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Abstract: Hyperuricemia has become a global burden with the increasing prevalence and risk of
associated metabolic disorders and cardiovascular diseases. Uricosurics act as a vital urate-lowering
therapy by promoting uric acid excretion via the kidneys. However, potent and safe uricosurics
are still in urgent demand for use in the clinic. In this study, we aimed to establish in vitro and
in vivo models to aid the discovery of novel uricosurics, and to search for potent active compounds,
especially targeting urate transporter 1 (URAT1), the major urate transporter in the kidney handling
uric acid homeostasis. As a result, for preliminary screening, the in vitro URAT1 transport activity
was assessed using a non-isotopic uric acid uptake assay in hURAT1-stably expressed HEK293 cells.
The in vivo therapeutic effect was evaluated in a subacute hyperuricemic mouse model (sub-HUA)
and further confirmed in a chronic hyperuricemic mouse model (Ch-HUA). By utilizing these models,
compound CC18002 was obtained as a potent URAT1 inhibitor, with an IC50 value of 1.69 µM, and
favorable uric acid-lowering effect in both sub-HUA and Ch-HUA mice, which was comparable to
that of benzbromarone at the same dosage. Moreover, the activity of xanthine oxidoreductase, the
key enzyme catalyzing uric acid synthesis, was not altered by CC18002 treatment. Taken together, we
have developed a novel screening system, including a cell model targeting URAT1 and two kinds of
mouse models, for the discovery of novel uricosurics. Utilizing this system, compound CC18002 was
investigated as a candidate URAT1 inhibitor to treat hyperuricemia.

Keywords: hyperuricemia; urate transporter 1; uricosurics; uric acid; inhibitor

1. Introduction

Hyperuricemia is a chronic metabolic disease typically characterized by elevated
concentrations of uric acid in the blood (420 µM in males and 360 µM in females). With
the slightly acidic property (pKa1 = 5.75, pKa2 = 10.3) and weak solubility of uric acid,
hyperuricemia is the leading risk factor for the development of gout, which is a form
of osteoarthritis resulting from the abnormal deposition of excessive monosodium urate
crystals in the osteoarticular and non-osteoarticular cavities, followed by the activation
of acute aseptic inflammation and excruciating pain [1]. Moreover, emerging evidence
has also demonstrated that hyperuricemia is closely associated with the progression of
metabolic syndrome [2], cardiovascular diseases [3], chronic kidney disease (CKD) [4,5],
etc. The report from the US National Health and Nutrition Examination Survey revealed
that the prevalence of hyperuricemia has reached 19.1% from 1988 to 1994, 25.1% from
2007 to 2008, and 20% from 2015 to 2016 [6]. Notably, the prevalence of hyperuricemia has
been rapidly increasing throughout the world, together with the growing burden of obesity
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and aging [7]. Therefore, early clinical interventions to prevent hyperuricemia are of great
clinical importance.

Uric acid is the terminal product of purine metabolism in primates, such as humans
and apes. Exogenous and endogenous purines are primarily synthesized into uric acid
in the liver. In physiological conditions, the liver produces about 300–400 mg of uric
acid per day. The uric acid is distributed throughout the bloodstream, and is excreted
through the kidney and gut, in an amount of approximately 750 mg per day [8]. Both
decreased excretion and overproduction of uric acid could disrupt uric acid homeostasis,
and thus contribute to hyperuricemia. To modulate the synthesis of uric acid, xanthine
oxidoreductase (XOR) in the liver is the key target that catalyzes the conversion from
hypoxanthine to xanthine, and subsequently from xanthine to uric acid [9]. Several anti-
hyperuricemic drugs acting as specific XOR inhibitors have been launched and are still
utilized in clinical practice to treat hyperuricemia. However, side effects limited the use of
several XOR inhibitors. The current first-line XOR inhibitor is allopurinol, which has been
used clinically for over 50 years [10].

However, not all hyperuricemic patients are sensitive to XOR inhibitors. About two-
thirds of uric acid is known to be excreted through the kidney, while the another one-third
is excreted through the gut [11]. Notably, the kidney is the principal organ for the excretion
of uric acid, and patients with hyperuricemia associated with chronic kidney disease
showed significant deterioration in renal function, contributing to abnormal uric acid
homeostasis [12]. Furthermore, impaired renal uric acid excretion contributes to clinically
sustained hyperuricemia with an incidence of nearly 90% [13]. Prospective studies have
shown that the efficacy of XOR inhibitors was remarkably limited, especially in patients
with primary hyperuricemia not combined with CKD, in which uricosurics have better
performance [13,14].

Uricosurics have been developed as anti-hyperuricemic drugs by improving uric acid
excretion. In the kidney, the excretion of uric acid involves several renal physiological
processes and sophisticated regulation of functional proteins in the luminal membrane.
The uric acid handling mechanism is known as the four-component system [15]. Urate in
the blood flows through the afferent glomerular arteriole and is completely filtered into
the glomerulus. The filtered urate reaches the proximal tubule S1 and is subsequently
reabsorbed by the epithelial cells. Continually, the reabsorbed urate is secreted by the
proximal tubule S2, accounting for around 50% of the filtered load. Ultimately, approx-
imately four-fifths of secreted urate is eventually reabsorbed at a post-secretory site in
proximal tubule S3, while only about 10% of the total urate is eliminated from the body
through urine. Notably, almost 90% of the uric acid filtered through the renal glomerulus
is reabsorbed from the renal tubules into the bloodstream by several urate transporters,
which are therefore strongly involved in the handling of blood uric acid levels [16].

Functional urate reabsorbing transporters in the kidney consist of the organic anion
transporters family (OATs) and glucose transporter 9 (GLUT9). Urate transporter 1 (URAT1)
is a member of OATs, with a characteristic structure consisting of 12 transmembrane
domains. Located at chromosome 11q13.1, it has 555 amino acid residues and is encoded by
the solute carrier family 22 member 12 (SLC22A12) [17]. With a restricted expression within
the epithelial cells in the apical membrane of renal proximal tubules [18], URAT1 is an
integral membrane protein mediating the exchange of extracellular urate with intracellular
organic anions, such as lactate anions, and inorganic anions, such as chloride ion. Therefore,
urate is reabsorbed from the lumen of the tubule into the epithelial cells. This process of
reabsorption is not specific to a single substrate and displays affinity towards a broad range
of organic anion substrates. Moreover, the motive force for URAT1-mediated absorption
mainly depends on the ionic concentration gradient on both sides of the lumen, and the
accumulation of extracellular organic anions, such as lactate, acetoacetate, hydroxybutyrate,
and succinate, could disrupt the functional exchange of substrate and impede the urate
reabsorption. URAT1 exhibits a profound capacity to maintain uric acid homeostasis in
humans, mediating the majority of uric acid reabsorption in the kidney, and thus the
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dysfunction of URAT1 could lead to several uric acid-associated diseases. The rs475688
polymorphism of SLC22A12 is associated with the susceptibility to gout [19]. The loss-
of-function mutation in the URAT1 gene, which could disrupt the function of URAT1
and hinder uric acid reabsorption, results in renal hypouricemia type 1, whose plasma
uric acid level is generally below 60 µM (1 mg/dL) and uric acid excretion is close to
100%. Remarkably, mouse URAT1 displays 74% homology with human URAT1, and it
has a relatively low affinity for urate (Km = 371 µM) compared to that of human URAT1
(Km = 1200 µM) [20]. Knockdown of the mouse SLC22A12 gene may lead to a mild rise in
urinary uric acid excretion without a significant reduction in serum uric acid [21]. Different
from URAT1, which mainly recognizes urate as the substrate, glucose transporter 9 (GLUT9)
mediates the transport of urate as well as fructose [22]. GLUT9 is located in both the apical
and basolateral membrane of proximal tubules, reabsorbing intraluminal urate into the
tubular cells, and intracellular urate back to the interstitium, respectively. About 5% of the
uric acid variance could be attributed to the GLUT9 mutation [23]. The expression and
function of GLUT9 exhibit specificity across species. In mice, GLUT9 is expressed in both
the distal and proximal tubules, which plays a multifaceted role in regulating uric acid
homeostasis within the kidney.

Current clinically used uricosurics, including benzbromarone, probenecid, lesinurad,
and dotinurad all have significant inhibitory effects on URAT1. The half maximal inhibitory
concentration (IC50) value of benzbromarone against URAT1 is 0.3 µM [24]. Besides
URAT1, benzbromarone and probenecid also down-regulated the expression of GLUT9.
However, benzbromarone has been largely withdrawn from the European market, due
to severe hepatotoxicity reports [25]. Moreover, the short half-life limited the use of
probenecid [26]. Lesinurad, a selective URAT1 inhibitor with an IC50 value of 3.5 µM
launched by AstraZeneca [27], was the initial FDA-approved antihyperuricemic drug
targeting the URAT1. However, it has been withdrawn from the US market since 2019,
shortly after being launched in 2015 [28]. Dotinurad was the latest URAT1 inhibitor, which
was launched only in Japan in 2020. Although few studies regarding its clinical utility and
safety have been reported [29], more information is still required. Among several selective
URAT1 inhibitors under clinical trials, SHR4640, developed by Hengrui Pharma, is one of
the fastest, with an IC50 value against hURAT1 of 33.7 nM [30]. Novel URAT1 inhibitors
are still in urgent need of being successfully developed.

In this study, we aimed to establish in vitro and in vivo models, especially for screening
potent uricosurics targeting URAT1 and obtaining active compounds. An experimental
basis for the development of novel uricosurics has been provided.

2. Material and Methods
2.1. Chemicals and Reagents

To induce hyperuricemia, oteracil potassium (OP) (Meilunbio, Dalian, China), yeast
extract (Oxoid, Hampshire, UK), and uric acid (Shanghai Yuanye Biotechnology, Shanghai,
China) were purchased. Benzbromarone was from Excella GmbH (Feucht, Germany).
Febuxostat was from TCI (Tokyo, Japan). SHR4640 and compound CC18002 were synthe-
sized by Professor Zhiyan Xiao’s lab at the Institute of Materia Medica, CAMS & PUMC.
For the measurement of in vivo experimental parameters, the kit for detecting blood uric
acid was purchased from Biosino (Beijing, China), and the kit to determine plasma XOR
activity was from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). For the
in vitro experiment, Krebs-Ringer buffer (Solarbio, Beijing, China) and uric acid kits (abcam,
Cambridge, UK) were purchased. Milk-derived XOR, xanthine, and DMSO were purchased
from Sigma-Aldrich (Darmstadt, Germany).

2.2. Animals

Male ICR mice weighing 20–24 g and male Kunming mice weighing 12–16 g were both
purchased from Vital River Laboratory Animal Technology (Beijing, China) and housed in
a constant environment with a temperature from 22 ◦C to 24 ◦C and humidity from 40%
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to 60%. The light/dark cycle was switched every 12 h. Free access to food and water was
allowed at all times.

2.3. Cell Culture

Human embryonic kidney (HEK293) cells were cultured in the incubator at 37 ◦C with
5% CO2, supplemented with DMEM medium containing 10% fetal bovine serum, as well as
50 U/mL penicillin and streptomycin. URAT1 over-expressed HEK293 (URAT1-HEK293)
cells were constructed as reported previously [31] and cultured in the same condition as
the HEK293 cells.

2.4. Uric Acid Uptake Assay

HEK293 cells and URAT1-HEK293 cells were prepared in 24-well plates with around
2.5 × 105 cells per well, and the uric acid uptake assay was applied when cells were around
80% confluent. URAT1-HEK293 cells were pretreated with compounds at various concen-
trations for 30 min. Both URAT1-HEK293 cells and HEK293 cells were then incubated
with 750 µM uric acid buffer (dissolved in Krebs-Ringer buffer, pH 8.0) to allow uric acid
uptake. After 30 min, cells were washed with cold PBS buffer and then collected to measure
the intracellular uric acid level, following the manufacturer’s instructions. Briefly, 50 µL
cell suspension and 50 µL reaction buffer were added to a black 96-well plate with a clear
bottom and incubated away from light at 37 ◦C for 30 min. The intracellular uric acid level
was measured using the fluorometric method. Protein concentration was then measured
using BCA kits to normalize the fluorescence intensity. The amount of uric acid uptake
by HEK293 cells was used as a blank value to exclude the intracellular uric acid uptake
through the URAT1-unrelated method. IC50 value was eventually analyzed using the
equation of log (inhibitor) vs. response-variable slope (four parameters) in Graphpad
Prism 8.

2.5. Hyperuricemic Mice Models

To induce subacute hyperuricemia (sub-HUA), ICR mice were administrated with
uric acid (200 mg/kg, i.p.) and OP (200 mg/kg, i.p.) at 0 h, followed by another OP
administration (200 mg/kg, i.p.) at 2 h. Drugs were orally given at 1 day and 2 h prior
to the first induction. Tail blood samples were collected at 0, 4, 6, 8, 10, 12, and 24 h to
determine blood uric acid level. The uric acid–time curve was obtained, and the area under
the curve (AUC0–24h) was subsequently calculated.

To induce chronic hyperuricemia (Ch-HUA), Kunming mice were fed with a special
feeding chow containing yeast extract (20%) and OP (5%) and observed for 14 days. For
pharmacological evaluation, drugs were orally administrated for 7 consecutive days from
day 3. Negative control mice received equivalent vehicles. Blood uric acid level was
monitored by collecting tail blood samples 6 h after drug administration. At day 10, mice
were intraperitoneally injected with 1 mg/mL heparin and then euthanized. Whole blood
samples were collected for further analysis.

2.6. Determination of Biochemical Parameters

To determine blood uric acid level, tail blood (20 µL) was collected and mixed with
acetone solution (65 µL) (acetone/saline = 9:4), followed by centrifugation at 10,800 rpm
for 7 min. The supernatant was then collected for uric acid measurement, according to the
manufacturer’s instructions.

Plasma was collected after the whole blood was centrifuged at 3000 rpm for 4 min.
Plasma XOR activity was measured using the commercial kits, under the manufacturers’
instructions.

2.7. Evaluation of XOR Activity In Vitro

XOR activity was assessed by measuring XOR-catalyzed uric acid. XOR (3 U/L) was
co-incubated with 0.1% DMSO as a control group or different doses of compounds in PBS
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buffer (50 mM potassium phosphate, 0.1 mM EDTA, pH 7.8) in a 96-well plate. Xanthine
(50 µM), the substrate, was added to a final volume of 250 µL to start the reaction at 37 ◦C
for 20 min. The synthesized uric acid was determined by the absorbance read at 293 nm.
Taking the uric acid production in the control group as 100%, the inhibition rates of the
compounds were calculated.

2.8. Statistical Analysis

All data were presented as mean ± SD. All data conformed to the normal distribution
assessed using the D’Agostino–Pearson test or Shapiro–Wilk test when small sample sizes
were applied. One-way ANOVA was used for statistical analysis among multiple groups
using the software Graphpad Prism 8. A p value of less than 0.05 was considered significant.

3. Results

Part I: In vitro and in vivo modeling for the discovery of URAT1 inhibitor

3.1. Establishment of an In Vitro Model for URAT1 Inhibitor Preliminary Screening

URAT1-HEK293 cells were applied to evaluate URAT1 activity, and HEK293 cells were
used as the negative control. Intracellular non-isotopic uric acid uptake within 30 min in
URAT1 over-expressed cells was remarkably higher than that in HEK293 cells (Figure 1A).
Subtracting the uric acid uptake in HEK293 cells, the content of intracellular uric acid uptake
in URAT1 over-expressed cells represented actual uric acid transport activity by URAT1.
The IC50 value under multiple doses of drug treatment was fitted by Graphpad Prism
8. Using this method, the IC50 values against URAT1 activity of positive control drugs,
benzbromarone, and SHR4640, were 0.44 µM and 0.13 µM, respectively (Figure 1B,C).
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Figure 1. Assessing uric acid transport activity of URAT1 in cells. (A) The uric acid uptake was mea-
sured in both HEK293 cells (HEK293) and URAT1 over-expressed HEK293 cells (URAT1-HEK293).
Cells were incubated in 750 µM uric acid buffer for 30 min, then collected for determination of
intracellular uric acid level. Con, control group; UA, uric acid uptake group, n = 3. *** p < 0.001 be-
tween indicated groups; ns p > 0.05 between indicated groups. Different doses of (B) benzbromarone
or (C) SHR4640 were pretreated in URAT1 over-expressed HEK293 cells for 30 min. The level of
intracellular uric acid was determined and normalized by protein content. n = 3.
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3.2. Establishing the Hyperuricemic Mouse Models for Pharmacological Evaluation

Hyperuricemic mouse models were established to evaluate the therapeutic effect of
uricosurics targeting URAT1. The sub-acute hyperuricemic (sub-HUA) mice were induced
by uric acid and OP, and maintained high blood uric acid level for about 24 h. After being
induced by uric acid and OP for 4 h, the level of blood uric acid in sub-HUA mice was
significantly elevated, peaked at about 8 h, and finally dropped to baseline at about 24 h
(Figure 2A). By orally administrating benzbromarone at the dose of 25, 50, and 100 mg/kg,
the peak uric acid levels at 8 h were decreased by 7.7%, 20.5%, and 35.4% (Figure 2B), and
the AUC0–24h was reduced by 7.7%, 20.5% and 35.4% (Figure 2C), respectively, compared
to the model control sub-HUA group. Similarly, SHR4640 administration reduced the peak
uric acid level by 9.5%, 28.2%, and 46.7% (Figure 2D), and decreased the AUC0–24h value
by 11.2%, 27.6%, and 45.9% (Figure 2E) at the dose of 50, 75 and 100 mg/kg, respectively.
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Figure 2. Characteristics of sub-HUA hyperuricemic mouse model. (A) After the mice received the
first injection of uric acid and OP, blood uric acid level was measured at 0, 4, 6, 8, 10, 12, and 24 h,
respectively. The levels of blood uric acid in the sub-HUA hyperuricemic mouse model (n = 9) are
presented. In sub-HUA mice receiving 25, 50, and 100 mg/kg benzbromarone, respectively, (B) the
blood uric acid–time curve and (C) the value of AUC0–24h is presented (n = 10). In sub-HUA mice
administrated with 50, 75, and 100 mg/kg SHR4640, respectively, (D) the blood uric acid–time curve
and (E) AUC0–24h was obtained (n = 8). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. sub-HUA.

To induce the chronic hyperuricemia (Ch-HUA) model, mice were constantly fed with
a special purine-rich diet containing yeast extract and OP. Within 14 days of observation,
the Ch-HUA mice exhibited steady hyperuricemia from day 3 (Figure 3A). In Ch-HUA
model mice, benzbromarone daily administrated daily at a dose of 25, 50, or 100 mg/kg,
respectively, for 7 consecutive days. The blood uric acid level was dose-dependently and
time-dependently decreased (Figure 3B). During the treatment, the blood uric acid level in
benzbromarone-treated Ch-HUA mice remained no lower than that in control mice (Con)
for 7 days, which did not drop to an abnormal lower range. However, the inhibition of uric
acid degradation by OP administration in benzbromarone-treated Ch-HUA mice should
also be considered.
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Part II: Discovery of novel uricosurics targeting URAT1

3.3. Discovery of URAT1 Inhibitory Compound In Vitro

The in vitro uric acid uptake assay was applied for preliminary screening of a com-
pound set, and CC18002 (Figure 4A) was obtained as an active compound. CC18002
exhibited potent URAT1 inhibitory activity, with an IC50 value of 1.69 µM (Figure 4B).
The IC50 value provided by our uric acid uptake assay was a good match with the result
from the transient expression system with URAT1-HEK293 cells and 14C labeled uric acid
substrate.
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3.4. The Uric Acid-Lowering Effect of CC18002 In Vivo

To evaluate the uric acid-lowering effect of CC18002 in vivo, 100 mg/kg CC18002 and
the positive control drug, benzbromarone, was orally administrated in sub-HUA mice.
Compound CC18002 administration significantly decreased the peak level of blood uric
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acid by 30.6% at 8 h, which was greater than that of benzbromarone at the same dosage,
by 20.1% (Figure 5A). CC18002, as well as benzbromarone treatment, both remarkably
decreased the AUC0–24h value (Figure 5B).
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Figure 5. Therapeutic evaluation of the active compounds in both sub-HUA and Ch-HUA mouse
models. (A) The uric acid–time curve and (B) AUC0–24h were obtained in sub-HUA mice treated
with benzbromarone or CC18002 at the same dose of 100 mg/kg, respectively. n = 9. ** p < 0.01
vs. sub-HUA. (C) Blood uric acid level was monitored in Ch-HUA model mice, which were orally
administered with benzbromarone or CC18002 at the same dose of 50 mg/kg for 7 days. n = 10.
### p < 0.001 vs. Con; *** p < 0.001 vs. Ch-HUA.

The effect of CC18002 on hyperuricemia was further confirmed in chronic Ch-HUA
mice. Ch-HUA model mice were orally administered with benzbromarone or CC18002 at
the same dose of 50 mg/kg. CC18002 treatment significantly ameliorated hyperuricemia
from day 3 and gradually lowered the blood uric acid level until day 7, which was compa-
rable to benzbromarone at the same dosage (Figure 5C).

3.5. CC18002 Had No Effect on XOR

Finally, we examined the effect of CC18002, the active compound targeting URAT1, on
XOR which is the key enzyme in uric acid synthesis. Firstly, we examined its inhibitory
effect on XOR in vitro. Co-incubated with 0.1 µM febuxostat, the clinical XOR inhibitor, the
XOR activity was almost completely inhibited, by 94.8%± 1.1%. However, the XOR activity
was barely inhibited, by 6.3% ± 2.2%, with co-incubation of 10 µM CC18002 (Figure 6A).
Next, we evaluated the effect of CC18002 on XOR in vivo, where Ch-HUA model mice
were used. As shown in Figure 6B, the plasma XOR activity was elevated in Ch-HUA
model mice. Benzbromarone and CC18002 treatment for 7 days did not significantly alter
plasma XOR activity in Ch-HUA mice. Our result indicated that CC18002 had no effect on
XOR activity either in vivo or in vitro.
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4. Discussion

In this study, we established an in vitro uric acid uptake model for the preliminary
screening of novel URAT1 inhibitors, and two hyperuricemic mouse models with different
pathophysiological characteristics to validate the therapeutic effect on hyperuricemia. By
applying these models, we discovered compound CC18002 as a potent URAT1 inhibitor
exhibiting strong URAT1 inhibitory activity in vitro and a favorable uric acid-lowering
effect in both sub-HUA and Ch-HUA hyperuricemic mouse models, respectively.

The key technique in measuring URAT1 activity in vitro was to accurately detect
the small amount of intracellular uric acid. The conventional uric acid uptake assay
applied 14C-labelled uric acid and measured the amount of intracellular radiation by liquid
scintillation counter to calculate URAT1 transport activity [32,33]. In this study, we applied
a safer non-isotopic method by precisely measuring the intracellular uric acid at a relatively
low level. The calculated IC50 value of the positive control drugs, benzbromarone, and
SHR4640, was 0.44 µM and 0.134 µM, which was 1.5 fold and 3.6 fold of the reported value,
respectively. These results indicated that the accuracy of this new non-isotopic cell model
evaluating URAT1 activity in this study was comparable to the isotopic model reported
previously [24]. Moreover, this non-isotopic model was more environmentally friendly
and therefore advantageous for the applications in the future. Notably, the discovery
of a selective URAT1 inhibitor still required the evaluation of its activity on other urate
transporters, including GLUT9, ABCG2, OAT1, OAT3, etc. The combination of the effects
on these urate transporters contributed to the final pharmacological effect of the compound.
In this study, we did not exclude the effect of tested compounds on other urate transporters.
Further studies will be required to confirm these effects.

The uric acid homeostasis was maintained by the proper synthesis and excretion
of uric acid. Most hyperuricemic mouse models were induced by the substrate of XOR,
which increased the production of uric acid and therefore elevated the blood uric acid
level. Hypoxanthine [34–38], adenine [39,40], and inosine [41] were commonly used as the
substrate to induce hyperuricemic mouse or rat models. Given that OP acts as a uricase
inhibitor, preventing the breakdown of uric acid into allantoin and helping to maintain
the high level of uric acid, it was usually administered together with the major inducer.
However, these models were more suitable for the pharmacological evaluation of uric
acid-synthesis targeted drugs.

To evaluate the therapeutic effect of uricosurics, hyperuricemic models directly in-
duced by uric acid, the end product of purine metabolism, were designed. Previous work
in our lab showed a hyperuricemic mouse model (UA-HUA) induced by 150 mg/kg uric
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acid (i.p., 0.1 mL/10 g body weight) and 150 mg/kg OP (i.p., 0.1 mL/10 g body weight).
The blood uric acid level of these UA-HUA mice reached a peak level of over 200 µM at
about 1 h, and then dropped back to baseline at about 4 h. Benzbromarone (100 mg/kg) and
SHR4640 (100 mg/kg) were used as positive control and orally administrated 1 day and 2 h
prior to the induction. However, although benzbromarone treatment significantly lowered
the blood uric acid level and the AUC0–4h value, SHR4640 treatment did not exert a uric
acid-lowering effect during the 4 h observation. It was speculated that the hyperuricemic
state should last longer and the peak blood uric acid level be higher, to allow enough time
and space for URAT1 inhibitors to take effect. Therefore, in this study, the sub-HUA mouse
model was designed. A higher dose of uric acid (200 mg/kg, i.p., 0.1 mL/10 g body weight)
and OP (200 mg/kg, i.p., 0.1 mL/10 g body weight) was firstly injected at 0 h, and another
200 mg/kg OP (i.p., 0.2 mL/10 g body weight) was injected at 2 h to retard the degradation
of uric acid, therefore maintaining the high level of uric acid for a longer time. As our
results showed, the high level of blood uric acid, over 400 µM at peak level, lasted for
almost 24 h in sub-HUA mice, allowing sufficient time for active compounds to lower blood
uric acid level by promoting uric acid excretion. Effectively, the uric acid-lowering effect of
benzbromarone and SHR4640 was observed from 6 h in sub-HUA mice. Therefore, it was
speculated that the false-negative rate of discovering active uricosurics should be lower
in the sub-HUA mouse model than in other hyperuricemic models that were maintained
for a shorter time. The sub-HUA mouse model was characterized as uric acid-induced
severe hyperuricemia lasting for almost 24 h and easily operated, which was suitable for
pharmacological evaluation of uric acid-excretion targeted drugs.

Although patients had a transient high level of blood uric acid occasionally, chronic
hyperuricemia more commonly occurred in the clinic. Ch-HUA mice were induced by a
freely accessed diet containing purine-rich yeast extract, therefore exerting a steady high
level of blood uric acid for at least 14 days. The Ch-HUA mouse model was characterized
as long-lasting and steady hyperuricemia, which was closer to clinical hyperuricemia. In
this study, this model was used to confirm the therapeutic effect of active compounds
and further evaluate its sustainable effect by multiple dosing. Apart from being utilized
to evaluate the therapeutic effect of anti-hyperuricemic drugs, it might be further used
to induce hyperuricemia-related metabolic disorders and be of more utilization in the
mechanism studies.

In this study, we used an in vitro uric acid uptake assay for preliminary screening
and obtained compound CC18002, exerting potent URAT1 inhibitory activity, with an IC50
value of 1.69 µM, which was comparable to that of benzbromarone. The uric acid-lowering
activity of CC18002 in vivo was then evaluated in sub-HUA mice. CC18002 treatment
markedly decreased blood uric acid level and the AUC0–24h value, which was non-inferior
to benzbromarone at the same dosage of 100 mg/kg. Furthermore, the therapeutic effect
of CC18002 in Ch-HUA mice was gradually enhanced during the administration period,
similar to that of benzbromarone at the same dosage of 50 mg/kg. Finally, we excluded
the possible effect of CC18002 on XOR, the key enzyme mediating uric acid synthesis.
Our result indicated compound CC18002 to be a potent URAT1 inhibitor and an excellent
candidate for hyperuricemia treatment.

5. Conclusions

Targeting URAT1, a system for the discovery of novel uricosurics was established,
including the cell model based on the non-isotopic microscale uric acid detection tech-
nique in URAT1-overexpressed HEK293 cells, the sub-HUA mouse model characterized as
transient severe hyperuricemia, and the Ch-HUA mouse model characterized as chronic
steady hyperuricemia. By applying these in vitro and in vivo models, we found compound
CC18002 to be a potent URAT1 inhibitor with favorable URAT1 inhibitory activity and
uric acid-lowering effects. Our result supported CC18002 being further developed to treat
hyperuricemia.
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