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Abstract: Breast cancer (BC) has become the fifth most prevalent cause of cancer-related morbidity,
attracting significant attention from researchers due to its heightened malignancy and drug resistance.
Conventional chemotherapy approaches have proven inadequate in addressing all BC subtypes,
highlighting the urgent need for novel therapeutic approaches or drugs. Curcumin (CUR), a phyto-
chemical derived from Curcuma longa (turmeric), has shown substantial potential in inhibiting BC
cell migration, metastasis, and proliferation. However, the use of CUR in this context comes with
challenges due to its dynamic and easily degradable nature, poor aqueous solubility, low bioavailabil-
ity, rapid metabolism, and swift systemic elimination, collectively limiting its clinical applications. As
such, we provide an overview of the properties, synthesis, and characterization of the hybridization
of CUR and its analogue with chemo-drug building blocks. We reviewed research from the last five
years on CUR’s biogenesis with respect to the regulation of BC, revealing that CUR participates in
arresting BC cells in the cell cycle and significantly induces apoptosis in BC cells. Information on the
chemotherapeutic and antitumor mechanisms of CUR in BC, including regulation of the cell cycle,
increased cell apoptosis, and inhibition of multidrug resistance (MDR), was compiled. Additionally,
we provide an overview of CUR loaded into nanomaterials that are cotreated with other chemothera-
peutic drugs, such as paclitaxel, thymoquinone, and tamoxifen. In this review, we discuss different
types of nanoparticles that can be used for CUR delivery, such as polymeric nanoparticles, carbon
nanotubes, and liposomes. By comparing the size, entrapment efficiency, drug-loading capacity,
release time, biocompatibility, pharmaceutical scale, and reproducibility of various nanomaterials, we
aimed to determine which formulations are better suited for loading CUR or its analogue. Ultimately,
this review is expected to offer inspiring ideas, promising strategies, and potential pathways for
developing advanced anti-BC strategy nanosystems in clinical practice.

Keywords: breast cancer; curcumin; drug delivery; nanosystems

1. Introduction

The incidence of breast cancer (BC) has been steadily increasing, surpassing that of
lung cancer, making it currently the fifth leading cause of cancer-related morbidity [1]. BC is
associated with four significant biomarkers: estrogen receptor (ER), progesterone receptor
(PR), human epidermal growth factor 2 receptor (HER2), and Ki67. BC can be categorized
into four subtypes based on the expression of these biomarkers: luminal A (ER/PR+,
HER2−, Ki67−), luminal B (ER/PR+, HER2+, Ki67+), HER2-overexpressed (HER2+),
and triple-negative breast cancer (TNBC) (ER−, PR−, HER2−) [2]. ER-positive BC cases
account for approximately 70% of all BC cases, while TNBC, the most heterogeneous
subtype, represents only 15% of BC cases [3]. Current effective therapies for BC encompass
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surgery, radiotherapy, chemotherapy, and hormonal therapy [4]. Nevertheless, studies
have revealed drug resistance in traditional treatments, particularly among BC cell lines,
with a specific emphasis on the TNBC subtype [5,6]. Consequently, the exploration of
phytochemicals derived from herbs such as curcumin has piqued the interest of scientists
as a potential component to enhance BC therapeutic strategies.

Curcumin (C21H20O6) constitutes the primary bioactive compound found in the plant
Curcuma longa, commonly known as turmeric. The chemical structure of curcumin (CUR)
is visually depicted in Figure 1, comprising two phenyl rings adorned with hydroxyl (-OH)
and methoxy (-OCH3) groups. Hydroxyl groups consist of an oxygen and a hydrogen
atom, while methoxy groups consist of an oxygen atom and three hydrogen atoms. These
functional groups can affect the chemical properties and reactivity of a compound. Notably,
the hydroxyl radical (•OH) ranks as one of the most reactive and transient reactive oxygen
species (ROS) produced in aerobic organisms [7], and its involvement was implicated
in the induction of ferroptosis [8]. Combining curcumin with autophagy inhibitors (3-
methyladenine) has been shown to trigger apoptosis and autophagy in castration-resistant
prostate cancer cells. This combination also enhances the expression levels of TfR1 and IRP1,
which are indicative of curcumin-induced iron deprivation [9]. In a separate study, Liu
et al. suggested that platelets can inhibit the growth of methicillin-resistant Staphylococcus
aureus by promoting excessive production of hydroxyl radicals, leading to induced apopto-
sis [10]. Wu’s research demonstrated that hydroxyl radicals can promote the generation
of ROS, activate MAPK phosphorylation, and induce apoptosis in chemo-drug-resistant
cells [11]. Additionally, curcumin has been found to regulate cancer cell proliferation by
causing cell-cycle arrest at the G2/M phase [12].
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From a molecular perspective, previous meta-analyses reinforced the ability of cur-
cumin to reduce CRP (C-reactive protein) concentrations [13]. CUR possesses a wide range
of pharmacological activities and has been extensively studied for new drug development.
Furthermore, the coadministration of CUR with other phytochemicals improves anticancer
activity by regulating multiple molecular targets [14] and modulating various intracellular
signaling pathways, including transcription factors such as NF-κB [15], Akt [16], CDK,
MAPK [17], ERK [18], and Bcl-2 [19]. In traditional Chinese medicine, curcumin was em-
ployed in clinical meta-analyses for the treatment of conditions such as arthritis [20], pain
and analgesia [21], menstrual pattern disorders [22], and premenstrual syndrome [23].

Over time, CUR and its analogue have been extensively validated for their relevance
to cancer treatments [24,25]. CUR has been employed as an adjuvant in various cancer
types, including lung cancer, brain cancer, and BC [26,27], maximizing the pharmacokinetic
profile, ensuring specific cell internalization, and enhancing anticancer efficacy against
BC [28]. Hence, CUR was investigated as a potential anti-BC agent that disrupts a positive
loop through the CXCL12/CXCR4 axis [29].

2. Bioavailability of Curcumin

Curcumin, a natural compound found in the turmeric plant Curcuma longa, is gener-
ally considered safe when consumed in amounts commonly found in foods and traditional
herbal remedies. In 2021, the European Food Safety Authority (EFSA) established an
acceptable daily intake of CUR at 3 mg/kg body weight [30]. For optimal pharmacological
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effects, an oral dose of more than 8.0 g/day is often required. Numerous clinical studies
demonstrated that a daily intake of 12 g of CUR is well tolerated and safe [31].

One challenge with curcumin is its low solubility in water. Curcumin is hydrophobic,
meaning it does not readily dissolve in water. This characteristic makes it difficult for
the body to absorb when ingested. Curcumin is primarily found in its keto form under
acidic and neutral conditions [32] and is highly unstable. Studies show that approximately
90% of curcumin degrades within 30 min when exposed to a pH of 7.2 at 37 ◦C in a 0.1 M
phosphate buffer and serum-free medium [33].

The efficiency of CUR metabolism varies among species, including mice, rats, and hu-
mans, whereby metabolic-O-conjugation to curcumin-O-glucuronide (COG) and curcumin-
O-sulfate (COS) and bioreduction to tetrahydrocurcumin (THC), hexahydrocurcumin
(HHC), and octahydrocurcumin (OHC) rapidly occur in the liver and intestines, fur-
ther limiting its bioavailability [34]. Research by Vareed et al. revealed that only small
amounts of unaltered CUR remain in the body’s systemic circulation [35]. The com-
pounds can also be broken down and metabolized in an acidic environment, leading to
gastrointestinal degradation.

Given curcumin’s limited bioavailability, low water solubility (≤0.125 mg/L), rapid
metabolism, and quick elimination from the body, it is considered an unstable, reactive,
and poorly bioavailable compound [23], resulting in restricted clinical use [24]. Therefore,
the main emphasis of this review is to present an overview of the clinical applications of
CUR in BC. This includes its use in combination with other chemotherapy drugs and in
nanobased systems to improve the bioavailability of CUR.

3. Curcumin Biogenesis in the Regulation of Breast Cancer

Curcumin has been utilized for centuries in traditional medicine, particularly in tra-
ditional Chinese medicine herbal systems. Previous studies demonstrated that curcumin
possesses potential chemical properties contributing to anti-breast cancer (anti-BC) effects
on several phenotypes through the following mechanisms: (a) inhibition of P-glycoprotein
activity and reduction in drug resistance; (b) induction of the cell cycle; (c) initiation of apop-
tosis and ferroptosis; and (d) regulation of the progression of the epithelial–mesenchymal
transition (EMT). These mechanisms were validated in both in vivo and in vitro studies. In
this section, we focus solely on reviewing how curcumin influences changes in the pheno-
type of breast cancer rather than its combination with traditional chemotherapy drugs.

3.1. CUR Inhibits p-Glycoprotein Activity and Reduces Drug Resistance in BC

In the late 1970s and early 1980s, Drs. Victor Ling and I. David Goldman first proposed
the concept of P-glycoproteins (P-gp) and the characterization of P-gp as a membrane
protein associated with resistance to chemotherapy in cancer cells. The overexpression of
P-gp can expel most chemotherapeutic agents, significantly contributing to P-gp-mediated
multidrug resistance (MDR) and leading to the intracellular accumulation of antitumor
drugs [29]. In this section, we exclusively review how CUR affects changes in MDR rather
than its combination with traditional chemotherapy drugs.

CUR has been illustrated as a P-gp inhibitor which can prevent BC-MDR progression.
The CUR metabolism product tetrahydrocurcumin can inhibit the efflux function of P-
gp and extend the MDR-reversing activity of curcuminoids in vivo [36]. CUR itself was
also demonstrated to be a novel inhibitor of P-pg, enhancing the response to traditional
chemotherapy drugs. Attia et al. demonstrated that combined CUR and D3 could enhance
tumor response to PAX and inhibit aldehyde dehydrogenase-1 (ALDH-1) and P-gp-MDR
levels [37]. Curcumin analogue was proven to reduce MDR1 protein expression and reverse
P-gp-MDR to enhance sensitivity to PAX [38]. CUR inhibits the efflux function of P-pg
transfecting the protein ABCB4, which is reverse-doxorubicin-resistant in BC cell lines [39].
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3.2. Curcumin Induces Cell-Cycle Arrest in BC Cells

The cell cycle is an ordered set of events that leads to cell growth and division (G1, S,
and G2 phases), and it protects proliferating cells from DNA damage [40]. CUR and CUR
analogues have been suggested to amplify the protective functions of BC cells in arresting
the cell cycle.

While every phase is involved in cancer progression, the G1 phase is often considered
particularly crucial in promoting cancer progression due to its initial position and function,
whereby cells duplicate themselves. CUR-loaded solid lipid nanoparticles (SLNs) arrest
the cell cycle at G1/S and decrease the expression of cyclin D1 (CCND1) and CDK4, which
strongly induce apoptosis and ROS reactions [41]. The codelivery of salinomycin suggests
that HA-PEG-PLGA-Cur-Sal is the most effective in preventing BC from subsequently
progressing into the S phase, where genome duplication occurs [42]. The CUR analogue
B14 induces G1 phase cell-cycle arrest and activates the mitochondrial apoptosis pathway
by altering the expression of cyclin D1 (CCD1), cyclin E1, and cyclin-dependent kinase 2
(CDK2) [43].

However, most CUR combinations arrest the cell cycle at the G2/M phase. The
integration of CUR with layered polyelectrolyte capsule (LbL) nanotemplates (NPs) showed
a significant increase in the number of cells at G2. Therefore, the percentage of apoptotic
cells was significantly increased [44]. Mesoporous silica nanoparticles can affect the cell
cycle by disrupting the microtubule assembly. Nana Li et al. compared the efficiency
effects of CUR-MSN-HA and CUR-MSN-PEI-FA in MDA-MB-231 and MCF-7 cell lines,
consequently proving that CUR-MSN-polyethyleneimine (PEI)-FA is more effective at
inducing the G2/M phase cell-cycle arrest [45]. The CUR analogue (2E,6E)-2,6-bis-(4-
hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) was shown to promote G2/M
cell-cycle arrest and apoptosis in MCF-7 cells [46]. CUR increased apoptosis in blocked
MDA-MB-231 cells at the G2 phase and inhibited the growth of TNBC by silencing EZH2
and restoring DLC1 expression [47]. Intriguingly, some research suggests a possibility that
traditional chemotherapy drug cotreatment with CUR showed different efficiencies in BC
cells and normal epithelial cells. Wei Yang Kong et al. illustrated that CUR and doxorubicin
(DOX) treatments induced G2/M arrest in MDA-MB-231 MCF-7 and MCF10A; however,
CUR induced S phase arrest in MCF10A [48]. The CUR-related molecule pentagamavunon-
1 (PGV-1) induces arrest at the M phase of the cell cycle and subsequent cell senescence
and cell death [49]. Resveratrol (RSV) is a naturally occurring compound associated with
a reduction in CCNB1, PLK1, AURKA, and AURKB along with an increase in CDKN1A
(p21) [50]. Data show that resveratrol treatment results in a reduction in S phase cell cycle
and induction of γ-H2AX [51] (Figure 2).
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3.3. Curcumin Induces Apoptosis in BC Cells

Apoptosis is the process of programmed cell death. Alterations in apoptosis can
lead to uncontrolled cell division and, consequently, tumor growth and resistance to
antitumor therapies. The relationship between the cell cycle and apoptosis is undoubtedly
a crucial aspect of cellular regulation and maintenance of tissue homeostasis. Curcumin-
loaded micelles were previously shown to efficiently penetrate MCF7 spheroids and induce
apoptosis [52].

On the one hand, CUR and its analogues activate ROS-related signaling pathways.
The CUR analogue WZ35 inhibits cell growth via the ROS-YAP-JNK signaling pathway
in BC [53]. CUR-ZIF-8 and CUR-ZIF-8-HA significantly elevate intracellular ROS levels,
subsequently resulting in the dysfunction of mitochondria and apoptosis in 4T1 cells [54].
Several studies showed that CUR effectively induces apoptosis and autophagy in TNBC
cell lines, for example, MDA-MB-231. Moreover, cotreatment with curcumin and the
chemotherapeutic drug melphalan increased MDA-MB-231 ROS levels 1.36-fold and in-
duced apoptosis [55].

On the other hand, CUR and its analogues were revealed to be significantly related to
canonical apoptosis transactor proteins P53 and P21. The activates of p53 could enhance
the transcription of proapoptotic Bcl-2 family members. The codelivery of CUR and Bcl-2
siRNA induced apoptosis [19], and the CUR analogue curcumin nicotinate (CN) inhibited
cell growth and proliferation via p53-mediated cell-cycle arrest at the G2/M phase and
apoptosis [56]. The activates of p21 typically inhibit the kinase activity of cyclin-dependent
kinases (CDKs), including those associated with CCND1, CDK4, or CDK6, and induce
cell-cycle arrest. Curcumin may affect the cell cycle by regulating the expression of the
regulatory proteins CDC25 and CDC2 via the P21 inhibitor at the G2/M phase [57]. Data
suggest that proteasome-mediated downregulation of cyclin E and upregulation of CDC
inhibitors contribute to the antiproliferative effects of CUR [58]. A combination of CUR
and thymoquinone against BC decreased caspase-3, phosphatidylinositol 3-kinase (PI3K),
and protein kinase B (AKT) protein levels, which is strongly related to P21 [59] (Figure 3).
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ROS-mediated activation of typical P53 and JNK signaling pathways.
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4. Hybridization of Curcumin and Chemotherapeutic Drug Delivery in Nanosystems

Multidrug resistance (MDR) in tumors is recognized as a significant risk factor for the
failure of chemotherapy, accounting for approximately 90% of cancer-related deaths [49].
Some studies indicated that CUR is a potential ingredient that could be encapsulated with
chemotherapeutic drugs to help reverse MDR in BC. Common chemotherapy drugs include
the anthracycline DOX, alkylating agent cyclophosphamide, antimicrotubule agent taxeme,
and antimetabolite 5-FU. Below, we report the synergism that exists between combinations
of CUR and drugs such as PTX, thymoquinone, tamoxifen, and resveratrol (RSV) and their
performance in nanodelivery systems.

4.1. Curcumin Encapsulated with Paclitaxel (PTX)

Multifunctional lipid nanoparticles are potential candidates for the codelivery of PTX
and CUR for targeted delivery and enhanced cytotoxicity in multidrug-resistant breast
cancer cells [60]. The augmentation of the therapeutic effectiveness of the coadministration
novel cationic PEGylated niosomal formulations of paclitaxel and curcumin in an MCF-7
cell line was studied [61].

The attachment of the lipoid HA-HAD to the surface of hydrophobic PLGA nanoparti-
cles to codeliver CUR and PTX can activate interactions between HA and CD44 receptor
targets on the membrane of BC cancer stem cells [62]. Amphiphilic heparin-poloxamer
P403 (HSP) nanogel that could load CUR and paclitaxel PTX encapsulation through the
hydrophobic core of poloxamer P403 confirmed a lower cytotoxicity of HSP-CUR-PTX
compared to free PTX as well as a higher inhibition effect with MCF-7 [63]. The self-
assembly-engineered PTX-CUR nanodugs showed higher therapeutic efficiency and better
prognosis than free PTX and the simple PTX-Cur mixture [64]. Biotin-poly(ethylene glycol)-
poly(CUR-dithiodipropionic acid) (Biotin-PEG-PCDA) polymeric nanocarrier loaded with
PTX, magnetic nanoparticles (MNPs), and quantum dots (QDs) was developed to overcome
the drug resistance mechanisms of the MDR-MCF-7 model [65]. The prepared PTX-CUR-
NPs had a smaller size with a low polydispersity index and showed a slow release of PTX
and CUR without any burst effect [66]. PTX-CUR-SLN has been verified as a promising
therapeutic nanoparticle-based therapy for BC and provides a novel strategy to solve the
problems of low efficacy and poor safety of clinical chemotherapy drugs [67].

4.2. Curcumin Encapsulated with Tamoxifen (TAM)

Tamoxifen (TAM) is a drug usually selected for ER-positive BC cell patients. Its mech-
anism of action involves blocking hormones that stimulate tumor cell development [68].
However, its frequent use causes serious side effects, including endometrial cancer, polyps,
secondary endometrial cancer, hyperplasia, and thromboembolic events. A previous study
showed that CUR and tamoxifen decreased the viability of BC cell lines MCF-7/LCC2
and MCF-7/LCC9 and induced cell-cycle arrest at the G2/M phase [69]. Curcumin may
prevent H19 metastasis in MCF-7/TAMR cell epithelial–mesenchymal transition-associated
metastasis [70]. TAM-CUR-loaded niosomes caused the upregulation of bax and p53 genes
and downregulation of Bcl2 owing to the higher cell uptake via the niosomal formulation
in MCF-7 [71].

4.3. Curcumin Encapsulated with Doxorubicin (DOX)

Reversion of multidrug resistance was demonstrated via the coencapsulation of dox-
orubicin and curcumin in chitosanpoly(butyl cyanoacrylate) nanoparticles [72]. CUR-
loaded solid lipid nanoparticles (SLNs) bypassed P-pg MDR in TNBC cells [73]. Am-
phiphilic copolymeric micelles were employed for doxorubicin and curcumin codelivery to
reverse multidrug resistance in breast cancer [74].

Curcumin reverses doxorubicin resistance via inhibiting the efflux function of ABCB4
in doxorubicin-resistant breast cancer cells [39].

The (DOX-CUR) micelle-treated group exhibited the highest rate of ATP inhibition,
indicating that its P-gp inhibition ability occurred through a decrease in energy availability.
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Compared with Dox treatment alone, the results showed that 15 µM of CUR combined with
DOX significantly increased apoptosis in proliferative MCF7 cells [75]. A novel biocompati-
ble magnetic nanomedicine based on beta-cyclodextrin, loaded with doxorubicin-curcumin,
was evaluated for overcoming chemoresistance in breast cancer [76].

Table 1 presents the combined use of CUR with traditional chemotherapeutic drugs
for the treatment of BC. Most assays indicated that the combination with CUR improved
the inhibition of and treatment efficacy for BC.

4.4. Curcumin Encapsulated with Methotrexate (MTX)

Methotrexate is an antimetabolite and antifolate drug that inhibits the metabolism
of folic acid by inhibiting the enzyme dihydrofolate reductase, therefore disrupting the
synthesis of DNA, RNA, and proteins and affecting the rapid growth of BC cells. The
codelivery of the model chemotherapeutic MTX and CUR was achieved by combining
nanocrystalline cellulose (NCC) and the amino acid L-lysine for an efficient delivery to MCF-
7 and MDA-MB-231 cells [77]. MTX and curcumin-coencapsulated PLGA nanoparticles
upgraded the EE and LC of CUR, which seems to be a potential BC therapeutic strategy
to treat BC [78]. Additionally, a nanocarrier system derived from the self-assembly of a
dextran–curcumin conjugate prepared via enzyme chemistry, with immobilized laccase
acting as a solid biocatalyst, was designed to effectively deliver MTX to BC cells [79].

4.5. Curcumin Encapsulated with Other Chemotherapy Drugs

5-Fluorouracil (5-FU), docetaxel (DTX), and other chemotherapy drugs were consis-
tently combined with CUR and delivered in nanosystems to enhance efficacy. 5-FU is a
pyrimidine analogue that interferes with the synthesis of DNA and RNA. CUR, berberine,
and a combination with 5-FU loaded in nanomicellar particles were able to exert a more
pronounced effect on MCF7 cells at lower doses [80]. CUR can be encapsulated with
gemcitabine as a nanosuspension to enhance its anticancer potentiality synergistically [81].
The codelivery of CUR and the chemotherapeutic drug docetaxel for the treatment of BC
addresses MDR and the better-sustained release effects [82]. CUR can be coadministered
with docetaxel as a nanosuspension to enhance its anticancer effect by increasing its oral
bioavailability and decreasing drug efflux [83] (Table 2).

Table 1. CUR cytotoxicity in combination with other chemotherapeutic drugs.

Drug/Chemotherapeutic IC50 Cell Lines Treatment Time References

CUR-PTX-D3 10.94 168 [37]

CUR-TAM 9.815
10.93

MCF-7/LCC2
MCF-7/LCC9 24, 48 [69]

CUR-TAM 31.7 MCF-7/TAMR 48 [70]

CUR-GEM-NP
6.9
4.0
5.5

MCF-7
MDA-MB-231
B16F10

24 [81]

Table 2. CUR combined with chemotherapy drugs in nanosystems.

Drug/Chemotherapeutic
Nanosystem Cell Line Hydrated Size

(nm)
Zeta-Potential

(mV)
Entrapment
Efficiency

Drug-Loading
Capacity Release Time References

CUR-PTX-HA-HAD MCF7 200–400 −26.5 78.9 ± 5.5 23.8 12 [62]
CUR-TAM-niosomes MCF7 159.45 98.37 20.68 ± 1.25 24 [71]
CUR-MTX-PLGA SK-BR-3 148.3 ± 4.07 3.41 ± 0.8 71.32 ± 7.8 22.1 ± 2.85 72 [78]

CUR-MTX-NCC MCF-7
MDA-MB-231 336.7 −33.1 22.44 48 [77]

CUR-DTX-Lip MCF7 208.53 ± 6.82 −23.1 ± 2.1 98.32% ± 2.37% 59.27% 24 [82]
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5. Delivery Platforms of Curcumin in Nanosystems

Nanosystems typically range from 1 to 100 nanometers. They can be classified accord-
ing to their composition, structure, and intended applications and include nanoparticles,
nanocomposites, nanotubes, nanofibers, nanoliquids, and other nanoporous materials.
Strategies such as nanotechnology have been used to load CUR in nanosystems to enhance
its anti-BC effects. Upon comparing different capping agents, such as chitosan, dextran,
and PEG and an emulsifier (tocopherol poly(ethylene glycol)1000, succinate, TPGS) to
those of PLGA NPs, the efficiency of encapsulation with PLGA NPs was demonstrated to
be much higher than any other cappers [84]. Herein, we provide an overview of CUR in
different nanomaterials and their loading capacity and drug release time (Figure 4). This
research illustrates that delivery in nanosystems highly improves the usage of CUR.
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Figure 4. Nanodelivery systems in BC clinical treatments with CUR and its analogues. CUR and
its analogues were delivered via different platforms. This activates several signaling pathways and
target molecules. Phosphoinositide 3-kinases (PI3Ks); protein kinase B (Akt); B-cell lymphoma 2
(Bcl-2); epidermal growth factor receptor (EGFR); cyclin-dependent kinase inhibitor (CDK); vascular
endothelial growth factor (VEGF); matrix metalloproteinases (MMP); extracellular signal-regulated
kinases (ERKs); nuclear factor kappa-light chain enhancer of activated B cells (NF-κB); poly (ADP-
ribose) polymerase (PARP); downregulated targets; upregulated targets.

5.1. Polymers for the Delivery of Curcumin

PLGA (poly(lactic-co-glycolic acid)) is a copolymer of lactic acid and glycolic acid
and has been approved by both the Food and Drug Administration (FDA) and European
Medicines Agency (EMA) as a safe substance certified for clinical application. Curcumin-
loaded PLGA NPs demonstrated high encapsulation efficiency and sustained payload re-
lease [85]. GANT61 and curcumin-loaded PLGA nanoparticles targeted GLI1 and PI3K/Akt-
mediated inhibition in BC [86]. CUR encapsulated by poly(N-isopropylacrylamide-co-
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methacrylic acid) NIPAAm-MAA nanoparticles efficiently inhibited the growth of the
MCF-7 population, providing potential for new avenues for BC treatment [87].

Different acids were used to modify nanoparticles to enhance the efficiency of CUR.
Fangyuan Guo et al. demonstrated that DOX and CUR encapsulated by folic acid-modified
nanoparticles based on a star-shaped polyester (FA-TRI-CL) strongly enhanced BC-targeting
selectivity and drug-loading capacity compared to NPs without FA. This suggests that folic
acid may be an innovative modification carrier [88]. Hyaluronic acid (HA) modification was
carried out on the surface of curcumin nanocrystals (Cur-NCs) to obtain surface-reformed
hydrophilic HA-Cur-NCs with a prolonged biodistribution in both MDA-MB-231 cells
and a murine 4T1 orthotopic BC model, providing a prospect for promoting CUR absorp-
tion in vivo and in vitro [89]. Poly-glycerol-malic acid-dodecanedioic acid(PGMD) was
fabricated to convey CUR in nanoparticles for the treatment of BC and showed apoptotic
features via the overexpression of caspase 9 and induced nuclear anomalies in the treated
MCF-7 and MDA-MB-231 cells [90]. A nanohybrid based on (Mn, Zn) ferrite nanoparticles
functionalized with chitosan and sodium alginate was employed for the loading of CUR
against BC cells [79].

Chitosan (Ch) is another popular material used for coating drugs. Ch-coated iron oxide
nanoparticles (Ch-IONPs) were fabricated to deliver a prodrug of CUR, i.e., CUR-diethyl
γ-aminobutyrate (CUR-2GE). In the presence of permanent magnets, CUR-2GE-Ch-IONPs
significantly increased the cellular uptake of and cytotoxicity toward MDA-MB-231, with a
12-fold increase in potency compared to free CUR-2GE, indicating the potential of magnetic
field-assisted delivery of CUR-2GE-Ch-IONPs for the treatment of triple-negative breast
cancer [91]. Injectable and in situ-formable thiolated chitosan-coated liposomal hydrogels
were studied as CUR carriers for the prevention of in vivo BC recurrence [92]. Curcumin-
loaded solid lipid nanoparticles bypassed P-glycoprotein-mediated doxorubicin resistance
in triple-negative breast cancer cells [73]. The codelivery of salinomycin and CUR for cancer
stem cell treatment occurred via the inhibition of cell proliferation, cell-cycle arrest, and
epithelial–mesenchymal transition [42] (Table 3).

Table 3. Polymers for the Delivery of Curcumin.

Nanosystem Hydrated Size
(nm)

Zeta-Potential
(mV)

Entrapment
Efficiency

Drug-Loading
Capacity Release Time References

CUR-CS-ODA-Nanogel 311 ± 20.29 −13.25 ± 0.35 79.56 ± 5.56% 6.55 ± 2.88% 70 h [93]
CUR-ZIF8-NP-HA 170.6 ± 11.2 −18.10 ± 1.08 56.7% 10.1 ± 1% 10 h [54]
CUR-HA-PEG-PLGA-
PEG 153.4 ± 4.6 −32.6 ± 2.5 6 h [42]

CUR-ZIF8-SF-PDA 196 −32 ± 30 44% 8.2% 24 h [94]
CUR-PTX-SLN 238.5 ± 4.79 −33.8 ± 1.26 94.2 ± 0.49% 10.98 ± 0.31% 24 h [67]
CUR-GANT61-PLGA-
NPs 347.4 ± 2.75 −21.3 ± 0.23 98.3 ± 0.33% and

99.97 ± 0.09%
25.6 ± 1.23% and
28.6 ± 2.05% 24 h [86]

CUR-NIPAAm-MAA 166 ± 6.0 89.6% 24 h [87]
CUR-DOX-FA-NPs 186.53 ± 2.78 −18.87 97.64% 20.27% 24 h [88]
CUR-peptide-HSA-NPs 246.5 ± 2.5 −24.5 ± 1.5 77.8% 5.52% 12 h [95]
CUR-HA-NC 161.85 ± 1.70 −25.0 ± 0.8 80% 48 h [89]
Cu-ALG-CHITr-MNP 122.4 ± 4.10 20–40 70% 35% 36 h [96]
CUR-Letrozole
NiCoFe2O4-L-Silica-L-C-
Niosome

120.1 92.73%, 81.21% 28.7% 8 h [97]

CUR-RGD-Lip 97.4 ± 7.10 76.86 ± 7.52% 28.96 ± 3% 3 h [98]
CUR-DTX-Lip 208.53 ± 6.82 −23.1 ± 2.1 98.32 ± 2.37% 59.27% 24 h [82]
CUR-PTX-NP 125.1 ± 0.44 −24.16 ± 0.22 54.12 ± 0.22% 28.16% 72 h [61]
CUR-Cis-NLips 174.9 ± 18.4 99.81% 23.86% 24 [99]

5.2. Liposomal Formulations for the Delivery of Curcumin

Over the past decades, research efforts have been concentrated on liposomes, i.e.,
spherical vesicles characterized by a membrane comprising a double layer of phospholipids
and cholesterol. Liposomes play a crucial role in safeguarding drugs from degradation
and mitigating drug-associated nonspecific toxicity. Their primary applications encompass
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the transportation of antibiotics, fungicides, vaccines, and anti-inflammatory drugs [100].
Nanoscale liposomes are increasingly recognized as a highly beneficial drug delivery
systems for anticancer agents, leading to an enhanced treatment of drug-resistant tumors
and diminished toxicity [101]. CUR was encapsulated by RGD-modified liposomes (RGD-
Lip-CUR) and induced apoptosis in MCF-7 cells, indicating high cytotoxicity effects on a
BC cell line [98].

When HER2-targeted immunoliposomes are coupled with trastuzumab, there is a
dramatic increase in the antiproliferative effects of CUR and an increase in the positive
therapeutic effect [102]. Liposome-loaded metal ions (Zn) as nanoscaled reaction vehicles
were used to carry out a synthesis reaction between Zn and CUR and presented enhanced
cellular-uptake and ROS-generation effects [103]. Double-layer cisplatin (Cis)-membrane-
intercalated CUR reduced cytotoxic effects and was capable of inducing apoptosis in BC
cells [99].

5.3. Inorganic Nanomaterials for the Delivery of Curcumin

Inorganic nanomaterials are composed of non-carbon-based elements.
The codelivery of curcumin and letrozole in NiCoFe2O4-L-Silica-L-C-niosome en-

hanced the apoptosis rate in both MDA-MB-231 and SK-BR-3 cells and downregulated
Bcl-2, MMP 2, MMP 9, and cyclin D [97]. CUR-loaded SLN enhanced anticancer efficiency
in BC [41]. A type of composite nanoparticles loaded with epirubicin and CUR within
an SLN system loaded for treating recurrent BC showed good blood and immune com-
patibility and did not affect intracellular superoxide dismutase (SOD) and intracellular
catalase (CAT) [104]. An ingenious nonspherical mesoporous SLN cargo with CUR induced
mitochondria-mediated apoptosis in breast cancer (MCF-7) cells [105]. Hydrazinocurcumin-
encapsuled nanoparticles “re-educated” tumor-associated macrophages and exhibited
antitumor effects on breast cancer following STAT3 suppression [106].

5.4. Polymeric Micelles for the Delivery of Curcumin

Nanogel-based drug delivery systems have been broadly used for cancer treatment.
CUR-octadecylamine (ODA1, OAD2, OAD3) showed that the presence of CUR-loaded

chondroitin sulfate nanogels could successfully increase cellular uptake in comparison with
free curcumin [93]. HA-decorated mixed nanomicelles loaded with CUR highly expressed
CD44 receptor to provide an efficient drug delivery system [107]. The preparation of CUR
TPP-PEG-PE nanomicelles with mitochondrial targeting and lysosomal escape functions
exhibited the effect of promoting BC cell apoptosis [108]. Cholesterol- and vitamin E-
conjugated PEGylated polymeric micelles were also employed for the efficient delivery
and enhanced anticancer activity of curcumin [109].

5.5. Newly Developed Platforms for the Delivery of Curcumin

Recent years have witnessed a captivating surge in the discovery and exploration of
innovative materials, capturing the attention of researchers and scientists globally.

Cell-permeable NBD peptide-modified liposomes encapsulated by hyaluronic acid
coating were employed for the synergistic targeted therapy of metastatic inflammatory
breast cancer [110].

Carbonic anhydrase IX-guided albumin nanoparticles were studied for hypoxia-
mediation of triple-negative breast cancer cells in the killing and imaging of patient-
derived tumors [111]. Curcumin–human serum albumin nanoparticles decorated with
PDL1-binding peptide were used for targeting PDL1-expressing breast cancer cells [95].
Aptamer-functionalized curcumin-loaded human serum albumin (HSA) nanoparticles
were employed for targeted delivery to HER2-positive breast cancer cells [108].

Silk fibroin (SF)-related nanoparticles show great potential in developing alternative
carriers for anticancer drugs due to their biocompatibility and low immunogenicity. Edy
Meiyanto et al. produced a core–shell microfluidic-assisted ZIF-8 nanoparticle protected by
SF as an intermediate layer and coated by PDA for zinc ion release. It successfully reduced
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the nanoparticle size from 1000 nm to 170 nm, which enhanced permeability and reten-
tion (EPR) effects [94]. C. Laomeephol produced dimyristoyl glycerophosphorylglycerol
(DMPG)-based liposomes for inducing the rapid gelation of SF and delivering CUR, which
enhanced the stability of CUR [112].

Graphene oxide (GO) and graphene quantum dots (GQDs) are suitable nanocarriers for
hydrophobic and low-bioaccessible antitumor materials such as CUR [113]. The synthesis
and characterization of a CHIT–carbon quantum dot/Fe(2)O(3) nanocomposite comprising
curcumin was used for targeted drug delivery in BC therapy [114]. Phenyl boronic acid
(PBA)-conjugated ZnO nanoparticles were synthesized for the tumor tissue-specific delivery
of curcumin and caused apoptotic cell death in MCF-7 human BC cells by inducing ROS
and mitochondrial damage [115].

6. Discussion

Curcumin is a natural compound found in the rhizomes of turmeric, a member of the
ginger family. It is a polyphenolic compound with a chemical structure that includes two
aromatic rings and a diketone group. Many polyphenolic compounds, including CUR, act
as antioxidants. Moreover, this review provides an overview not only of CUR but also of its
analogue, which shows more hydrophilicity among the chemical properties. In Section 2,
we reviewed research from the previous five years relating to CUR’s biogenesis in the
regulation of BC. Studies show that CUR participates in arresting BC cells in the cell cycle
and significantly induces the apoptosis of BC cells. Some research illustrates that CUR
and its analogues are involved in the progression of ROS, which aligns with its chemical
structure characteristics.

We compiled information on the chemotherapeutic and antitumor mechanisms of
CUR in BC, including the regulation of the cell cycle, increased cell apoptosis, and inhibition
of MDR. Additionally, we provided an overview of CUR loaded in nanomaterials cotreated
with other chemotherapeutic drugs such as paclitaxel, thymoquinone, and tamoxifen. These
combinations significantly improve antitumor activity and reduce toxicity via synergistic
and additive effects against BC cells. Previous investigations validated the potential of
CUR and chemotherapy drugs in new combinations for selectively targeting cancer cells
and suppressing MDR. To date, the exact mechanisms underlying these chemotherapeutic
and antitumor effects are not fully understood. However, its hydrophobic nature limits its
clinical use.

Upon comparing the clinical treatment effects between CUR-combined chemothera-
pies with delivery via nanosystems or without such delivery, we concluded that the former
is far more effective. Therefore, it is necessary to produce an effective formulation to load
CUR or its analogues. Knowledge of the pharmacokinetics and pharmacodynamics of
nanosystems also needs to be updated. For efficient clinical translation, a more rational
design of nanoparticles loaded with CUR is necessary for preclinical experimentation and
clinical trials against BC.

Currently, nanotechnology-based delivery systems are being investigated to minimize
risks to humans and increase the chemotherapeutic effects of CUR. In this review, we
discussed different types of nanoparticles that can be used for CUR delivery, including
polymeric nanoparticles, carbon nanotubes, and liposomes. Comparing the size, entrap-
ment efficiency, drug-loading capacity, release time, biocompatibility, pharmaceutical scale,
and reproducibility of different nanomaterials further elevated the elucidation of the kind
of formulations that are better for loading CUR or its analogues. Hyaluronic acid (HA)
hydrophilic surface-rehabilitated CUR may be suitable to modify the formation, which can
be combined with nanoparticles. From Table 2, we can conclude that HA-modified nanoma-
terials show higher entrapment efficiency and drug-loading capacity. PLGA is a common
nanoparticle; however, whether it is the perfect choice for CUR is hard to determine. The
key technical difficulty is to overcome CUR’s low water solubility by increasing the EE
and LC of CUR and its analogues. According to the above tables, we can conclude that the
narrower hydrate size showed better levels of EE and LC to enhance clinical treatments
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in BC. Rising materials, such as SF-related nanoparticles and GQD, reveal the significant
potential of employing nanodelivery systems. Upon comparing graphene oxide with
GQD, the latter showed clearly better clinical results in BC, mainly different due to its the
material diameter.

In conclusion, CUR delivery via nanodelivery systems for treating BC is worth further
investigating.

7. Conclusions

CUR unquestionably exhibits potential as an anticancer agent, with relevance not only
to breast cancer but also to lung cancer, gastric cancer, and other malignancies. Previous
studies indicated that CUR’s low delivery efficiency, attributed to its rapid metabolism and
swift systemic elimination, can be enhanced via the combination of nanosystem delivery
and nanotechnology.

While this review presents the prospect of delivering CUR via nanosystems for the
treatment of breast cancer, it is imperative to recognize that there is still a considerable
journey ahead in order to completely elucidate the intricate mechanisms of curcumin
concerning various types of cancers.
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