperacillin; tazobactam; nonparametric adaptive grid;
Bayesian models; pharmacokinetics; model-informed precision dosing; intensive care

1. Introduction

Model-informed precision dosing (MIPD) is an emerging clinical discipline which
allows the guidance of individualized drug therapies based on the therapeutic monitoring
of drug concentrations and pharmacokinetic modeling. The construction of population
(pop-PK) and, subsequently, individual models allows the prediction of each patient’s fu-
ture exposure to the monitored substance. The clinical implementation of MIPD requires an
efficient laboratory assay, suitable computer modeling software, and the efforts of a multi-
disciplinary team consisting of clinicians, nurses, pharmacists and laboratory analysts [1–3].
This discipline has become especially useful in optimizing antibiotic treatments at intensive
care units due to the very high vulnerability and, in terms of the pharmacokinetically
relevant physiological functions and parameters, variability of critically ill patients [4,5].

The quality of the prediction of individual drug concentrations has a crucial impact
on finding the optimal dosage regimen and, eventually, on therapeutic success. Interest
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in augmenting pharmacokinetic models with the help of machine learning algorithms
has recently increased because the construction of models which efficiently represent a
broader set of patients has often proved to be an overwhelming task, especially in pediatric
populations, as well as in populations diagnosed with rare diseases, or living with special
conditions (e.g., oncological and organ-transplant recipients, or patients receiving intensive
care) [6–9]. Augmented pop-PK models are expected to overcome the limitations posed by
the availability of a low number of subjects and/or data points, and may therefore facilitate
the implementation of MIPD [10].

In this work, a novel approach to constructing a set of fully artificial population
pharmacokinetic quasi-models (QM) is put forward. The most suitable of which is then
selected for each patient individually to estimate their exposure to the drug administered.
The term “fully artificial quasi-model” refers to the fact that, unlike pop-PK models which
are based on drug concentrations measured in the blood of human subjects, a set of data,
none of which actually represent the true characteristics of any human, is generated using a
computer algorithm. This does not eliminate the need to collect data from humans, which
remains crucial for establishing the modeled ranges of the random-effect pharmacokinetic
variables, but the number of subjects required can be considerably lower. The workflow for
constructing the quasi-models, and applying them to make individual parameter estimates,
is displayed in Figure 1.

Pharmaceutics 2024, 16, x FOR PEER REVIEW  2  of  20 
 

 

pharmacokinetically relevant physiological functions and parameters, variability of criti-

cally ill patients [4,5]. 

The quality of the prediction of individual drug concentrations has a crucial impact 

on finding the optimal dosage regimen and, eventually, on therapeutic success. Interest in 

augmenting pharmacokinetic models with the help of machine learning algorithms has 

recently  increased  because  the  construction  of  models  which  efficiently  represent  a 

broader set of patients has often proved to be an overwhelming task, especially in pediat-

ric populations, as well as in populations diagnosed with rare diseases, or living with spe-

cial conditions (e.g., oncological and organ-transplant recipients, or patients receiving in-

tensive care) [6–9]. Augmented pop-PK models are expected to overcome the limitations 

posed by the availability of a low number of subjects and/or data points, and may there-

fore facilitate the implementation of MIPD [10]. 

In this work, a novel approach to constructing a set of fully artificial population phar-

macokinetic quasi-models  (QM)  is put  forward. The most suitable of which  is  then se-

lected for each patient individually to estimate their exposure to the drug administered. 

The term “fully artificial quasi-model” refers to the fact that, unlike pop-PK models which 

are based on drug concentrations measured in the blood of human subjects, a set of data, 

none of which actually represent the true characteristics of any human, is generated using 

a  computer  algorithm. This does not  eliminate  the need  to  collect data  from humans, 

which remains crucial for establishing the modeled ranges of the random-effect pharma-

cokinetic variables, but the number of subjects required can be considerably lower. The 

workflow for constructing the quasi-models, and applying them to make individual pa-

rameter estimates, is displayed in Figure 1. 

 

Figure 1. Overview of the workflow for constructing and applying fully artificial quasi-models to 

make estimates of the individual pharmacokinetic properties of piperacillin. HPLC-UV, high-per-

formance  liquid  chromatography  coupled  with  ultraviolet  light  absorbance  detection.  MAP, 

Figure 1. Overview of the workflow for constructing and applying fully artificial quasi-models
to make estimates of the individual pharmacokinetic properties of piperacillin. HPLC-UV, high-
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maximum a posteriori probability. NPAG, nonparametric adaptive grid modeling. Pop-PK: popula-
tion pharmacokinetic model.
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The nonparametric adaptive grid (NPAG) algorithm of Leary and Burke was em-
ployed for constructing mixed-effects pop-PK models based on the data obtained from
human subjects. This iterative approach allows the nonparametric estimation of the joint
population distribution of pharmacokinetic model parameter values by establishing a set
of grid points of modest size, finding the maximum likelihood solution for that grid, and
then refining the grid based on the optimal discrete so-called support points (i.e., vectors
containing estimates of the pharmacokinetic parameter along with a probability value)
and by adding a modestly sized set of new support points. The process continues until a
convergence criterion defined by the modeler is reached, and no further improvement of
the likelihood of the estimates of the random-effect variables can be attained [11–13].

In contrast to parametric modeling, which is based on the generation of measures of
central tendency and dispersion, and the approximation of the likelihood function, NPAG
relies on determining the exact likelihood function to describe the population, making
the approach statistically consistent. No assumptions of the distributions of the random-
effect variables are made, which makes NPAG superior in detecting subpopulations and
outliers [12]. Nonparametric maximum a posteriori probability (MAP) Bayesian analysis in
turn uses the pop-PK support points to find the pharmacokinetic parameters which apply
to individual patients [14]. The utility of nonparametric pharmacokinetic modeling in the
clinical setting has been demonstrated [15].

The modeled substance was piperacillin administered to critically ill adults diagnosed
with community-acquired pneumonia, who were receiving treatment at the intensive care
unit of a public hospital. This work is part of a larger clinical study conducted as described
in a protocol published earlier, the overall aim of which is to establish a multidisciplinary
methodology for the evaluation of pharmacological intervention in the first 5 days of the
patient receiving intensive care for community-acquired pneumonia. The objectives include
monitoring intra-individual changes in the pharmacokinetic properties of piperacillin and
tazobactam, as well as in the concentrations of endogenous steroids and inflammatory
markers which characterize the clinical status [16]. The pharmacokinetic modeling of the
beta-lactamase was not performed since its serum concentrations were in strong correlation
with those of piperacillin, which is in line with previous findings. There is no evidence that
tazobactam concentrations should be taken into consideration when making a decision on
the antibiotic regimen employed [17].

2. Materials and Methods

This investigator-initiated, unicentric, observational, one-arm study has been ap-
proved by the National Institute of Pharmacy and Nutrition (Budapest, Hungary, identifier
of approval document: 261-IK/2020), the National Competent Authority of Hungary for
medical research ethics. The Principal Investigator was Cs. Kopitkó. Twelve adults, ad-
mitted to the Central Department of Anesthesiology and Intensive Care, Uzsoki Teaching
Hospital (Budapest, Hungary) with the diagnosis of community-acquired pneumonia, were
recruited (Table 1). All subjects received standard care, including mechanical ventilation.
The administration of a daily dose of 16 g (30.98 mmol) piperacillin + 2 g (6.66 mmol)
tazobactam divided into four doses, given every 6 h as a 3-h intravenous infusion, was ini-
tiated empirically and immediately following admittance. No other antibiotics were given.
Blood samples were collected by trained personnel in certified collection tubes (Greiner
Bio-One Hungary Ltd., Budapest, Hungary) by accessing the vena cava superior, after
finishing the first 8 AM infusion on the day following the day of admission, as described
in [16]. Care was taken by the nurses of the Central Department of Anesthesiology and
Intensive Care to adhere to all professional standards and institutional protocols, including
drug administration and sample collection, as well as to document all activities and events
related to the research, which was crucial for obtaining valid and credible outcomes. The
sampling times, documented by the healthcare team, were 0.25 h, 0.5 h, 1 h, 1.5 h, 2 h
and 2.5 h post-infusion. The samples were pretreated as necessary by the personnel of the
Central Department of Anesthesiology and Intensive Care under the supervision of the
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Principal Investigator, and were subsequently sent to the laboratories where the various
assays were performed. Native blood samples were kept at ambient temperature for no
longer than 15 min, and were centrifuged thereafter at 10 ◦C and 2500× g, for 10 min. An
aliquot of 0-h serum, as well as K3-EDTA-anticoagulated, heparinized and sodium citrate-
treated whole blood samples were transferred to the Central Laboratory, Uzsoki Teaching
Hospital, for routine laboratory assays, whole blood count and hematocrit measurement.
A total of 250 µL serum separated for interleukin-6 measurement was frozen and sent
to the Central Laboratory, Department of Laboratory Medicine, Semmelweis University
(Budapest, Hungary). To 100 µL serum pipetted in a microcentrifuge tube, 20 µL Chrom-
systems Priming Solution (Cat. 61012) was added before freezing and transporting the
samples for the evaluation of piperacillin and tazobactam concentrations at the Laboratory
of Mass Spectrometry and Separation Technology, Department of Laboratory Medicine,
Semmelweis University.

Table 1. Demographic properties of the subjects included in the study. Values or medians with ranges
in parentheses are displayed. ICU, intensive care unit.

Characteristic Value

Number of subjects 12
Age (years) 69.7 (45.3–86.4)
Male gender (%) 58
APACHE II score on admission to ICU (no unit) 25 (19–37)
CURB-65 mortality score on admission to ICU (no unit) 6.8 (2.7–27.8)
SAPS-E mortality score on admission to ICU (no unit) 42.3 (7.9–59.7)
SOFA mortality score on admission to ICU (no unit) 33.3 (33.3–50.0)
Body mass index on admission to ICU (kg/m2) 29.6 (24.2–51.9)
Mean arterial pressure (mm Hg) 73.7 (56.7–120.7)
Serum creatinine (µmol/L) 98 (34–224)
Sodium (mmol/L) 137 (135–144)
Potassium (mmol/L) 4.4 (3.6–5.8)
Glucose (mmol/L) 9.1 (5.6–13.7)
Urea (mmol/L) 11.1 (2.6–41.8)
Total bilirubin (µmol/L) 15.9 (5.5–82.3)
Procalcitonin (µg/L) 0.5 (0.0–126.6)
C-reactive protein (mg/L) 129.4 (7.5–546.8)
White blood cell count (×109/L) 17.0 (9.0–31.1)
Thrombocyte count (×103/L) 274 (86–714)
Serum lactate (mmol/L) 1.8 (1.1–3.0)
Base excess (mEq/L) 5.0 (−8.4–13.7)
Hematocrit (L/L) 0.4 (0.3–0.7)
Interleukin-6 (ng/L) 32.0 (4.8–3629.0)
Pharmacokinetically relevant drugs administered on the day of
blood sample collection (% of subjects):

Dexmedetomidine 8.3
Alprazolam 16.6

Methylprednisolone 25.0
Ibuprofen 8.3

Fentanyl 8.3
Norepinephrine 66.7

Piperacillin concentrations were determined using a Jasco series 4000 robust high-
performance liquid chromatograph equipped with an MD-4010 photodiode array detector
(ABL&E-JASCO Hungary Ltd., Budapest, Hungary). The Chromsystems® Antibiotics in
serum/plasma—HPLC in vitro diagnostic (CE-IVD) reagent kit, analytical column, multi-
level calibrators and controls were employed for the analysis according to the instructions
of the reagent kit manufacturer (ABL&E-JASCO Hungary Ltd., Budapest, Hungary). The
analytical column was thermostatted at 30 ◦C, and the detection wavelength was 252 nm.
The preparation of serum samples consisted of adding 200 µL of internal standard solution
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(supplied with the reagent kit) to the stabilized serum, vortexing the mixture at 2000 rpm
for 1 min, separating the supernatant by centrifugation (10 ◦C, 10,000× g, 5 min), and dilut-
ing 100 µL of supernatant with 100 µL of dilution buffer (also supplied with the reagent
kit). Calibration equations were obtained by performing 1/concentration2-weighted linear
regression on piperacillin/internal standard peak area ratios. Internal controls were run at
the beginning of each batch. In addition, the performance of the assay was tested regularly
by participation in an external quality assessment scheme (#890—Antibiotics 02, Instand
e.V., Düsseldorf, Germany).

The assay error polynomial (the fixed-effect component of the pop-PK models) was
determined experimentally by quantitating piperacillin concentrations after spiking it in
known concentrations to blank serum samples. Piperacillin was spiked at 20 different con-
centration levels and to 20 independent serum samples at each spiking level, in addition to
the unspiked sera, all of which had been collected from different individuals for diagnostic
purposes and had been left over from the laboratory tests. The de-identification of these
samples had been performed, and no patient-related data were accessed by the authors.
The standard deviation (SD) of measured piperacillin concentrations was calculated at
each concentration level, including the blanks, and the regression of unweighted linear,
second-degree and third-degree polynomials on the nominal concentration-SD data pairs
was performed using Microsoft Excel to find the equation which could best describe this
relationship, based on the work of Jelliffe and Tahani [18].

Nonparametric pharmacokinetic modeling was performed pursuant to the pioneering
theoretical work of Roger W. Jelliffe and his co-workers, and by using the software tools
they developed for this purpose. One- and two-compartment pop-PK models (#1 and
#2) were constructed using 72 pieces of concentration data obtained from the 12 subjects
recruited, and the NPAG algorithm incorporated into the PmetricsTM package run in the
R environment (Laboratory of Applied Pharmacokinetics and Bioinformatics, University
of Southern California, Los Angeles, CA, USA) [12,19]. The single-compartment models
included the elimination rate constant (K) and the apparent volume of distribution (V),
while the two-compartment models contained K, the rate constant of mass transfer from
the central to the peripheral compartment (KCP) and of mass transfer from the peripheral
to the central compartment (KPC), as well as the volume of the central compartment (Vc)
as random-effect variables. Single-compartment models take into account a hypothetical,
equilibrated fluid compartment without anatomic reality in which the drug is distributed
evenly, and eliminated in a single process regardless of its route, with the exception of
cases where relevant covariates are included in the model to account for various specific
routes. Two-compartment models represent a central and a peripheral fluid compartment.
The central compartment refers to the intravascular water space as well as extravascular
spaces which are rapidly equilibrated with it, and into which the transport of the drug is
not limited. The peripheral compartment corresponds to fluid spaces which are accessed by
the drug, and which can even accumulate the drug, but which are also not well equilibrated
with the central compartment. Again, elimination is considered as a single-route process
unless covariates describing the impact of various routes are included in the model.

The evaluation of the models’ performance was based on the strength of the correlation
between predicted and observed concentrations, the slope and intercept of the regression
line fit to these pairs of concentrations, as well as their weighted squared residuals (bias)
and the bias-adjusted weighted squared residuals (imprecision). The performance indica-
tors −2 × log-likelihood, and Akaike and Bayesian information criteria were also assessed.
The decision to include candidate covariates or not was made by investigating their linear
correlation, as well as the linear correlation of the square roots and the natural logarithms
of their values, with the posteriors of the random-effect pharmacokinetic variables: K,
KCP/KPC and V or Vc. A Pearson’s correlation coefficient of at least 0.80 was considered
strong enough for inclusion. One- and two-compartment models of piperacillin (models #3
and #4, respectively) were subsequently constructed by including creatinine clearance as a
covariate, calculated as proposed by Jelliffe, and by making an estimate of the elimination
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rate constant by using the function K = KI + KS × CRCL where KI is the rate constant ac-
counting for non-renal elimination, KS is the rate constant accounting for renal elimination,
and CRCL is the creatinine clearance [20,21]. KI and KS were the random-effect variables
in these models.

Individual pharmacokinetic parameters (IPKP) of each subject were estimated in
NPAG runs conducted using PmetricsTM (version 2.1, IPKP-NPAG), as well as by using
the BestDoseTM standalone clinical pharmacokinetic modeling software (desktop version
1.127b, IPKP-NPB) which performs nonparametric maximum a posteriori probability
(MAP) Bayesian analysis (Laboratory of Applied Pharmacokinetics and Bioinformatics,
University of Southern California, Los Angeles, CA, USA). Fully artificial quasi-models
were constructed by generating 399 random values with uniform distribution for each
random-effect variable, and by creating 399 support points which contained a random
value assigned to each parameter in the order they were created in, as well as a probability
value of 1/399. The amount of the support points generated was the highest allowed by
the BestDoseTM software. The ranges the random values were generated in were made
equivalent to those employed for the priors entered into the NPAG models. The dosing
error, the model misspecification, and the timing error were set to 0.01. A total of 30
QMs were created for each type of PK model, and their performance was compared by
calculating the mean squared errors of the predictions: ∑(cobs − cpred)2/ndp, where ndp
stands for the number of data points; in the present work, ndp = 6.

3. Results
3.1. Analytical Considerations

The performance of the piperacillin assay was monitored in each run. The internal
control measurements yielded acceptable results in terms of the reagent kit manufac-
turer’s specifications. A nonlinear relationship existed between the concentrations of
piperacillin and their standard deviations, and was defined by the third-degree polynomial
SD = 0.255056 + 0.049873 × c − 0.000361 × c2 + 0.000001 × c3 with a determination coeffi-
cient of r2 = 0.9564 (where c is the concentration of piperacillin, Figure 2). The correlation
between piperacillin and tazobactam concentrations was strong, confirming previous find-
ings, and could be described with the equation ctazobactam = 0.2267 × cpiperacillin + 2.6802 [17].
The slope of this equation displayed very close correspondence to 0.2150; which is the
molar ratio of the administered drugs.
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Figure 2. Characteristics of the employed piperacillin HPLC-UV assay. (A) Ratios of the measured
and nominal concentrations of piperacillin in the low-level internal control samples. The green
line corresponds to the nominal concentration, while red lines represent the limits of measurement
acceptability. (B) Ratios of the measured and nominal concentrations of piperacillin in the high-level
internal control samples. (C) Relationship between piperacillin concentration and the standard devia-
tion of measurement results. (D) Relationship between piperacillin and tazobactam concentrations.
Ordinary linear least squares regression yielded a Pearson’s correlation coefficient of r = 0.9245.



Pharmaceutics 2024, 16, 358 7 of 19

3.2. Population Pharmacokinetic Models

The summary of the performance characteristics of the constructed population phar-
macokinetic models #1–#4 is demonstrated in Table 2, as well as in Figures 3 and 4. All
models performed well in terms of the agreement between observed and estimated pos-
terior concentrations (slopes: 0.994–1.01, intercepts: −0.651–0.687, r2 = 0.995–0.997), bias
and imprecision. A statistically significant difference was found between one-and two-
compartment models generated either without or with the inclusion of creatinine clearance
as a covariate (p < 0.001). No statistical impact of including creatinine clearance as a co-
variate was identified, irrespective of the number of pharmacokinetic compartments. The
posterior ranges of the random-effect pharmacokinetic variables which were subsequently
considered when generating the random values for the support points of the QMs are
displayed in Table 3.

Table 2. Performance of the constructed population pharmacokinetic models. AIC, Akaike informa-
tion criterion. BIC, Bayesian information criterion. CRCL, creatinine clearance. LL, log-likelihood.
#SP, number of support points.

Model
No.

Compart-
ments

Cova-
riate #SP Bias (p-Value of

Difference from 0)
Impre-
cision −2 × LL AIC BIC Shrinkage

(%)

#1 1 None 12 −0.0697 (0.6591) 0.6465 478.8 485.2 491.6 0.030–0.012
#2 2 None 12 −0.1061 (0.8310) 1.3578 423.5 434.4 444.8 0.000–0.002
#3 1 CRCL 10 −0.0088 (0.8637) 0.6061 474.4 483.0 491.5 0.348–14.91
#4 2 CRCL 11 −0.0792 (0.6000) 1.3616 422.4 435.7 448.1 0.000–0.006

Table 3. Posterior ranges of the random-effect pharmacokinetic variables considered for generating
the quasi-models. K, elimination rate constant. KCP, rate constant of mass transfer from the central to
the peripheral compartment. KPC, rate constant of mass transfer from the peripheral to the central
compartment. KI, non-renal elimination rate constant. KS, renal elimination rate constant. V, volume
of distribution. Vc, volume of the central compartment.

Models with No Covariate Included
Model No. Compartments K (1/h) V (L) or Vc (L) KCP (1/h) KPC (1/h)

#1 1 0.10–0.75 10–100
#2 2 0.10–1.70 5–35 0.05–5.00 0.05–5.00

Models with Creatinine Clearance Included as a Covariate
Model No. Compartments KS (1/h) KI (1/h) V (L) or Vc (L) KCP (1/h) KPC (1/h)

#3 1 0.001–0.006 0.005–0.100 15–80
#4 2 0.0005–0.0250 0.00–0.35 5–25 0.2–6.0 0.2–6.0

3.3. Individual Pharmacokinetic Models

Exemplary results of fitting the QMs to the individual concentration data series are
displayed in Figure 5. The support points generated using random values covered the entire
parameter space. When pop-PK models were used as priors, the posterior probabilities of
only one or two support points were increased. When models #1 and #2 were applied, the
support point with the increased probability corresponded to that generated for the given
individual using NPAG. On the contrary, high posterior probabilities were obtained for
several support points when applying the quasi-models, especially when two-compartment
models were fitted.
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Figure 3. Evaluation of the population pharmacokinetic models of piperacillin, constructed
with the inclusion of 72 concentrations obtained in 12 human subjects, and with no covariate.
(A–E), evaluation of the single-compartment model (#1). (A) Comparison of predicted and observed
concentrations based on population priors. (B) Comparison of predicted and observed concentrations
based on individual posteriors. (C) Marginals of the elimination rate constant. (D) Marginals of the
volume of distribution. (E) Raw concentration-time plots. (F–K), evaluation of the two-compartment
model (#2). (F) Comparison of predicted and observed concentrations based on population pri-
ors. (G) Comparison of predicted and observed concentrations based on individual posteriors.
(H–I) Marginals of the intercompartmental mass transfer rate constants: (H) central to peripheral
compartment, (I) peripheral to central compartment. (J) Marginals of the elimination rate constant.
(K) Marginals of the volume of distribution.
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Figure 4. Evaluation of the population pharmacokinetic models of piperacillin, constructed with the
inclusion of 72 concentrations obtained in 12 human subjects, and with the inclusion of creatinine
clearance as a covariate. (A–E), evaluation of the single-compartment model (#3). (A) Comparison of
predicted and observed concentrations based on population priors. (B) Comparison of predicted and
observed concentrations based on individual posteriors. (C) Marginals of the renal elimination rate
constant. (D) Marginals of the non-renal elimination rate constant. (E) Marginals of the volume of
the central compartment. (F–L), evaluation of the two-compartment model (#4). (F) Comparison of
predicted and observed concentrations based on population priors. (G) Comparison of predicted
and observed concentrations based on individual posteriors. (H) Marginals of the renal elimination
rate constant. (J) Marginals of the rate constant of mass transfer from the central to the peripheral
compartment. (K) Marginals of the rate constant of mass transfer from the peripheral to the central
compartment. (L) Marginals of the volume of the central compartment.
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Figure 5. An overview of the main features of applying the nonparametric expectation maximization
algorithm to population-based and quasi-models. The evaluation of piperacillin concentrations ob-
served in subject 1 is shown as an illustration. (A) Concentration-time plot showing the observed val-
ues (red dots), and the curve fitted using the single-compartment population pharmacokinetic model
with no covariate (model #1). (B) Concentration-time plot showing the observed values (red dots),
and the curve fitted using the best-performing single-compartment quasi-model. (C) Correlation
plot of observed piperacillin concentrations and those predicted using population pharmacokinetic
model #1. (D) Correlation plot of observed piperacillin concentrations and those predicted using the
best-performing single-compartment quasi-model. (E) Two-dimensional plot showing the support
points of model #1. (F) Two-dimensional plot showing the support points of the best-performing
single-compartment quasi-model employed as priors. (G) Three-dimensional plot of the posterior
support points of model #1. (H) Three-dimensional plot of the posterior support points of the
best-performing single-compartment quasi-model.

The mean squared errors, as well as the estimates of the random-effect pharmaco-
kinetic variables obtained in each subject by applying the best-performing QMs, were
compared to those obtained by using the support points of the pop-PK models as priors,
and either the NPAG or the MAP Bayesian algorithm. The results of these comparisons are
displayed in Table 4 and visualized in Figures 6 and 7. When a single-compartment model
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with no covariate was employed, the MSEs obtained using the respective best-performing
quasi-models ranged between 0.70 and 1.08 for 10 out of 12 subjects. The comparison of
the MSEs with those obtained when using the pop-PK model support points as priors
yielded IPKP-QM/IPKP-NPAG and IPKP-QM/IPKP-NPB ratios of 0.70–1.08 and 0.27–1.07,
respectively. A ratio of 0.01–1.00 indicates better performance of the quasi-model-based
predictions, a ratio of 1.00 corresponds to equivalence, while a ratio of >1.00 corresponds to
better performance of the estimates made by using the pop-PK model support points. Each
0.01 increment corresponds to an additional 1% difference. The ratios of the individual
elimination rate constants were 0.95–1.21 and 0.88–1.05, respectively, while the ratios of
the volumes of distribution were 0.91–1.04 and 0.93–1.04, respectively. When creatinine
clearance was included as a covariate in the single compartment model, the MSE ratios were
0.37–1.83 and 0.29–1.01, respectively. The ratios of the renal component of the elimination
rate constant (KS) were 0.50–1.25 in both comparisons. The ratios of V ranged between
0.89–1.10 and 0.81–1.32, respectively, for 11 of the 12 subjects. When a two-compartment
model with no covariate was applied, the MSE ratios were 0.09–111 and 0.01–1.60, respec-
tively. The ratios of K were 0.49–1.33 in both comparisons, while the ratios of the estimated
Vc were 0.75–2.45 and 0.75–2.49, respectively. The KCP/KPC ratios ranged between 0.27
and 1.80, and 0.27 and 1.66, respectively. Finally, when a two-compartment model with a
creatinine clearance covariate was employed, the MSE ratios were 1.02–5.47 and 0.05–1.61,
respectively (with the exception of subject 10, for whom the MSE ratios obtained were 181
and 5.33, respectively). The ratios of KS were 0.14–2.75 and 0.14–2.33, and the ratios of
the estimated Vc were 0.84–3.55 and 0.83–2.56, respectively. The KCP/KPC ratios were
0.15–1.70 and 0.15–1.72, respectively. The comprehensive evaluation of the performance of
QMs is provided in the Supplementary File.

Table 4. Comparison of the performance of quasi-models (QM) and population pharmacokinetic
(pop-PK) models when applying nonparametric adaptive grid (NPAG) modeling, or nonparametric
maximum a posteriori probability (MAP) Bayesian analysis. Ratios of the mean squared errors (MSE)
and of pharmacokinetic parameters are shown. In the case of MSE, a ratio of 0.01–1.00 corresponds
to the superior performance of the quasi-model-based estimation, a ratio of 1.00 corresponds to
equivalence, while a ratio of >1.00 corresponds to the better performance of the pop-PK model-based
estimation; each 0.01 increment corresponds to an additional 1% difference. K, elimination rate
constant. KCP, rate constant of mass transfer from the central to the peripheral compartment. KPC,
rate constant of mass transfer from the peripheral to the central compartment. KS, renal elimination
rate constant. V, apparent volume of distribution. Vc, apparent volume of the central compartment.

Model Comparator Value Obtained for QM/Value Obtained for
pop-PK Model, NPAG

Value Obtained for QM/Value Obtained for
pop-PK Model, MAP Bayesian Analysis

#1
MSE 0.70–1.08

(Subject 4: 1.83, Subject 10: 5.67) 0.27–1.07

K 0.95–1.21 0.88–1.05
V 0.91–1.04 0.93–1.04

#2

MSE 0.09–111 0.01–1.60 (Subject 8: 7.40)
K 0.49–1.33 0.49–1.33
Vc 0.75–2.45 0.75–2.49

KCP/KPC 0.27–1.80 0.27–1.66

#3
MSE 0.37–1.83

(Subject 9: 32.54, Subject 10: 4.89) 0.29–1.01

KS 0.50–1.25 0.50–1.25
V 0.89–1.10 (Subject 9: 3.55) 0.81–1.32 (Subject 9: 1.99)

#4

MSE 1.02–5.47 (Subject 10: 181) 0.05–1.61 (Subject 10: 5.33)
KS 0.14–2.75 0.14–2.33
Vc 0.84–3.55 0.83–2.56

KCP/KPC 0.15–1.70 0.15–1.72
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Figure 6. Radar plots showing the differences between the performance of the best-performing
single-compartment quasi-models and of the single-compartment population pharmacokinetic mod-
els (#1 and #3) for each subject. (A–F), comparison of the performance of models constructed without
the inclusion of creatinine clearance as a covariate. (A–C), the comparison of the mean squared
errors (MSE) of predictions (A), the elimination rate constants (B), and the volumes of distribution
(C) obtained by applying the best-performing quasi-models to the estimates obtained using non-
parametric adaptive grid (NPAG) modeling and the population PK models. (D,F), the comparison
of the MSE’s of predictions (D), the elimination rate constants (E), and the volumes of distribution
(F) obtained by applying the best-performing quasi-models to the estimates obtained when conduct-
ing nonparametric maximum a posteriori probability (MAP) Bayesian analysis on the population PK
models. (G–L), comparison of the performance of models constructed with the inclusion of creatinine
clearance as a covariate. (G–I), the comparison of the MSE’s of predictions (G), the elimination rate
constants (H), and the volumes of distribution (I) obtained by applying the best-performing quasi-
models to the estimates obtained using NPAG and the population PK models. (J–L), the comparison
of the MSEs of predictions (J), the elimination rate constants (K), and the volumes of distribution
(L) obtained by applying the best-performing quasi-models to the estimates obtained when conduct-
ing MAP Bayesian analysis on the population PK models. Each black circle represents an additional
100% increase in the ratio of values obtained by applying the best-performing quasi-models and of
values obtained by applying the NPAG or the MAP Bayesian algorithm to the population PK models,
with the central black circle corresponding to 100% agreement.
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Figure 7. Radar plots showing the differences between the performance of the best-performing two-
compartment quasi-models and of the two-compartment population pharmacokinetic models (#2 and
#4) for each subject. (A–H), comparison of the performance of models constructed without the inclu-
sion of creatinine clearance as a covariate. (A–D), the comparison of the mean squared errors (MSE)
of predictions (A), the elimination rate constants (B), the volumes of the central compartment (C), and
the ratios of the central-to peripheral compartment and the peripheral-to-central compartment mass
transfer rate constants (KCP/KPC ratio, (D)) obtained by applying the best-performing quasi-models
to the estimates obtained when applying nonparametric adaptive grid (NPAG) modeling and the pop-
ulation PK data. (E–H), the comparison of the MSEs of predictions (E), the elimination rate constants
(F), the volumes of the central compartment (G), and the KCP/KPC ratios (H) obtained by applying
the best-performing quasi-models to the estimates obtained when applying nonparametric maximum
a posteriori probability (MAP) Bayesian analysis on the population PK data. (I–P), comparison of the
performance of models constructed with the inclusion of creatinine clearance as a covariate. (I–L), the
comparison of the MSEs of predictions (I), the elimination rate constants (J), the volumes of the
central compartment (K), and the KCP/KPC ratios (L) obtained by applying the best-performing
quasi-models to the estimates obtained when applying NPAG algorithm and the population PK data.
(M–P), the comparison of the MSEs of predictions (M), the elimination rate constants (N), the volumes
of the central compartment (O), and the ratios of the KCP/KPC ratios (P) obtained employing the
best-performing quasi-models to the estimates obtained when applying MAP Bayesian analysis on
the population PK data. Each black circle represents an additional 100% increase in the ratio of values
obtained by applying the best-performing quasi-models and of values obtained by applying the
NPAG or the MAP Bayesian algorithm to the population PK models, with the central black circle
corresponding to 100% agreement.



Pharmaceutics 2024, 16, 358 14 of 19

The concentration curves fitted by nonparametric MAP Bayesian analysis using the
best-performing individual QMs as priors, along with the quality of the fits, are available in
the Supplementary File. The determination coefficients of the relationship between the pre-
dicted and observed piperacillin concentrations were 0.933–0.999, 0.922–0.999, 0.935–0.999
and 0.935–0.999 when applying model #1–#4, respectively. Considerable mismatches be-
tween predicted and observed concentrations were observed when two-compartment
QMs were applied with no covariate for the data of subject 9. In the case of subject 10,
the determination coefficients obtained when single-compartment models (model #1 and
model #3) were applied were 0.831–0.834 and 0.833–0.834, respectively. The underlying
reason for the weaker agreement appeared to be a single sample (sample 2) for which
the measured piperacillin concentration was consistently lower than predicted. Two-
compartment quasi-models were clearly not suitable for this patient, as reflected by the
determination coefficients 0.292–0.568 and 0.359–0.513 obtained for models #2 and #4,
respectively. The poor agreement between predicted and observed values could be traced
back to the algorithm included in the nonparametric MAP Bayesian analysis; when the
pop-PK models were employed as priors, running NPAG resulted in determination coeffi-
cients of 0.985–0.987, whereas the application of the MAP Bayesian algorithm resulted in
coefficients of 0.136–0.831.

4. Discussion

Several piperacillin population pharmacokinetic models are available in the literature,
predominantly with the consideration of single- or, more often, two-compartment models
including creatinine clearance as a covariate [22–24]. Nevertheless, it has recently become
apparent that the suitability of these models for making estimates of individual pharma-
cokinetic properties can be highly variable. A multicenter study revealed only three models
which provided acceptable estimates and absolute prediction errors. Interestingly, the
authors of this study concluded that the accuracy of estimates was gender-dependent [24].

Nonparametric pharmacokinetic modeling is a powerful tool for guiding individ-
ualized drug therapy. The pharmacokinetic characteristics of the individuals included
in the modeling process are retained instead of constructing statistical summaries which
do not show individual values. Consequently, the identification of subpopulations and
individual outliers, which are often of special clinical interest, is feasible. The evaluation
and comparison of nonparametric models is straightforward, and the limitations of the
constructed models are transparent.

Multimodel approaches have been proposed to improve individual estimates for drugs
such as tacrolimus in liver, lung and bowel transplanted patients. For each individual,
a model could be selected by employing a weight-based algorithm which compared the
median prediction error of each model to that of a set of nine models picked randomly from
a library consisting of 70 population models [25]. Such efforts can be supported further
by employing models augmented by computer algorithms. Mao et al. demonstrated the
efficiency of models based on machine learning (ML), specifically of those built using an
artificial neural network algorithm, to be superior to that of population pharmacokinetic
models when estimating cyclosporin A concentrations [8]. Hybrid pop-PK-ML models have
been shown to have a performance superior to that of pop-PK models alone with iohexol
and isavuconazole [26,27]. In addition to improving modeling performance, the tremen-
dous saving on modeling time offered by ML algorithms is an important advantage [28].
Such efforts indicate that the application of ML-based approaches, should they rely on the
integrated analysis of several pop-PK models or on artificial algorithms, could be the next
important step towards the implementation of personalized drug therapy.

The methodology presented in this work is similar to an earlier concept created by
Jelliffe et al., and based on hybrid Bayesian analysis [29]. Jelliffe et al. proposed the
augmentation of nonparametric population PK model support points with further ones,
generated by the modeler. These additional support points were evenly distributed in a
parameter subspace (not necessarily within the parameter space defined by the pop-PK
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model), formed a symmetric grid, and were assigned equal probabilities. Our methodology
relies on the generation of random support points with equal probabilities (currently within
the parameter space defined by the population PK model), and on building multiple models.
This approach is based on a simple computing algorithm, and is not bound by the set of
support points of the pop-PK model. Instead of employing the conventional workflow of
generating a population model, and then applying it to individual data, any number of
such QMs can be generated and tested until a set of support points displaying acceptable
performance in estimating drug exposure in the given patient is found. An important
advantage of employing QMs is the simplicity and the low time-consumption of their
generation, as well as the transparency of their operation. In most of our analyses, the
performance of the best-performing QMs was equivalent to, or better than that of MAP
Bayesian analysis or of the NPAG model; although the latter actually contained the set of
the estimated pharmacokinetic properties of each individual. Two-compartment models of
piperacillin were superior in performance to single-compartment models when considering
statistical indicators at population level but, in view of the MSE’s obtained, could not be
favored in all individuals. Our results demonstrate that the type of pharmacokinetic model
which provides the best performance may have to be determined for each individual. As
an example, a two-compartment model could not be fitted to the data of subject 10, while
a single-compartment model with creatinine clearance included as a covariate provided
considerably worse fits for subject 9 in comparison to all other models employed. This
indicates that flexibility in selecting the most suitable type of the PK model from a set of
models in each individual case may be relevant to clinical practice, and also highlights the
importance of collecting a set of blood samples from each patient which is sufficiently large
for comparing the performance of various PK models (Table 5).

Table 5. Mean squared errors obtained for each subject using the best-performing quasi-model.
CRCL, creatinine clearance.

Mean Squared Errors of the Quasi-Models Showing Best Performance

Number of Subject One Compartment,
No Covariate

One Compartment,
CRCL Covariate

Two Compartments,
No Covariate

Two Compartments,
CRCL Covariate

1 0.538 0.534 0.679 0.629
2 22.552 22.853 15.219 16.599
3 1.623 1.727 0.755 1.196
4 66.147 65.318 9.096 13.452
5 14.362 13.305 5.292 5.968
6 49.163 47.331 46.657 46.923
7 16.046 15.458 13.018 8.677
8 22.919 22.909 28.703 24.227
9 26.125 612.196 18.442 23.742
10 25.978 25.999 455.938 743.067
11 99.281 99.798 96.929 94.461
12 10.755 10.732 6.882 5.302

Usually, the subjects are divided into a training set and a test (or validation) set when
evaluating the performance of a pharmacokinetic model [30]. In the presented work, the
training and testing set had to be the same due to the fact that the support points of the pop-
PK models and the QMs were independent of each other. The NPAG algorithm employs
several thousand support points for selecting the best fit; therefore, it is extremely reliable in
making the most efficient estimates in a setting of rich sampling such as the one employed
in the present work. The results show that the differences in IPKP-NPAG versus IPKP-NPB
estimates were larger than those obtained for IPKP-NPB versus IPKP-QM estimates. The
performance of QMs compared to that of the pop-PK models when employing the MAP
Bayesian algorithm provides evidence that they are efficient alternatives to pop-PK models.
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The inclusion of creatinine clearance as a covariate did not lead to the improvement of
the pharmacokinetic models (Table 2). When CRCL was included in the single-compartment
model #3, the shrinkage was considerably higher than that observed for model #1. Since
this effect of the inclusion of the CRCL covariate was not observed in the case of two-
compartment models (#2 and #4), it seems rational to conclude that the result of testing
this covariate was helpful in model selection. It is rational to assume that the importance
of including CRCL as a covariate may become even more apparent when the course of
piperacillin pharmacokinetics is monitored over several days, considering the fact that the
renal function of critically ill patients is often unstable.

Creatinine clearance was estimated using the equation described by Jelliffe, which
allows calculation without measuring urinary creatinine levels. This equation was incorpo-
rated into the BestDoseTM software. Calculation is based on Equation (1):

0.4 × BW × (c2 − c1)

T
= Padj −

c1 + c2

2
× CCR × 1440 (1)

where BW corresponds to body weight in kg, c1 and c2 are the first and second serum
creatinine concentrations in mg/dL, respectively, Padj is the adjusted creatinine production
in mg and CCR is the creatinine clearance in hundreds of mL per minute [20]. It must
be noted that estimating creatinine clearance by measuring serum creatinine is not an
optimal approach in the critically ill, as sarcopenia or a poor clinical status influence serum
creatinine concentrations [31]. Furthermore, creatinine is not only filtered, but also secreted
by the kidneys [32]. The impact of changes in the clinical status on serum creatinine can be
detected with a delay of 24–36 h, and only when at least half of the nephrons have ceased
to function. Since the present work focused on piperacillin pharmacokinetics in the first
24 h of intensive care, these factors are not expected to have influenced our findings.

Evaluating inulin clearance is often considered as the gold standard for characterizing
the glomerular filtration rate, but is impractical in the clinical setting [33]. Various biomark-
ers (such as cystatin C) have been proposed, and it seems that multimarker panels may be
superior to single laboratory parameters in this respect [34]. An important yet challeng-
ing area of future research is the incorporation of novel biomarkers of renal function in
pharmacokinetic models, especially in unstable, critically ill patients. Jelliffe’s formula is
valuable as it takes the instability of renal function into account, and is compatible with
interacting multiple modeling, which is an efficient approach to describing even the rapidly
changing pharmacokinetics of a drug in unstable patients [35]. Combined with QMs, this
approach may be highly useful in detecting changes in the clinical status of critically ill
patients receiving piperacillin.

The following limitations apply to the results presented: (1) the efficiency of QMs was
tested only within the ranges of the random-effect pharmacokinetic variables established
in the NPAG runs; (2) the number of subjects included in the study was small, and model
optimization was not performed by, for example, evaluating the inclusion of covariates
other than creatinine clearance; and (3) the QMs did not allow the inference of real phar-
macokinetic information on the population involved in the modeling process. The goal of
making efficient individual estimates was nevertheless attained; therefore, the QMs have
the potential to be applicable for predicting future concentrations in individuals, which is
the most important aim in the clinical setting. From a clinical standpoint, a minor limitation
is that obtaining six concentration points can be difficult in real clinical scenarios. A further
exploration of the performance of the QMs on sets of less richly samples patients will,
therefore, be necessary.

Finally, the extensive experimental elaboration of the assay error polynomial proved to
be essential for achieving the described performance of the QMs. While the options of an ad-
ditive or a multiplicative error model are available when running NPAG, and the definition
of a higher value for the respective constant may compensate for a less accurate assay error
model, the definition of additional error terms is more complex in the BestDoseTM software,
and the compensation may require entering unrealistic values for dosing and sampling
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error, or may not be possible at all. Most often, linear equations and second-degree polyno-
mials can be applied to describe the quantitative relationship between analyte concentration
and the method standard deviation of liquid chromatography-tandem mass spectrometry
methods and immunoassays, respectively. In our case, a third-degree polynomial fit was
clearly appropriate for the employed HPLC-UV assay [36,37].

5. Conclusions

The joint concept of rich sampling and the use of fully artificial nonparametric quasi-
models can provide an efficient augmentation tool for planning and monitoring individual-
ized drug regimens, and may therefore be considered as an alternative to limited sampling
strategies employed when a larger set of subjects is available. Nonparametric QMs can
be especially useful when the number of subjects available for pop-PK modeling is small,
which is a common scenario in the clinical setting, especially in the case of drugs which
have been introduced to the market only recently.

The performance of two-compartment pharmacokinetic models has proved to be
superior to that of single-compartment models, pointing to the benefit of rich sampling.
Including creatinine clearance as a covariate did not lead to a significant improvement
in model performance. Nevertheless, such models may be valuable in the future when
longitudinal analyses are conducted in patients with unstable renal function.
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concentrations. Each row shows the curves fitted, along with the correlation plots of the observed and
predicted concentrations for a Subject (S1–S12). The horizontal and vertical axes of the fitted curve
plots represent time (h) and piperacillin concentration (µmol/L), respectively. The origin (time = 0 h)
corresponds to the time of the initiation of treatment with piperacillin/tazobactam. The axes of the
correlation plots are predicted and observed piperacillin concentrations (µmol/L). CRCL, creatinine
clearance. Table S1. Coefficients of correlation between the values of the covariates tested, and the
pharmacokinetic variables modeled. K, elimination rate constant. KCP, rate constant of the mass
transfer from the central to the peripheral compartmetnt. KPC, rate constant of the mass transfer
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Performance of the quasi-models for Subject 4; Table S6: Performance of the quasi-models for Subject
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Subject 12.
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