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Abstract: 1,4-dihydropyridines (1,4-DHPs) are widely recognized as highly effective L-type calcium
channel blockers with significant therapeutic benefits in the treatment of cardiovascular disorders.
1,4-DHPs can also target T-type calcium channels, making them promising drug candidates for neuro-
logical conditions. When exposed to light, all 1,4-DHPs tend to easily degrade, leading to an oxidation
product derived from the aromatization of the dihydropyridine ring. Herein, the elaboration of a
quantitative structure–property relationships (QSPR) model was carried out by correlating the light
sensitivity of structurally different 1,4-DHPs with theoretical molecular descriptors. Photodegrada-
tion experiments were performed by exposing the drugs to a Xenon lamp following the ICH rules.
The degradation was monitored by spectrophotometry, and experimental data were elaborated by
Multivariate Curve Resolution (MCR) methodologies to assess the kinetic rates. The results were
confirmed by the HPLC-DAD method. PaDEL-Descriptor software was used to calculate molecular
descriptors and fingerprints related to the chemical structures. Seventeen of the 1875 molecular
descriptors were selected and correlated to the photodegradation rate by means of the Ordinary Least
Squares (OLS) algorithm. The chemometric model is useful to predict the photosensitivity of other
1,4-DHP derivatives with a very low relative error percentage of 5.03% and represents an effective
tool to design new analogs characterized by higher photostability.

Keywords: photodegradation study; QSPR study; multivariate curve resolution; ordinary least
squares; molecular descriptors; ICH rules; calcium channel blockers

1. Introduction

Quantitative structure–property relationships (QSPR) are mathematical relationships
that relate the chemical structure of a molecule to its physical or chemical properties [1].
The study of these relationships has always represented a crucial step in the pharmaceutical
field, as it can often allow the avoidance of expensive biological testing or the carrying out
of demanding experiments on a certain physico-chemical property.

Multivariate analytical methods can extract a great deal of information from a data set,
and this approach becomes even more significant when the molecules being studied are
dangerous materials or unstable compounds [2]. Chemometrics [3,4] is an efficient method
to describe how a given physicochemical property varies as a function of the characteristics
of the chemical structure of a molecule.

Molecular descriptors can be defined as mathematical representations of the properties
of molecules that can be generated by algorithms [5]. In accordance with the definition of
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Todeschini and Consonni [6], it can distinguish experimental measures such as logP, molar
refractivity, dipole moment, and theoretical molecular descriptors, which derive from a
symbolic representation of the molecule. As an example, logP is a quantitative representa-
tion of the lipophilicity of the molecules, and it is obtained by measuring the partition of a
compound between an aqueous and a lipophilic phase, which usually consists of water/n-
octanol [5]. Theoretical molecular descriptors can be further classified according to the level
of molecular representation required to calculate the descriptor. One-dimensional (1D)
descriptors are the simplest type and stand for information calculated from the molecular
formula of the molecule (e.g., molecular weight); two-dimensional (2D) descriptors usually
represent molecular information regarding the size, shape, and electronic distribution of
the molecule; and three-dimensional (3D) descriptors typically describe properties related
to the 3D conformation of the molecule, such as intramolecular hydrogen bonding [7].

Accordingly, the calculated descriptors can be used to elaborate a QSPR multivariate
model capable of predicting responses of interest for new compounds, such as the identifi-
cation of specific parameters that influence a property of the molecules or the prediction of
the behavior of other molecules belonging to the same series of compounds.

In the last decade, QSPR methods have been frequently applied to study photodegra-
dation processes, especially in environmental risk assessment. Experimental studies along
with QSAR/QSPR models have been used to determine the physiochemical properties of
persistent organic pollutants responsible for serious environmental and health problems.
The estimated properties have been extensively used to predict the environmental fate
and transportation of chemicals [8]. As an example, using experiments and theoretical
calculations, a QSPR model was developed to predict the kinetics and reaction mecha-
nism of the photolysis of 25 individual polychlorinated diphenyl sulfides. In this case,
the photodegradation process was significantly influenced by the dipole moment and the
ELUMO–EHOMO descriptors [9]. Recently, Villaverde et al. developed QSAR/QSPR
models to predict the presence of transformation products of an herbicide, alloxydim,
during drinking water treatment processes such as chlorination or chloramination [10].

In the pharmaceutical field, the use of QSPR elaborations to describe the photodegra-
dation process of drugs is more recent, and only a few applications are reported in the
literature. Buglak et al. have developed a QSPR approach to predict the efficiency of singlet
oxygen generation by free-base porphyrins and metalloporphyrins. These compounds
are used as photosensitizers in photocatalysis and photodynamic therapy since, upon
exposure to light, they pass from the intersystem to the triplet excited state, followed by the
formation of singlet oxygen, which is a highly reactive species and mediates various oxida-
tive processes [11]. In our previous study [2], the photodegradation rate of commercially
available 1,4-DHPs was correlated to a series of descriptors, and the resulting model was
used to design new congeners with high photostability. These drugs are L-type calcium
channel blockers and are used for the treatment of cardiovascular disorders such as cardiac
arrhythmias [7].

Herein, a QSPR model to predict the photostability of recently synthesized 1,4-DHPs
is proposed. These compounds are characterized by a high sensitivity to light, resulting,
in most cases, in an oxidation product in which the dihydropyridine ring undergoes
aromatization, leading to the formation of other products at lower concentrations. After
their introduction into the market, miscellaneous structural modifications on 1,4-DHPs
resulted in efficient inhibitors of various calcium channels or in different pharmacological
activities. Indeed, chemical modifications on the ester moiety of condensed 1,4-DHPs
yielded up to thirty times more selectivity on T-type calcium channels compared to L-type,
thus making them potentially useful in pain therapies [12,13].

Accordingly, among several derivatives recently synthesized and investigated for
their calcium channel blocking activity, a series of variously substituted 1,4-DHP-based
compounds has been selected for the elaboration of the QSPR model. In these compounds,
the 1,4-DHP scaffold is included in a condensed ring system known as hexahydroquinoline.
Chemical tailoring of hexahydroquinoline resulted in different types of calcium channel
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blockers with varying selectivity profiles. For example, the introduction of a pyridylmethyl
moiety as the alkyl group into the ester function increased the blocking activity of this class
of compounds (DHP series) against T-type calcium channels (Cav3.2) over L-type channels
(Cav1.2) [14]. By focusing on the C-4 position of the main hexahydroquinoline scaffold,
naphthyl and benzodioxole rings yielded potent and selective blockers of Cav1.2 (DA8) and
Cav3.2 (DA1), respectively [15]. In the HM series, all compounds showed potent inhibitory
effects on Cav1.2 currents. The HM8 molecule was found to be a selective blocker of Cav3.2
over Cav1.2 [12]. In the M and MD series, M3 was an effective and equipotent blocker of
both L- and T-type calcium channels [13], and MD20 blocked Cav3.2 significantly [12].

Nimodipine, a first-generation 1,4-DHP-based L-type calcium channel blocker, was
added to the selected compounds during model elaboration; thus, the calibration set had
20 molecules. Photodegradation was forced by exposing the drugs to a xenon lamp, in
accordance with the International Conference on Harmonization (ICH) rules [16], and the
degradation profile was monitored by spectrophotometric analysis. Over time, analytical
methods have undergone considerable progress. In the past, it was necessary to use com-
plex analytical methods to resolve a mixture of components and calculate the degradation
kinetics. Now, new chemometric techniques allow the manipulation of spectrophotometric
signals in order to obtain complete information for the description of a property of a class
of drugs. These chemometric approaches that are easy to apply using modern algorithms
have produced an empirical model derived from data that, from measurements, allows one
or more properties of a system to be estimated. The evaluation of the degradation kinetics
was carried out by applying the chemometric method Multivariate Curve Resolution-
Alternating Least Squares (MCR-ALS) [3,17]. Results from MCR-ALS elaboration were
confirmed by HPLC-DAD procedures. A dedicated software named PaDEL-Descriptor
was used to calculate 1875 molecular descriptors [18]. PaDEL descriptors include 1D, 2D,
and 3D molecular descriptors. Many of them could be correlated to a photodegradation
process, especially to the oxidation reaction that occurs on the dihydropyridine ring of the
tested compounds when exposed to light. For example, the AATSC5m PaDEL-Descriptor
is related to the autocorrelation of a topological structure descriptor and denotes the distri-
bution of properties along with the topological structure of compounds [19]. The Ordinary
Least Squares (OLS) approach was used to select 17 descriptors and, subsequently, to elabo-
rate the QSPR model. An independent Principal Component Analysis (PCA) of the original
data was also applied to define the distribution of samples and molecular descriptors in
the PC space. The QSPR model was able to correlate the photodegradation rate of nine
new 1,4-DHPs with their chemical structure. Nicardipine, another first-generation 1,4-DHP
drug, was added to this prediction set.

2. Materials and Methods
2.1. Instruments

Absorption spectra were registered in the range of 200–450 nm in a 10 mm quartz cell
by means of a PerkinElmer Lambda 40P Spectrophotometer (PerkinElmer, Waltham, MA,
USA) under the following conditions: scan rate: 1 nm s−1, time response: 1 s, and spectral
band: 1 nm. Light exposure was simulated in a light cabinet, Suntest CPS+ (Heraeus, Milan,
Italy), equipped with a Xenon lamp (Atlas Material Testing Technology, Mt Prospect, IL,
USA), compliant with the ICH rules. The apparatus was fitted with an electronic device for
irradiation, temperature measurement, and control inside the box. The system was able to
closely simulate sunlight and appropriately select spectral regions between 300 and 800 nm
through the interposition of filters. In particular, the application of the ID65 standard filter
limits radiation to about 320 nm.

Chromatographic equipment consists of a HP 1100 pump fitted with a DAD G1315B
(Agilent Technologies, Santa Clara, CA, USA) and a Rheodyne 7725 manual injector. The
LC column was a C18 Gemini (Phenomenex, Bologna, Italy), 250 × 4.6 mm × 5 µm.
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2.2. Software

The software UV Winlab® 2.79.01 (PerkinElmer, Waltham, MA, USA) was used
for spectral acquisition and elaboration. The PaDEL-Descriptor software version 2.21
(http://yapcwsoft.com/dd/padeldescriptor/ (accessed on 1 March 2023) using the Java
language was used to calculate the molecular descriptors and fingerprints [20]. It consists
of a library component that allows it to be easily integrated into quantitative structure–
activity relationship software to provide the descriptor calculation feature and an interface
component that allows it to be used as standalone software. All chemometric procedures
were made with the Matlab® computer environment software (Mathwork Inc., version 7,
Natick, MA, USA). The drug concentration profile was calculated by applying the MCR
algorithm to the spectral data to estimate the number of components, their spectra, and the
rate constants (k) of the kinetic processes [17].

2.3. Chemicals

The work was applied to nineteen 1,4-DHPs synthesized in the Department of Phar-
maceutical Chemistry (Pharmacy) of Hacettepe University, Ankara, Turkey, and to the first
generation of the commercially available 1,4-DHP drug, Nimodipine (NIMO). In detail,
the studied compounds include eleven 1,4-DHPs belonging to the DA series [15], three
molecules of the DHP series [14], and five 1,4-DHPs of the HM series [12]. A prediction set
was defined by using DA12, DHP5, DHP7, DHP9, DHP10, DHP12, and HM8, belonging to
the same series used in the calibration set, and three other molecules belonging to classes of
compounds different from those used for the construction of the chemometric model, that
is, M3 to the M series [13], MD20 belonging to the MD series [12], and Nicardipine (NICA)
as a first-generation drug. Briefly, the synthetic route adopted for the preparation of the
compounds was as follows: substituted 1,3-cyclohexanedione, aldehyde derivative, and
appropriate alkyl acetoacetate were heated in the presence of excess ammonium acetate.
Absolute ethanol was used as a solvent. The precipitate formed after cooling the flask
content or pouring it into ice water was further purified by washing with cold ethanol or
crystallizing with ethanol-water to yield the target compounds. The chemical structures
and the IUPAC name of all used molecules are listed in Table 1. Ethanol and acetonitrile of
absolute grade were purchased by J.T. Baker (Amsterdam, The Netherlands).

Table 1. Chemical structures and IUPAC names of the selected compounds.

Calibration Set

Compound Chemical Structure IUPAC Name

1 DA1
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Table 1. Cont.

Calibration Set

Compound Chemical Structure IUPAC Name

3 DA3

Pharmaceutics 2024, 16, x FOR PEER REVIEW 5 of 24 
 

 

2 DA2 

 

Isobutyl 4-(6-bromobenzo[d][1,3]dioxol-5-yl)-2,6,6-tri-

methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

ylate 

3 DA3 

 

Isobutyl 4-([1,1′-biphenyl]-3-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

4 DA4 

 

Isobutyl 4-([1,1′-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

5 DA5 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(4-oxo-4H-chromen-3-

yl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

6 DA6 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(thiophen-2-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

7 DA7 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(pyridin-3-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

8 DA8 

 

Isobutyl 2,6,6-trimethyl-4-(naphthalen-2-yl)-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

Isobutyl
4-([1,1′-biphenyl]-3-yl)-2,6,6-trimethyl-5-oxo-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

4 DA4

Pharmaceutics 2024, 16, x FOR PEER REVIEW 5 of 24 
 

 

2 DA2 

 

Isobutyl 4-(6-bromobenzo[d][1,3]dioxol-5-yl)-2,6,6-tri-

methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

ylate 

3 DA3 

 

Isobutyl 4-([1,1′-biphenyl]-3-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

4 DA4 

 

Isobutyl 4-([1,1′-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

5 DA5 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(4-oxo-4H-chromen-3-

yl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

6 DA6 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(thiophen-2-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

7 DA7 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(pyridin-3-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

8 DA8 

 

Isobutyl 2,6,6-trimethyl-4-(naphthalen-2-yl)-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

Isobutyl
4-([1,1′-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

5 DA5

Pharmaceutics 2024, 16, x FOR PEER REVIEW 5 of 24 
 

 

2 DA2 

 

Isobutyl 4-(6-bromobenzo[d][1,3]dioxol-5-yl)-2,6,6-tri-

methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

ylate 

3 DA3 

 

Isobutyl 4-([1,1′-biphenyl]-3-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

4 DA4 

 

Isobutyl 4-([1,1′-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

5 DA5 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(4-oxo-4H-chromen-3-

yl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

6 DA6 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(thiophen-2-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

7 DA7 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(pyridin-3-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

8 DA8 

 

Isobutyl 2,6,6-trimethyl-4-(naphthalen-2-yl)-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(4-oxo-4H-
chromen-3-yl)-1,4,5,6,7,8-hexahydroquinoline-3-

carboxylate

6 DA6

Pharmaceutics 2024, 16, x FOR PEER REVIEW 5 of 24 
 

 

2 DA2 

 

Isobutyl 4-(6-bromobenzo[d][1,3]dioxol-5-yl)-2,6,6-tri-

methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

ylate 

3 DA3 

 

Isobutyl 4-([1,1′-biphenyl]-3-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

4 DA4 

 

Isobutyl 4-([1,1′-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

5 DA5 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(4-oxo-4H-chromen-3-

yl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

6 DA6 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(thiophen-2-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

7 DA7 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(pyridin-3-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

8 DA8 

 

Isobutyl 2,6,6-trimethyl-4-(naphthalen-2-yl)-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(thiophen-2-yl)-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

7 DA7

Pharmaceutics 2024, 16, x FOR PEER REVIEW 5 of 24 
 

 

2 DA2 

 

Isobutyl 4-(6-bromobenzo[d][1,3]dioxol-5-yl)-2,6,6-tri-

methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

ylate 

3 DA3 

 

Isobutyl 4-([1,1′-biphenyl]-3-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

4 DA4 

 

Isobutyl 4-([1,1′-biphenyl]-4-yl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

5 DA5 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(4-oxo-4H-chromen-3-

yl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

6 DA6 

 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(thiophen-2-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 
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Isobutyl 2,6,6-trimethyl-5-oxo-4-(pyridin-3-yl)-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

8 DA8 

 

Isobutyl 2,6,6-trimethyl-4-(naphthalen-2-yl)-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

Isobutyl 2,6,6-trimethyl-5-oxo-4-(pyridin-3-yl)-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

8 DA8
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ylate 
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Pyridin-3-ylmethyl 4-(2,3-dichlorophenyl)-2-methyl-5-

oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate 

15 HM10 

 

2-(Methacryloyloxy)ethyl 4-(3,5-dichloro-2-hydroxy-

phenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

16 HM13 

 

2-(Methacryloyloxy)ethyl 4-(3-bromo-5-chloro-2-hy-

droxyphenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahy-

droquinoline-3-carboxylate 

Isobutyl 2,6,6-trimethyl-5-oxo-4-phenyl-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

10 DA10
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11 DA11
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1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

13 DHP6
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droxyphenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahy-

droquinoline-3-carboxylate 

2-(Methacryloyloxy)ethyl 4-(3,5-dichloro-2-
hydroxyphenyl)-2,6,6-trimethyl-5-oxo-

1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

16 HM13
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2-hydroxyphenyl)-2,6,6-trimethyl-5-oxo-
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quinoline-3-carboxylate 

18 HM15 

 

2-(Methacryloyloxy)ethyl 4-(3-bromo-2-hydroxy-5-ni-

trophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

19 HM16 

 

2-(Methacryloyloxy)ethyl 4-(2-hydroxy-3,5-dinitro-

phenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

20 NIMO 

 

3-isopropyl 5-(2-methoxyethyl) 2,6-dimethyl-4-(3-ni-

trophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 

 Prediction set 

 Compound Chemical structure IUPAC name 

1 DA12 

 

Isobutyl 4-(4-(1H-1,2,4-triazol-1-yl)phenyl)-2,6,6-trime-

thyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

ylate 

2 DHP5 

 

Pyridin-3-ylmethyl 4-(2-chloro-3-(trifluoromethyl)phe-

nyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquino-

line-3-carboxylate 

3 DHP7 

 

Pyridin-3-ylmethyl 4-(3-chloro-2-fluorophenyl)-2,6,6-

trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-car-

boxylate 

2-(Methacryloyloxy)ethyl 4-(5-bromo-2-
hydroxy-3-nitrophenyl)-2,6,6-trimethyl-5-oxo-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

18 HM15

Pharmaceutics 2024, 16, x FOR PEER REVIEW 7 of 24 
 

 

17 HM14 

 

2-(Methacryloyloxy)ethyl 4-(5-bromo-2-hydroxy-3-ni-

trophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

18 HM15 

 

2-(Methacryloyloxy)ethyl 4-(3-bromo-2-hydroxy-5-ni-

trophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

19 HM16 

 

2-(Methacryloyloxy)ethyl 4-(2-hydroxy-3,5-dinitro-

phenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

20 NIMO 

 

3-isopropyl 5-(2-methoxyethyl) 2,6-dimethyl-4-(3-ni-

trophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 

 Prediction set 

 Compound Chemical structure IUPAC name 

1 DA12 

 

Isobutyl 4-(4-(1H-1,2,4-triazol-1-yl)phenyl)-2,6,6-trime-

thyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

ylate 

2 DHP5 

 

Pyridin-3-ylmethyl 4-(2-chloro-3-(trifluoromethyl)phe-

nyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquino-

line-3-carboxylate 

3 DHP7 

 

Pyridin-3-ylmethyl 4-(3-chloro-2-fluorophenyl)-2,6,6-

trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-car-

boxylate 

2-(Methacryloyloxy)ethyl 4-(3-bromo-2-
hydroxy-5-nitrophenyl)-2,6,6-trimethyl-5-oxo-
1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

19 HM16

Pharmaceutics 2024, 16, x FOR PEER REVIEW 7 of 24 
 

 

17 HM14 

 

2-(Methacryloyloxy)ethyl 4-(5-bromo-2-hydroxy-3-ni-

trophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

18 HM15 

 

2-(Methacryloyloxy)ethyl 4-(3-bromo-2-hydroxy-5-ni-

trophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

19 HM16 

 

2-(Methacryloyloxy)ethyl 4-(2-hydroxy-3,5-dinitro-

phenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

20 NIMO 

 

3-isopropyl 5-(2-methoxyethyl) 2,6-dimethyl-4-(3-ni-

trophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 

 Prediction set 

 Compound Chemical structure IUPAC name 

1 DA12 

 

Isobutyl 4-(4-(1H-1,2,4-triazol-1-yl)phenyl)-2,6,6-trime-

thyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbox-

ylate 

2 DHP5 

 

Pyridin-3-ylmethyl 4-(2-chloro-3-(trifluoromethyl)phe-

nyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquino-

line-3-carboxylate 

3 DHP7 

 

Pyridin-3-ylmethyl 4-(3-chloro-2-fluorophenyl)-2,6,6-

trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-car-

boxylate 

2-(Methacryloyloxy)ethyl 4-(2-hydroxy-3,5-
dinitrophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-

hexahydroquinoline-3-carboxylate

20 NIMO

Pharmaceutics 2024, 16, x FOR PEER REVIEW 7 of 24 
 

 

17 HM14 

 

2-(Methacryloyloxy)ethyl 4-(5-bromo-2-hydroxy-3-ni-

trophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

18 HM15 

 

2-(Methacryloyloxy)ethyl 4-(3-bromo-2-hydroxy-5-ni-

trophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

19 HM16 

 

2-(Methacryloyloxy)ethyl 4-(2-hydroxy-3,5-dinitro-

phenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-

quinoline-3-carboxylate 

20 NIMO 

 

3-isopropyl 5-(2-methoxyethyl) 2,6-dimethyl-4-(3-ni-

trophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 

 Prediction set 

 Compound Chemical structure IUPAC name 
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3-isopropyl 5-(2-methoxyethyl)
2,6-dimethyl-4-(3-nitrophenyl)-1,4-
dihydropyridine-3,5-dicarboxylate
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3-(2-(benzyl(methyl)amino)ethyl) 5-methyl
2,6-dimethyl-4-(3-nitrophenyl)-1,4-
dihydropyridine-3,5-dicarboxylate

2.4. Molecular Descriptors

The freely available PaDEL-Descriptor can calculate 1875 molecular descriptors and
fingerprints [18]. Many types of molecular descriptors were developed [20,21], such as the
number of carbon atoms, molecular weight, predictive values of LogP (XLogP, ALogP, etc.),
properties calculated from two-dimensional (2D) structures (e.g., Eccentric Connectivity
Index) and three-dimensional (3D) structures (e.g., charged partial surface area, CPSA), and
properties based on quantum mechanics (orbital energies of the highest occupied molecular
orbital (HOMO), lowest unoccupied molecular orbital (LUMO), etc.). Some additional
descriptors and fingerprints were added, which include atom-type electrotopological state
descriptors, McGowan volume, molecular linear free energy relation descriptors, ring
counts, counts of chemical substructures identified by Laggner, and binary fingerprints
and counts of chemical substructures identified by Klekota and Roth.

2.5. Standard Solutions

Standard solutions (about 20.0 µg mL−1) of each 1,4-DHP were prepared in ethanol
to perform photodegradation experiments. More concentrated standard solutions (about
200.0 µg mL−1) in ethanol were prepared to define HPLC separations.

2.6. Experimental Conditions

The solution of each 1,4-DHP (20.0 µg mL−1) was directly light irradiated in a range
between 300 and 800 nm by means of the ID65 standard filter; the irradiance power was
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fixed to 350 W m−2, corresponding to a light dose of 21 kJ min−1 m−2, at a constant
temperature of 25 ◦C. The UV spectra were recorded just after the preparation and at the
following interval times of light exposure: 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100,
120, 150, 180, 210, 240, 270, and 300 min.

The mobile phase used in the HPLC analysis was water (A)–acetonitrile (B) pumped
at a flow rate of 1 mL/min at room temperature. The solvents were filtered through a
0.45 µm membrane under vacuum. HPLC was run with 80% A and 10% B for 15 min in
isocratic conditions. The injection volume was 20 µL. The UV–vis spectra were recorded
between 200 and 450 nm, and the chromatographic profiles were registered at 236.8 nm
with a reference at 400 nm. The chromatographic separation was carried out just after the
preparation and at different interval times of light exposure up to 60 min and 600 min for
NIMO and the other 1,4-DHPs, respectively.

3. Results

A series of 20 1,4-DHPs were collected to perform the QSPR study. As a first step,
the molecules were subjected to forced photodegradation under the standard conditions
described above. The MCR method was applied to the collected UV spectra to calculate
the kinetic constant of the photodegradation process. The HPLC method was applied to
confirm the formation of the photodegradation products. A large number of molecular
descriptors were calculated, and 17 of them were selected to elaborate the QSPR model.

3.1. Photodegradation Studies

The sequence of the UV spectra during light irradiation was recorded for each 1,4-DHP
solution (20.0 µg mL−1). According to our previous studies [12–14], a gradual decrease
in the maximum peak in the zone 350–370 nm, which is a typical signal of the 1,4-DHP
structure, and a contemporary increase in a new peak in the zone 260–280 nm, which
is characteristic of the pyridinic structure, were observed for all the compounds. As an
example, Figure 1A shows the sequence of the spectra recorded for DA9 and HM16. All the
other collected spectral sequences are reported in the “Supplementary Materials” (Figures
S1A–S20A).
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Figure 1. Photodegradation experiments of DA9 and HM16 at a concentration of 20.0 µg mL−1.
(A) Spectral sequences and (B,C) concentration profiles and relative absorbance spectra, respectively,
of the pure compounds (blue line) and the photoproducts (red and yellow lines) obtained from
MCR elaboration.
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The data matrix obtained from the collected spectra for each compound was ana-
lyzed by MCR-ALS, which aims to resolve the chemical contributions to the outcome of
an experiment as described through a data matrix. The MCR method decomposes the
experimental data matrix (D) into a reduced set of contributions of chemical species (in our
study, 1,4-DHP and its degradation products) using a bilinear model. The number of com-
ponents involved in the matrix D (chemical rank) can be estimated by PCA algorithms. The
chemical rank assumes that the species contributing to the measured spectra have singular
values larger than the other signal contributions, such as experimental or instrumental
noise. Once the number of components is known, the ALS algorithm uses a series of con-
straints to optimize the MCR model. The application of constraints such as non-negativity,
unimodality, and concentration closure allows one to optimize the results according to a
chemical meaning. The quality and reliability of the multivariate resolution can be assessed
using the explained variance (%R2) and the lack of fit (%). Wavelengths below 215 nm
were discarded as preliminary selection, due to their high variability or instrumental noise.
Therefore, the MCR processing was applied to spectral data between 215 and 450 for all
1,4-DHPs. Data processing shows the formation of a single photoproduct (PhP1) for the
same molecules or traces of a second photoproduct (PhP2). Figures 1B and 1C, respectively,
showed the concentration profiles and the UV spectra of the pure compound and the
relative photoproducts for DA9 (formation of one photoproduct) and HM16 (formation of
two photoproducts). These graphs are elaborated for each compound and reported in “Sup-
plementary Materials” (Figures S1B,C–S20B,C). The data from the photodegradation and
MCR elaboration performed on the DHP series are published in our previous paper [14]. A
first-order kinetic equation was calculated in all photodegradation experiments as follows:

ln [%1,4-DHP] = −k1 × t + 4.67

where %1,4-DHP is the percentage of residual absorbance, k1 is the photodegradation rate, t
is the time (s), and 4.67 is the logarithm of initial absorbance (100%). In all experiments, the
parameter lack of fit (% lof), which indicates the quality of the MCR results, was less than
7%, and the R2 was higher than 99.3%. The photodegradation rate of the studied drugs
was also compared by measuring the parameter t0.1, which represents the time in which a
10% degradation was verified. Table 2 summarizes the kinetic parameters calculated for
each 1,4-DHP. The data were collected from three replicate analyses for each sample, and
very low variance was measured in all the cases.

In order to confirm the results obtained from MCR methods, a method for the determi-
nation of each compound in the presence of the photodegradation products was developed
by HPLC-DAD. The chromatographic conditions were optimized to ensure the resolution
of the mixture, showing close retention times. The best results were obtained by using a
C18 stationary phase and a mobile phase consisting of water and acetonitrile pumped in
isocratic elution as described in the “Section 2.6”. The used phase composition assured the
complete solubilization of all the analytes. The calibration curves of the tested compounds
were calculated by applying the HPLC procedure to five solutions of each compound, with
concentrations ranging from 50.0 to 250.0 µg mL−1. The relative peak area was correlated
to the respective drug concentration, showing correlation coefficients all over 0.98. As an
example, the HPLC chromatogram of the NIMO solution showed a peak corresponding to
the pure compound with a retention time (rt) of 1.169 min. The following calibration curve
was calculated in this case:

[Ap] = 36.097 [C] + 4.281, R2 = 0.998

where Ap is the peak area (mAU*s) at the rt of 1.169 and C is the concentration of the
sample (µg mL−1). Limit of detection (LOD) and limits of quantitation (LOQ) were also
measured to be 1.56 µg mL−1 and 2.93–298.08 µg mL−1, respectively.
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Table 2. Kinetics parameters calculated for each 1,4-DHP.

Drugs k1 (×10−4) SD (±) k1 (×10−4) k2 (×10−4) SD (±) k2 (×10−4) R2 t0.1 (min) % lof

DA1 4.435 0.107 0.389 0.013 99.89 4.134 3.281
DA2 12.31 0.494 1.771 0.060 99.73 1.491 5.153
DA3 1.217 0.022 - - 99.93 15.064 2.693
DA4 1.226 0.020 - - 99.77 14.954 4.758
DA5 140.4 6.183 - - 99.17 0.131 6.085
DA6 1.597 0.071 - - 99.57 11.483 6.553
DA7 1.345 0.012 - - 99.96 13.633 1.963
DA8 4.322 0.091 - - 99.96 4.242 2.105
DA9 1.061 0.005 - - 99.99 17.273 0.919
DA10 18.48 0.775 - - 99.36 0.992 6.981
DA11 1.315 0.016 - - 99.94 13.939 2.406
DA12 1.389 0.009 - - 99.99 13.204 0.999
DHP1 392.4 7.800 - - 99.95 1.171 1.910
DHP5 376.3 4.900 - - 99.89 1.220 1.730
DHP6 208.0 5.000 - - 99.87 2.200 2.550
DHP7 91.00 1.900 - - 99.67 5.030 1.751
DHP9 143.3 4.300 - - 99.83 3.190 2.392
DHP10 222.3 8.100 - - 99.58 2.060 2.251
DHP11 223.5 8.900 - - 99.64 2.051 1.751
DHP12 81.30 1.800 - - 99.78 5.631 1.232
HM8 101.0 4.798 2.354 0.070 99.71 0.182 5.341
HM10 1.918 0.060 0.752 0.032 99.94 9.562 2.456
HM13 0.950 0.300 - - 99.94 19.329 2.512
HM14 22.77 0.501 - - 99.97 0.805 3.643
HM15 1.494 0.039 - - 99.32 12.274 6.263
HM16 56.28 1.262 0.781 0.013 99.95 0.326 2.199
MD20 78.12 2.442 2.335 0.050 99.84 0.235 4.035
M3 2.642 0.030 1.271 0.017 99.97 6.940 1.836
NICA 6.044 0.211 - - 99.84 3.030 3.941
NIMO 8.290 0.494 8.290 0.762 99.98 2.211 1.501

In order to assess the photodegradation profile, a solution of each compound was
prepared at a concentration value of about 200.0 µg mL−1 and exposed to light at different
interval times. The presence of the photodegradation products was verified by the forma-
tion of one or two peaks in the chromatogram during the experiments. As an example,
Figure 2 shows the sequence of the chromatograms performed for DA9, MD20, and NIMO.
The DAD absorbance spectra of the drug peaks, reported in the same figure, were then used
to confirm the identification of the pure compound and the photodegradation by-products.
The peak purity of all the analytes was confirmed by the constancy of the DAD spectra
along the single peaks.

3.2. Selection of Independent Variables for QSPR Method Elaboration

For each 1,4-DHP, 1875 molecular descriptors were calculated using PaDEL-Descriptor
software version 2.21 and used to create the data matrix. The first optimization of this
matrix was carried out by deleting the zero or constant variables. In this case, a matrix of
1427 descriptors was obtained. These new data were processed using MATLAB software
(release R2021a, The MathWorks, Inc., MA, USA), in which the constant rate k of the
degradation process was used as a dependent variable. The regression toolbox [22] includes
four selection strategies (models of all subsets, direct selection, genetic algorithms, and
sequential substitution remodeled), which can be coupled with a regression method. In
our study, the selection of descriptors was a very complex procedure. Various algorithms
have been tested, but none were able to define a group of variables that would provide
satisfactory results in the subsequent prediction step. The selected algorithm was OLS,
which provides the regression coefficients while minimizing the residual sum of squares
(RSS). The aim of the method is to minimize the prediction error between the predicted
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and real values by taking into account the sum of squared errors instead of the errors
as they are, because sometimes they can be negative or positive, and they could sum
up to a nearly null value [23]. Specifically, the applied “Forward selection” allowed
us to insert the variables sequentially within the model [24]. The first variable to enter
into the equation is the one with the highest positive or negative correlation with the
dependent variable. This variable is placed in the equation only if it satisfies the entry
criterion. If the first variable has been included, the independent variable not present
in the equation that has the highest partial correlation is considered the next one. The
procedure ends when there are no more variables that satisfy the insertion criterion, and
the determination of the more informative variables is defined by evaluating the regression
coefficients of each variable. The processing performed selected 17 molecular descriptors as
independent variables. Their values for each compound are summarized in Table 3. These
descriptors included physicochemical parameters, 2D autocorrelations, and 3D spatial
distributions. For example, the Ghose-Crippen-Viswanadhan octanol–water partition
coefficient (ALogP) represents the logarithm of the partitioning coefficient between octanol
and water used in determining both the pharmacokinetic and pharmacodynamic behaviors
of a molecule. This parameter is calculated from the AlogP model, consisting of a regression
equation based on the hydrophobicity contribution of 115 atom types, including C, H, O,
N, S, Se, P, B, Si, and halogens [25]. The 2D autocorrelation encodes the structure of the
molecules and the numerical properties assigned to atoms. In this series, the following
parameters were selected: the autocorrelation descriptors as AATSC5m (centered Broto-
Moreau autocorrelation—lag 5/weighted by mass), GATS5m (Geary autocorrelation—lag
5/weighted by mass), MATS4s (Moran autocorrelation—lag 4/weighted by I-state), and
MATS5c (Moran autocorrelation—lag 5/weighted by charges); the electrotopological state
atom-type descriptor as minHBd (minimum E-states for (strong) hydrogen bond donors),
and minHBint7 (minimum E-state descriptors of strength for potential hydrogen bonds
of path length 7); the largest chain descriptors as nAtomLC (number of atoms in the
largest chain); the ring count descriptors as nFRing (fused ring count) and nT10HeteroRing
(number of 10-membered rings (includes counts from fused rings) containing heteroatoms
(N, O, P, S, or halogens)); and the ChiChain descriptor as SCH-6 (simple chain, order 6) and
VCH-5 (Valence chain, order 5). The 3D correlations define the radial distribution function
(RDF) in 3D space. Formally, the RDF of an ensemble of N atoms can be interpreted as the
probability distribution to find an atom in a spherical volume of radius r. In this series,
we used: RDF40m (040/weighted by relative mass), RDF45m (045/weighted by relative
mass), RDF85m (085/weighted by relative mass), and RDF115e (115/weighted by relative
Sanderson electronegativities). A 3D WHIM descriptor as E3m (3rd component accessibility
directional WHIM index/weighted by relative mass) was also added [26].

Figure 3 shows the weighted regression coefficient (Bw) plot. In general, for all selected
methods, such as fitness functions, the RMSECV and coefficient of determination (R2

cv) are
used in cross-validation.

In addition, the Pearson correlation heatmap of the model variables was calculated.
It is depicted in Figure 4. This heatmap shows the relationship between the different
molecular descriptors selected by calculating the Pearson coefficient (Rp2) [27]. In general,
the overall correlation between the variables is low, with Rp2 values ranging from −0.4
to 0.4. However, some interesting positive relationships can be observed, as follows: RDF
descriptors are highly correlated with each other, and a strong correlation was found
when comparing nT10HeteroRing vs. nFRing and nAtomLC vs. MATS5c. In contrast,
correlations with a negative sign were observed for the descriptor pairs E3m vs. GATS5m
and nAtomLC vs. MATS4s.
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Table 3. Molecular descriptors values selected as independent variables.

Compound ALogP AATSC5m MATS5c MATS4s GATS5m SCH-6 VCH-5 minHBd minHBint7 nAtomLC nFRing nT10HeteroRing RDF40m RDF45m RDF85m RDF115e E3m

Calibration set
DA1 0.895 0.5349 −0.0763 −0.091 0.960 0.328 0.029 0.277 1.541 7 2 1 12.672 13.082 6.3882 5.3440 0.219
DA2 1.784 12.455 −0.1343 −0.092 0.928 0.316 0.029 0.266 1.500 7 2 1 23.441 14.137 6.3882 5.3440 0.468
DA3 1.198 0.6475 −0.1391 −0.070 0.995 0.279 0 0.252 0 7 1 1 12.991 12.828 8.4192 11.175 0.108
DA4 1.198 0.3788 −0.1377 −0.071 1.005 0.279 0 0.255 0 7 1 1 12.987 11.390 10.488 15.520 0.172
DA5 0.531 1.0708 −0.3468 −0.070 0.966 0.232 0 0.287 0 7 2 2 18.319 12.670 5.6093 7.2459 0.244
DA6 1.721 7.3378 −0.0287 −0.071 0.914 0.177 0.118 0.262 0 7 1 1 14.711 8.9512 5.1640 5.3099 0.201
DA7 1.198 1.0262 −0.2355 −0.079 0.991 0.196 0 0.279 0 7 1 1 11.716 11.609 4.6429 5.3100 0.179
DA8 1.198 0.7416 −0.1399 −0.074 0.996 0.245 0 0.257 0 7 2 1 11.954 11.300 6.8782 5.4597 0.190
DA9 1.198 1.1070 −0.1436 −0.070 1.001 0.196 0 0.269 0 7 1 1 11.656 11.066 4.8526 5.3092 0.129
DA10 1.588 −2.2961 −0.2223 −0.119 1.087 0.104 0 0.307 0 7 1 1 8.6260 4.6878 3.0658 5.3097 0.051
DA11 1.211 −0.0733 −0.0964 −0.074 0.997 0.260 0.039 0.264 0 7 1 1 12.545 14.596 10.913 9.0331 0.154
DHP1 2.151 −6.9717 −0.4033 0.094 1.013 0.264 0 0.248 0.183 4 1 1 31.851 23.834 9.9394 4.3322 0.366
DHP6 2.113 1.0891 −0.3044 −0.084 0.869 0.264 0 0.261 0.191 4 1 1 33.429 25.382 8.1966 7.1145 0.364
DHP11 0.884 −3.0051 −0.3548 −0.033 0.939 0.284 0 0.288 0.215 4 1 1 31.568 23.373 7.8238 4.0094 0.386
HM10 2.728 −0.5443 −0.0922 −0.184 0.850 0.149 0 0.268 0.121 11 1 1 26.156 19.072 14.842 13.939 0.379
HM13 2.872 −3.5382 −0.0939 −0.181 0.791 0.149 0 0.266 0.163 11 1 1 22.243 15.955 22.571 11.192 0.322
HM14 2.788 7.1796 −0.0891 −0.092 0.941 0.149 0 0.308 1.532 11 1 1 21.555 19.234 13.523 11.140 0.306
HM15 2.788 2.2566 −0.1016 −0.183 0.988 0.149 0 0.291 1.532 11 1 1 20.069 13.500 19.511 14.199 0.256
HM16 2.559 1.2276 −0.1192 −0.119 0.880 0.149 0 0.336 1.648 11 1 1 23.994 21.070 11.162 14.199 0.323
NIMO 0.727 −4.1293 −0.1769 −0.095 1.057 0.129 0 0.390 1.906 7 0 0 16.456 15.744 4.2296 6.2738 0.111

Prediction set
DA12 1.211 −0.4667 −0.1001 −0.078 0.997 0.260 0.029 0.269 0 7 1 1 12.708 12.200 10.202 14.360 0.175
DHP5 2.505 −5.7584 −0.2736 0.013 1.016 0.264 0 0.285 0 4 1 1 35.806 22.011 12.323 5.1042 0.271
DHP7 1.849 0.5783 −0.3282 −0.106 0.882 0.264 0 0.292 0.092 4 1 1 22.168 18.126 8.0499 7.1145 0.342
DHP9 2.203 1.4613 −0.2254 0.062 0.873 0.264 0 0.329 0 4 1 1 17.679 16.303 10.610 7.8853 0.253
DHP10 2.467 1.9612 −0.2013 −0.082 0.861 0.264 0 0.298 0 4 1 1 37.457 23.559 10.756 7.8853 0.258
DHP12 0.619 −3.2561 −0.3772 −0.087 0.954 0.284 0 0.319 0.105 4 1 1 21.045 16.118 7.6773 4.0094 0.359
HM8 1.485 4.3519 −0.2163 −0.054 0.832 0.251 0 0.321 0 4 1 1 24.438 19.468 13.238 10.310 0.343
M3 0.825 3.5196 −0.2307 −0.114 0.874 0.264 0 0.302 0 4 1 1 17.510 12.141 7.5004 6.4756 0.302
MD20 2.058 3.0868 −0.2009 −0.043 0.838 0.149 0 0.316 0 7 1 1 22.172 15.548 8.1647 5.3099 0.418
NICA 0.906 −3.4479 −0.2082 −0.037 1.091 0.231 0 0.364 0.741 8 0 0 19.970 15.665 9.4702 10.748 0.115
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3.3. QSPR Model Elaboration

The calibration set, based on the values of k (variable Y) as a function of the
17 molecular descriptors (variable X), was used to obtain the QSPR model by once again
adopting the OLS algorithm. In a second step, a full-cross procedure was applied to validate
the defined model, adopting a leave-one-out method. Satisfactory statistical results were
obtained and reported in Table 4. Figure 5 shows the sample distribution in correlation
with the measured k values and the predicted ones from the full cross-validation procedure.
The OLS procedure carried out the following model equation:
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K = 1.216 × 103 + 2.100 × 10−3 ALogP − 6.597 × 10−4 AATSC5m − 1.453 × 10−2 MATS5c
+ 6.744 × 10−2 MATS4s + 5.535 × 10−3 GATS5m − 3.136 × 10−2 SCH-6 + 2.516 × 10−2 VCH-5
− 2.316 × 10−2 minHBd + 3.159 × 10−3 minHBint7 − 1.681 × 10−3 nAtomLC + 1.964 × 10−3 nFRing
+ 8.021 × 10−3 nT10HeteroRing + 7.442 × 10−4 RDF40m + 3.947 × 10−6 RDF45m
+ 4.102 × 10−5 RDF85m + 1.163 × 10−5 RDF115e − 9.327 × 10−3 E3m

Table 4. Statistical results obtained after application of full cross-validation procedure.

Compound k (×10−3) k (×10−3)
Error %Experimental Value Predicted Value

Calibration set
DA1 0.443 0.452 1.878
DA2 1.231 1.226 −0.400
DA3 0.122 0.120 −1.215
DA4 0.123 0.129 4.884
DA5 14.042 14.043 0.007
DA6 0.160 0.161 0.632
DA7 0.134 0.136 0.788
DA8 0.432 0.429 −0.788
DA9 0.106 0.097 −9.039
DA10 1.848 1.852 0.221
DA11 0.132 0.126 −4.333
DHP1 39.240 39.239 −0.002
DHP6 20.800 20.801 0.006
DHP11 22.350 22.351 0.005
HM10 0.192 0.197 2.814
HM13 0.095 0.095 0.299
HM14 2.277 2.292 0.623
HM15 0.149 0.143 −4.165
HM16 5.628 5.616 −0.221
NIMO 0.829 0.830 0.118

Prediction set
DA12 0.139 0.135 −2.704
DHP5 37.630 35.454 −5.783
DHP7 9.100 9.683 6.403
DHP9 14.330 15.072 5.179
DHP10 22.230 22.264 0.154
DHP12 8.130 8.770 7.876
HM8 10.099 10.365 2.635
M3 0.264 0.228 −13.662
MD20 7.812 7.978 2.123
NICA 0.604 0.640 5.813

As further validation, the defined model was applied to an external set of the molecules
listed in the prediction set (Table 1), with very good results reported in Table 4 and depicted
as a correlation between the experimental and calculated responses (Figure 6). In addition,
an independent PCA on the original data, in which new variables were calculated as linear
combinations of the old ones, was also performed. In these cases, the data were centered
and scaled [2]. This elaboration allowed us to obtain two new matrices from the original
input matrix (matrix X), represented by the scores (matrix of the sample information) and
the loadings (matrix of the projections of the molecular descriptors in the PC space). The bi-
plot graph shown in Figure 7 represents scores and X-loadings. Non-overlapping figures of
scores and X-loadings are shown in the “Supplementary Materials” (Figures S21 and S22).
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4. Discussion

In a general procedure of QSPR modeling, numerous molecular descriptors of each
compound are calculated in the datasets, and a reliable model of the training dataset is
constructed to predict a property from these calculated descriptors using classification
or regression methods (e.g., multiple regression analysis, PLS regression, support vector
machine (SVM), and random forest). As a last step, the performance of the elaborated
model is evaluated by predicting the same properties of the compounds in the test dataset
that are not used for model construction (prediction set).

Herein, a QSPR model was elaborated to correlate the photodegradation rate and the
molecular structure of a small set of compounds belonging to different 1,4-DHP series.
The presence of different functional groups on the same scaffold confers on the molecules
different selectivities towards L- and T-type calcium channels as well as different sensitivity
to light. Thus, the validated chemometric approach, by means of frequently used molecular
descriptors, may provide reliable predictions regarding the light stability properties arising
from the chemical structures of compounds.

First, the selected compounds in the ethanol solution were exposed to light under mod-
erate irradiation conditions due to the high light sensitivity of some molecules compared to
others. Some 1,4-DHPs completely degraded after only 15 min of exposure, whereas others
still retained a residual percentage of 50% after 150 min, but at the end of the experiment
(300 min), all molecules were completely degraded. In fact, t0.1 values ranged from 0.13 min
for DA5 to 19.33 min for HM13. Data processing, carried out using the MCR procedure,
highlighted the formation of PhP1 corresponding to the oxidation product in which the
dihydropyridine ring undergoes aromatization for DA3, DA4, DA5, DA6, DA7, DA8, DA9,
DA10, DA11, DA12, DHP1, DHP5, DHP6, DHP7, DHP9, DHP10, DHP11, DHP12, HM13,
HM14, HM15, and NICA and a trace of PhP2 for DA1, DA2, HM8, HM10, HM16, MD20,
M3, and NIMO. This procedure allowed us to define the value of the photodegradation
rate (k1 and k2) for each compound, as reported in Table 2. The values of t0.1 were also
calculated to compare the photodegradation process.

The results from chemometric methods were validated by HPLC-DAD analysis. The
compounds were analyzed at different interval times, as described. During light exposure,
the formation of secondary peaks was observed, and the correspondence with the absorp-
tion spectra obtained by MCR processing was verified. For example, Figure 2 shows the
sequence of the chromatograms performed for DA9, MD20, and NIMO and the relative
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absorbance spectra corresponding to the chromatographic peaks. The obtained spectra for
the pure compound and the by-products were very similar to those carried out from MCR
procedures, despite the fact that the solvent of the mobile phase was different from the
solvent used to prepare the standard solutions.

A dedicated software was used to calculate a large number of molecular descriptors
that could be used to compare the properties of the different chemical structures. The
most important variables were selected by using the OLS algorithm. The Toolbox includes
the “Forward selection” approach, which allows starting from an empty set and adding
variables sequentially to this set, one at a time. In each iteration, the criterion to select
which variable to include is based on the minimization of RMSECV. In this approach,
results can be biased by the first variables included in the selected set [24]. Among all the
calculated descriptors, 17 were chosen as being responsible for significant changes in the
molecular properties, with a RMSECV of 0.0002. This step is crucial and must be executed
carefully to avoid both the exclusion of descriptors that bring useful information from the
system and the indiscriminate use of a greater number of descriptors, which could increase
random noise and reduce the robustness of the model. Figure 3 shows the Bw regression
coefficient values. Some of them had a high Bw value and, of course, were most important
in the model building. Other ones showed a small coefficient, and their influence may
be negligible. Moreover, the variables with a positive regression coefficient were directly
proportional to the response, and, on the contrary, the other with a negative coefficient
were indirectly proportional. In this case, the most important variables were MATS4s,
SCH-6, VCH-5, minHBd, and MATS5s, all belonging to the 2D autocorrelation descriptors.
Moreover, MATS4s and VCH-5 were directly correlated to the k values: molecules that
have high positive values for these descriptors showed a high value of k and negatively
affected the photodegradation process; thus, high values of these descriptors make the
molecules less light-stable. On the contrary, SCH-6, minHBd, and MATS5s were inversely
correlated to the k values, that is, high values of these molecular descriptors lead to greater
stability of the molecules. The importance of these descriptors can be due to their influence
on the oxidation process of the tested molecules. In fact, 2D autocorrelation descriptors are
related to the spatial distribution of a generic molecular property in the molecular structure
space and measure the strength of a relationship between atoms at a predefined distance.
They are calculated by using various molecular properties that can be represented at the
atomic or molecular surface level [6]. For example, MATS4s defines the distribution of
physicochemical properties along the topological surfaces of the molecules as a positive
coefficient, and it is weighted by Sanderson electronegativities [28]. According to Miranda-
Quintana et al., the oxidation potential of a molecule increases as its electronegativity
increases and also increases as its electronegativity in its oxidized state increases [29].
Thus, high values of these autocorrelation descriptors increase the k value and increase the
photodegradation rate of the molecules.

In a second step, the QSPR model was elaborated to correlate photodegradation rate
and molecular descriptors. The model was validated by the fully cross method, adopting
a leave-one-out procedure, and as reported in Table 4, satisfactory statistical results were
carried out with a relative error percentage of 0.090% associated with an optimized num-
ber of eight PC. This multivariate regression allowed us to obtain the equation reported
above, which defines the influence of explanatory variables on a dependent variable [30].
The model calculates the partial regression coefficients, which measure, in our case, the
contribution of each descriptor as the value of k varies. From a statistical point of view,
the calculated equation represents the mathematical formalization of the associative link
between k and the previously selected molecular descriptors. The sign of the regression
coefficient indicates the “direction” of the relationship: the positive sign indicates a con-
cordance between the variables (an increase in x corresponds to an increase in y), and the
negative sign indicates a discordance (an increase in x corresponds to a decrease in y). The
absolute value of b indicates the “degree” of the relationship (the larger the value of b, the
more the variable x influences the variable y).
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In addition, PCA explorative analysis allows us to obtain a bi-plot graph of scores
and loadings showing the distribution of the molecules with respect to the descriptors and
giving 28.45% of the explained variance (EV) for PC1 and 21.94% EV for PC2 (Figure 7
or Figures S21 and S22). Score plots allowed us to rapidly locate similar objects: similar-
structure molecules positioned themselves close together; in fact, three groups of molecules
can be identified in the score plot corresponding to the different classes of compounds. DA
series were close in the upper left quadrant, whereas HM series were close in the right
quadrant, and DHP series were distributed in the lower left quadrant. This demonstrates
how the presence of a distinct halogen group on the benzene ring affects the various
molecular properties. Strongly correlated variables will have approximately the same
weight value when they are positively correlated, and in a loadings plot, they will appear
near each other, while negatively correlated variables will appear diagonally opposite to
each other. Thus, drugs placed in the right-hand quadrant of the score plot had a large value
for the variables located to the right of the loading plot and a small value for the variables
to the left of the loading plot. Among the most important descriptors, the compound
belonging to the HM series had large values of minHBd and MATS5s and small values
of MATS4s and SCH-6. On the contrary, DA and DHP compounds had large values of
MATS4s, SCH-6, and VCH-5 and small values of minHBd and MATS5s.

An independent validation was performed by applying the defined model to an
external set of the molecules listed in the prediction set (Table 1). These compounds were
subjected to photodegradation under the same stress conditions adopted for the calibration
samples, and the k values were calculated by MCR analysis. As reported in Figure 6
and Table 4, the photodegradation rate of these molecules was predicted with satisfactory
results and a relative error percentage of 5.03%. Based on these results and comparing the
structures of the different molecules, it can be assumed that the presence of two NO groups
on the pyridine ring influences the stability of molecules, making them more sensitive to
light. These molecules showed indeed lower t0.1 values. The presence of halogens, instead,
confers high stability.

However, reaching definitive conclusions may not be straightforward considering
that the scaffold of the studied compounds is variously functionalized. Consequently,
developing a QSPR prediction model capable of correlating the three-dimensional chemical
features of each compound with its sensitivity to light might be an invaluable tool in better
understanding the pharmaceutical properties of this class of compounds.

5. Conclusions

The combined use of QSPR analysis and multivariate methods represents an innova-
tive and promising approach in the analytical field. QSPR studies allow for the correlation
of the structural features of a molecule with a chemical or physical property. On the other
hand, chemometric methods can help define a simple and easy analytical procedure able
to build a QSPR elaboration. Herein, a QSPR model correlating the sensitivity to light of
recently synthesized 1,4-DHP compounds with molecular descriptors was elaborated with
satisfactory results, demonstrating a very good ability in the prediction of the stability of
congeneric drugs not used in the model construction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics16020206/s1, Figures S1–S20. Photodegradation
experiments of each tested compound at a concentration of 20.0 µg mL−1. (A) Spectral sequences,
(B) concentration profiles of the pure compounds and the photoproducts obtained from MCR elab-
oration, and (C) relative absorbance spectra. Figure S1: DA1; Figure S2: DA2; Figure S3: DA3;
Figure S4: DA4; Figure S5: DA5; Figure S6: DA6; Figure S7: DA7; Figure S8: DA8; Figure S9: DA10;
Figure S10: DA11; Figure S11: DA12; Figure S12: HM8; Figure S13: HM10; Figure S14: HM13;
Figure S15: HM14; Figure S16: HM15; Figure S17: MD20; Figure S18: M3; Figure S19: NIMO;
Figure S20: NICA; Figure S21: Scores plot; Figure S22: X- and Y-loadings plot.
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