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Abstract: Drug nanosuspensions offer a promising approach to improve bioavailability for poorly
soluble drug candidates. Such formulations often necessitate the inclusion of an excipient to stabilize
the drug nanoparticles. However, the rationale for the choice of the correct excipient for a given drug
candidate remains unclear. To gain molecular insight into formulation design, this work first utilizes
a molecular dynamics simulation to computationally investigate drug–excipient interactions for a
number of combinations that have been previously studied experimentally. We find that hydrophobic
interactions drive excipient adsorption to drug nanoparticles and that the fraction of polar surface
area serves as a predictor for experimental measurements of nanosuspension stability. To test these
ideas prospectively, we applied our model to an uncharacterized drug compound, GDC-0810. Our
simulations predicted that a salt form of GDC-0810 would lead to more stable nanosuspensions
than the neutral form; therefore, we tested the stability of salt GDC-0810 nanosuspensions and
found that the salt form readily formed nanosuspensions even without the excipient. To avoid
computationally expensive simulations in the future, we extended our model by showing that simple,
two-dimensional properties of single drug molecules can be used to rationalize nanosuspension
designs without simulations. In all, our work demonstrates how computational tools can provide
molecular insight into drug–excipient interactions and aid in rational formulation design.

Keywords: formulation; nanosuspension; molecular dynamics

1. Introduction

Previous estimates suggest that approximately 40% of active pharmaceutical ingre-
dients are poorly soluble in water [1]. To improve the bioavailability of such compounds,
many formulations utilize drug nanosuspensions. Nanosuspensions possess a high ratio
of surface area to volume, which greatly aids drug dissolution and increases saturation
solubility [2–12]. Furthermore, they can be formed with minimal amounts of potentially
toxic solvents and can be delivered through oral [13], dermal [14], pulmonary [15], or
intravenous administration [16], which demonstrates both safety and convenience [17].

Such nanosuspensions can be formed through two classes of methods, broadly con-
sidered to be top-down methods and bottom-up methods. Top-down methods utilize
wet milling to produce nanoparticles from larger drug crystals [18–21], while bottom-up
methods precipitate nanocrystals out of a drug solution [22–24]. In both cases, it is often
necessary to stabilize the nanosuspension through the use of excipients. These excipients
adsorb to the drug crystal and prevent aggregation or Ostwald ripening, which can de-
grade the nanosuspension’s stability [25]. Drug–excipient interactions are highly specific,
and different excipients work better for different drugs; however, discovering the optimal
excipient is often carried out through experimental screening [26–31]. Gaining insight into
the interactions that drive excipient adsorption to drug nanoparticles could help rationalize
formulation design.
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Computational modeling offers a promising approach for examining the interactions
that dictate nanosuspension stability [32–34]. Electronic structure methods such as den-
sity functional theory can be used to most accurately evaluate drug–nanoparticle interac-
tions [35,36]. At the cost of some accuracy relative to electronic structure methods, molecular
dynamics (MD) simulations can study larger systems and explore longer timescales, making
them advantageous in a variety of drug nanosuspension studies. Indeed, MD simulations
have been used to calculate the rate of dissolution of different drug crystal polymorphs [37],
determine the drug–excipient binding free energy [38], and examine the structural features
of excipient adsorption to a drug [39–44]. The results of these studies suggest that computa-
tional modeling may provide crucial insight into how excipient–drug interactions dictate
nanosuspension stability.

The aim of this work was to utilize MD simulations to elucidate the structural fea-
tures that dictate nanosuspension stability. Previous work from Ferrar et al. synthesized
drug nanoparticles via a top-down milling technique, characterized their stability through
dynamic light scattering experiments, and noted that excipient amphiphilicity seemed
important for nanosuspension stabilization [39]. To rationalize these previous experimental
results, we created a computational framework to systematically investigate the same
drug–excipient combinations. We performed MD simulations on each drug crystal and
searched for properties predictive of experimental measurements of nanoparticle stability.
After finding the polar fraction of solvent-accessible surface area predicts nanosuspension
stability, we applied our predictions to a system not previously studied, GDC-0810, which
is a former breast cancer candidate compound, is strongly hydrophobic and poorly soluble,
and can be crystallized in isoforms with different polarities. This system served as an
independent test of our model. We then used our library of simulated drug–excipient
pairs to create a simplified, analytical model capable of making similar predictions without
computationally expensive simulations. Overall, our work connects a microscopic mea-
surement, simulated nanosuspension polarity, to a macroscopic quantity, experimental
nanosuspension stability, and thus creates a pathway for rational formulation design.

2. Methods
2.1. Molecular Dynamics Simulation

To examine nanosuspension stability, all-atom molecular dynamics simulations were
performed on a training set of three different drug molecules (naproxen, indomethacin, and
itraconazole) with six different excipients (sodium dodecyl sulfate (SDS), sodium octyl sul-
fate (SOS), sodium deoxycholate (SDC), polyethylene glycol (PEG), polypropylene glycol
(PPG), and poloxamer), as characterized by previous experiments reported in Ferrar et al.
and in Tables S1–S3 [39]. After characterizing our training set, we then performed simula-
tions with two different crystal forms of GDC-0810 [45], one of which is neutral and one of
which is ionic. The GDC-0810 test simulations were performed with all six excipients that
were utilized in the training set and Tween 80 for a total of seven excipients. Each simu-
lation began by identifying the crystal structure of the drug. Naproxen (ID = COYRUD),
indomethacin (ID = INDMET), and itraconazole (ID = TEHZIP) were extracted from the
Cambridge Structural Database [46], while the GDC-0810 crystal structure was determined
experimentally in a neutral (ID = gened) and ionic (ID = genea) form [45]. Each crystal
was then replicated to a cube of approximately 35 Å per side using the periodic boundary
conditions builder function in MOE 2020.9 [47]. Next, GROMACS 2020.4 editconf was used
to center the crystal in a square simulation box with side lengths of 110 Å. Excipients were
added randomly in solution to the simulation box using GROMACS insert-molecules [48].
The number of excipients added was chosen to match experiments:drug (wt.%) of 10%,
and the exact number of drugs and excipients used in our simulations are provided for the
training set (Table S4) and test set (Table S5).

Systems built by GROMACS were then loaded into Schrödinger 2020.4 Maestro [49].
Similar to the experimental formulations, we prepared computational drug–excipient
combinations in aqueous solutions. This preparation was performed using Desmond
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Simulation Builder, which solvated the simulation box with a side length of 110 Å with
simple point charge (SPC) water, added sodium ions when they were necessary to balance
the charge of excipients, and prepared the simulation to run in the OPLS3e force field [50].
Each setup was relaxed using the Desmond Minimization protocol, which performed 100 ps
of Brownian dynamics at 10 K with a 1 fs timestep. We then ran production Desmond
Molecular Dynamics simulations [51] under constant numbers, particles, and temperatures
(NPT ensemble) for 200 ns at 300 K and 1.01325 bar. Restraints were placed on the drug
crystal with a force constant of 5 kcal mol−1 Å−2. Data were saved every 100 ps, and the
first 100 ns were excluded from all analysis for equilibration.

2.2. Simulation Analysis

Analysis of each simulation began by calculating a molecular contact matrix using
MDAnalysis 1.1.1 [52,53]. Contacts between two molecules, either drug or excipient, were
included if any heavy atoms were within 4.5 Å. This contact matrix then served three
purposes: (1) we computed the atomistic contact maps, or frequencies at which excipient
atoms and drug atoms were in contact; (2) we computed the probability distribution of
whole molecule contacts; and (3) we output PDB files of the drug crystal and all excipients
or counterions that were in contact with the drug crystal, which thus excluded water and
any excipient or counterion not in contact with the crystal. We then input these PDB
files into MOE 2020.09 to calculate the surface properties of our excipient–drug complex,
including the fraction of polar surface area (FASAp), accessible surface area (ASA), radius
of gyration (Rg), and dipole. Fitting to a linear regression and least absolute shrinkage and
selection operator (LASSO) were performed using MATLAB 2019b [54]. After calculating
each initial linear regression model using all data available, we predicted its accuracy using
k-fold cross validation. We repeated the k-fold division of our data 100 times and report
the average and standard deviation of the classification accuracy for the data excluded
from model fitting. Molecular properties of drugs and excipients were calculated using
sdfCalcProps.csh, a script available through the chemalot open source package [55].

2.3. Flash Nanoprecipitation of GDC-0810

GDC-0810 is poorly soluble in aqueous solution but is ionizable at high pH, which
improves its solubility. As such, we utilized flash nanoprecipitation (FNP), so that we
could control pH throughout the formulation process. Nanoparticles with a diameter of
225 nm were prepared through FNP with a multi-inlet vortex mixer (MIVM) as previously
described [56]. GDC-0810 was dissolved at 15 mg/mL in 0.4 eq NaOH, and 1 mL was
added to a 1 mL syringe. An equal volume of water was added to 3 additional 1 mL
syringes. Syringes were placed on the FNP, and the plate was compressed at an equal rate
across the syringes. After passing through the MIVM, the nanoparticles entered a dilution
chamber of 14 mL of water. The final solution was an 18-fold dilution, in water, of the
original solution, which consisted of 15 mg/mL GDC-0810 in 0.4 eq NaOH. This process
resulted in a final pH of 8.35. No organic solvents, surfactant, or stabilizer was used.

Nanoparticles were characterized by dynamic light scattering (Wyatt DynaPro Plate
Reader III). Samples were diluted 10 fold; then, 30 µL was placed in a 384 black wall, clear
bottom polystyrene microplate (Corning). Particle diameter by intensity was reported from
15 acquisitions.

3. Results
3.1. Hydrophobic Interactions Drive Excipient Adsorption to Drug Crystals

While nanosuspensions present a promising approach to improve the solubility and
dissolution of active pharmaceutical ingredients, choosing the correct formulation to stabi-
lize a chosen drug remains a difficult task. Traditional approaches have focused on more
experimental characterization methods, but recent efforts have shown computational mod-
eling may aid in the design of stable nanosuspensions [32–34]. To continue in this direction,
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we applied molecular dynamics simulations to quantify drug–excipient interactions and
find underlying physical characteristics that can predict nanosuspension stability.

We started by characterizing a set of systems studied previously by Ferrar et al. [39].
These previous experiments had characterized the nanoparticle size for three drug molecules
(naproxen, indomethacin, and itraconazole) with six different excipients (sodium dode-
cyl sulfate (SDS), sodium octyl sulfate (SOS), sodium deoxycholate (SDC), polyethylene
glycol (PEG), polypropylene glycol (PPG), and poloxamer). For each of these 18 possible
drug–excipient combinations, we performed molecular dynamics simulations. For each
simulation, a drug crystal was placed at the center of an aqueous simulation box, with
excipient molecules dispersed randomly throughout the aqueous phase. Over time, the
excipients adsorb to the drug crystal (Figure 1), with differences being observed for each
drug–excipient pair (Figure S1).
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Figure 1. Summary of the primary training dataset used in this study. (A) Molecular structures
are shown for each of 3 drugs and 6 excipients. For each drug, each of the 6 excipients were
independently simulated for a total of 18 different simulations. In simulations of PEG and PPG,
n = 20. In simulations of poloxamer, n = 5 and m = 10, which gives the same length as the PEG and
PPG used in the simulation. (B) An example of our simulation methodology, with images taken from
the start (left) and end (right) of our simulation of a naproxen crystal with SDS. Water molecules
are hidden for improved clarity. At the start, excipients (green) were placed randomly around the
drug crystal (C–blue, O–red, and H–white). Over the course of the simulation, the majority of the
excipients adsorb to the drug crystal.

To quantify the specific interactions between drugs and excipients, we computed drug–
excipient contact maps for naproxen (Figure 2), indomethacin (Figure S2), and itraconazole
(Figure S3). These atomistic contact maps give insight into the parts of the drug and excipi-
ent that are most likely and least likely to form contacts between the drug and excipient.
In all cases, we find that excipient–drug interactions are driven by hydrophobicity. As a
result, drugs are contacted through exposed hydrophobic areas, such as the aromatic rings
on naproxen and indomethacin or the terminal alkane group of itraconazole. Furthermore,
evidence of hydrophobicity-driven interactions can also be seen on the excipients. Alkane
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groups of SDS and SOS are frequently in contact with the drug particle, but the sulfate
group is exposed to water. Similarly, SDC binds primarily through cyclohexane groups
but exposes alcohol and carboxylic acid groups. Finally, polymers such as PEG, PPG, and
poloxamer interact preferentially through carbon atoms, while oxygen atoms are less likely
to form contacts with the drug crystal. Our simulations also show that the middle of the
polymer has less contacts with the crystal than the ends of the chain, likely as a result of
self-association or interactions with water. Viewed in total, these contact maps show that
excipients interact with drugs through hydrophobic regions and leave more polar portions
of the excipient or drug exposed.

Naproxen

SDS

SOS

SDC

PEG

PPG

poloxamer

More 
contacts

Less 
contacts

Figure 2. Heavy atom contact maps for where naproxen molecules come in contact with excipient
molecules. For each excipient, we show a naproxen structure colored by the contact map (left), a
structure of the excipient colored by atom type (middle), and a structure of the excipient colored by
the contact map (right). For structures colored by atom type, the color mapping is C–cyan, O–red,
and S–yellow. For structures colored by the contact map, red regions represent where the drug and
excipient are in contact the most, while blue regions represent where the drug and excipient are in
contact the least.

While atomistic pictures of these contact probabilities provides an interesting example
of drug–excipient interactions, we can also quantify interactions between the excipient
and drug nanocrystal in terms of molecule-to-molecule contacts or coordination number.
These molecular contacts describe how many neighboring molecules of a given type a
reference molecule may have. By examining the frequency of the number of drug molecules
per excipient (Figure 3), the number of drug molecules per drug (Figure S4), the number
of excipient molecules per drug (Figure S5), and the number of excipient molecules per
excipient (Figure S6), we can better understand the ways in which drugs and excipients
interact. We divide the data into surfactants (SDS, SOS, and SDC) and polymers (PEG, PPG,
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and poloxamer) because the polymers have a larger molecular weight and, therefore, have
a higher number of drug molecules per excipient.
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Figure 3. Frequency of the number of drug molecules in the nanocrystal bound to a single excipient
molecule during our simulations. Distributions are broken up between surfactant and polymer
excipients for naproxen (A,B), indomethacin (C,D), and itraconazole (E,F).

The number of drug molecules per surfactant reveals trends in the binding modes
of surfactants with drug molecules (Figure 3A,C,E). In particular, SDC generally has a
lower average coordination number than SOS or SDS. Previous simulations observed that
the alkyl chains of SOS and SDS can penetrate the surface of the drug crystal, while SDC
tends to lie on the surface of the crystal [39]. This mechanism of adsorption likely results in
less drugs bound to SDC than SOS or SDS. Further, SOS and SDC frequently have 0 drug
molecules per surfactant. This observation indicates that SOS and SDC have a lower affinity
for the drug molecule than the more hydrophobic SDS, which results in SOS and SDC
molecules that do not adsorb to the drug crystal.

The number of drug molecules per polymer also demonstrates the role of excipient
hydrophobicity in adsorption. In comparison to the other polymers, PPG tends to have a
lower number of drug molecules per polymer (Figure 3B,D,F) and higher number of polymer
molecules per polymer (Figure S6). This indicates that being partially soluble may be impor-
tant for a polymer to prevent excipient self-association and allow the polymer to interact
with a higher fraction of the drug crystal. Taken together with the surfactants, these trends
demonstrate that the interactions between drug and excipient are intricately controlled by
balancing the excipient’s affinity for drug, the excipient itself, and the aqueous phase.

3.2. Atomistic Modeling of Nanosuspension Stability

After examining how excipients interact with drug molecules, we aimed to connect
our simulations to experimental nanosuspension stability by analyzing the excipient–drug
complex. To accomplish this task, we isolated the drug crystal and all excipients and ions in
contact with the crystal and calculated the accessible surface area (ASA), radius of gyration
(Rg), fraction of the total surface area that is polar (FASAp), and dipole moment for each
drug–excipient pair (Figures 4A–C and S7A). We normalized ASA and Rg according to
that of the original crystal to remove effects arising from the differences in size of each
drug crystal.
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Figure 4. Utilizing surface descriptors to predict nanosuspension stability. (A) Accessible surface area
of the excipient–drug system (ASA) divided by the accessible surface area of the drug crystal without
excipients (ASA0) for naproxen (napro, blue), indomethacin (indo, orange), and itraconazole (itra,
yellow), with all excipients tested. (B) Radius of gyration of the excipient–drug system (Rg) divided by
the radius of gyration of the drug crystal without excipients (R0

g) for all drug–excipient combinations.
(C) Fraction of polar surface area (FASAp) for all drug–excipient combinations. (A–C) Error bars
represent the standard deviation of estimates from five independent time windows. (D) Minimum
weight percentage of excipient needed to form a stable nanosuspension (min wt.%) for each system
that forms a stable nanosuspension. Data taken from Table S1 and Ferrar 2020 [39] and are listed
explicitly in Table S3. (E) Fraction of polar surface area (FASAp) plotted against the minimum weight
percentage of excipient needed to form a stable nanosuspension (min wt.%) for each drug–excipient
pair. The Pearson correlation coefficient (ρ) between FASAp and min wt.% is also shown. (F) Using
FASAp to predict the probability that a stable nanosuspension is formed (Ps) for each drug–excipient
pair using a logistic regression. True data (orange dots) and the resulting fit (blue line) are both shown.

With various simulated descriptors in hand, we then aimed to compare our results to
experimental measures of nanosuspension stability. As an ideal formulation will minimize
the ratio of excipient:drug, we used the minimum weight percentage of excipient needed
to form a stable nanosuspension (min wt.%) as our target metric and performed additional
experiments to complement the dataset from Ferrar et al. (Table S1) [39]. Of the 16 test
drug–excipient combinations, 8 formed stable nanosuspensions, for which we recorded
the min wt.% (Figure 4D, Table S2). Next, we calculated the Pearson correlation coefficient
between min wt.% and FASAp (Figure 4E), ASA/ASA0 (Figure S7B), Rg/R0

g (Figure S7C),
and dipole moment (Figure S7D). We found only that FASAp is highly correlated to the min
wt.%. Furthermore, FASAp is inversely correlated with min wt.%, indicating a higher polar
fraction of solvent-accessible surface area from our simulation will experimentally form a
stable nanosuspension at lower excipient:drug ratios. This result is easily rationalized, for
more polar particles are more soluble in water and thus less likely to undergo destabilization
from aggregation or Ostwald ripening [25].

While our modeling supports the hypothesis that a higher polar fraction of solvent-
accessible surface area results in a more stable nanosuspension at lower concentrations of
excipients, we still lacked a quantitative way to predict nanosuspension stability. To make
our predictions more quantitative, we simplified our data by dividing it into two groups.
In the first group we label as “successes”, milling at certain excipient:drug ratios results
in a stable nanosuspension. In the other group, which we label as “failures”, milling does
not result in a stable nanosuspension regardless of the excipient:drug ratio. Each group
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consists of eight drug–excipient combinations (Table S3). We then used a logistic regression
to calculate the probability of obtaining a “success” based on the FASAp and found

log
(Pf

Ps

)
= 6.14 − 26.1 ∗ FASAp, (1)

where Pf is the probability of not successfully forming a nanosuspension and Ps is the
probability of successfully forming a nanosuspension (Figure 4F, n = 16). To examine the
accuracy of predictions from this logistic regression model, we recomputed our model
using 100 independent rounds of 4-fold cross validation and found a classification accuracy
of 0.74 ± 0.21, indicating that our model should be applicable to data beyond the training
set. Our model has a negative coefficient in front of FASAp, again suggesting that a higher
polar fraction of solvent-accessible surface area is more likely to successfully form a stable
nanosuspension.

4. Discussion
4.1. Simulated Polar Fraction of Solvent-Accessible Surface Area Successfully Predicts
Experimentally Determined Nanosuspension Stability

Comparisons between our MD simulations and experiments on naproxen, indomethacin,
and itraconazole suggest that a higher polar fraction of solvent-accessible surface area results
in a more stable nanosuspension. To test this hypothesis, we studied compound GDC-
0810, a former breast cancer candidate compound. GDC-0810 was selected due to its high
hydrophobicity, which makes it poorly soluble in water. Furthermore, it can be crystalized in
a neutral and ionic form (Figure 5A,B) [45]. As we hypothesized an ionic crystal such as the
GDC-0810 potassium salt would be more polar than a neutral crystal, GDC-0810 offered an
opportunity to examine the effect of polarizability on nanoparticle stability between different
states of the same compound. For both the neutral and the ionic crystal, we performed
simulations with the same six excipients used in our training data, plus Tween 80 (Figure 5C),
resulting in 14 new simulations.

We immediately observed that the binding mode of the excipient varies greatly by
the crystallization state of the drug. The atomistic contact maps find that SDS adsorbs to
different regions of the neutral crystal than those of the ionic crystal (Figure 5D–F). This
trend is seen with all excipient simulations (Figures S9 and S10). Similarly, molecular
contacts vary greatly with the charge state of the drug. Most significantly, nearly all
excipient molecules remain bound to the neutral crystal throughout the entire simulation,
resulting in a very low probability of having 0 drug molecules per excipient. However,
in the ionic crystal, a significant number of excipients are in solution, as indicated by a
much higher frequency at 0 drug molecules per excipient (Figure 5G–J). These differences
suggest that most excipients have a lower affinity for the ionic crystal than the neutral
crystal. Similar trends for the drug molecules per drug (Figure S11), the drug molecules per
excipient (Figure S12), and the excipient molecules per excipient (Figure S13) demonstrate
that the ionic crystal and neutral crystal have different structural features.

Next, we aimed to connect knowledge of property differences within our training
set to the example of GDC-0810. We first calculated the surface properties for both the
ionic and neutral crystal (Figures 6 and S14). FASAp is much higher for the ionic crystal
than the neutral crystal, indicating that the ionic crystal is more likely to form stable
nanosuspensions. To quantitatively predict nanoparticle stability, we inserted the FASAp
into Equation (1). Our model predicts that the ionic crystal was likely to form stable
nanosuspensions with any of the surfactants tested, or even without any surfactant at
all. Meanwhile, the neutral crystal may form a stable nanosuspension with more polar
excipients, such as SOS or SDS (Table 1).
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Figure 5. Summary of the GDC-0810 test performed in this study. Crystals of GDC-0810 were obtained
in both neutral (A) and ionic (B) forms. Individual simulations were conducted with both crystal
forms and each of the original 6 excipients (see Figure 1), as well as one additional excipient, Tween
80 (C), for a total of 14 simulations. In our simulations of Tween 80, we assumed w = x = y = z = 5.
(D–F) Heavy atom contact maps for GDC-0810 with SDS. (D) Example structure of GDC-0810, colored
by atom type (C–cyan, O–red, N–blue, F–pink, Cl–green, and K–purple). Contact map structures are
given for the neutral crystal (E) and ionic crystal (F) of GDC-0810, where red highlights the most
contacts with SDS and blue is the least contacts with SDS. (G–J) Frequencies of the number of drug
molecules bound to a single excipient molecule during our simulations. Distributions are broken up
between surfactant and polymer excipients for the neutral crystal (G,I) and ionic crystal (H,J).
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Figure 6. Fraction of polar surface area (FASAp) for GDC-0810–excipient combinations. Ionic crystals
of GDC-0810 (ionic, blue) are compared to the neutral crystals (neutral, orange). Circles indicate
MD simulations with various excipients, while triangles indicate a single measurement on the
crystal structure without excipients. Error bars represent the standard deviation of estimates from
five independent time windows, are smaller than the symbols when not visible, and are only available
from MD simulations.
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Table 1. Probability of success (Ps) for GDC-0810 nanosuspension formulations, predicted by FASAp

through the logistic regression in Equation (3). FASAp is extracted as an average from MD simulations
for each excipient and directly from a single crystal structure in the case of no excipient (Figure 6).

Excipient Neutral Ps Ionic Ps

SDS 0.447 0.997
SOS 0.510 0.998
SDC 0.303 0.997
PEG 0.271 0.996
PPG 0.153 0.992

Poloxamer 0.221 0.994
Tween 80 0.271 0.995

no excipient 0.161 0.871

Based on our MD simulations with different excipients, we hypothesized that ionic
GDC-0810 may form nanosuspensions without excipients. Indeed, predictions of nanopar-
ticle stability using the FASAp of the crystal without excipients (Figure 6) suggested that
the GDC-0810 salt (Ps = 0.871), but not the protonated form (Ps = 0.161), is likely to form
a stable nanosuspension. To evaluate this prediction, we utilized flash FNP [56] to create
nanosuspensions of GDC-0810 salt. While different than the top-down milling techniques
used by Ferrar et al. [39], FNP allowed us to control the pH of the solution, aiding in the
formation of a sodium salt nanoparticle. Despite the differences between FNP and top-
down milling, we hypothesized that nanosuspension stability is primarily dependent on
the molecular characteristics of the drug and stabilizer, making our predictions transferable
to this new system. Even without excipients, we found that the GDC-0810 salt formed
nanosuspensions, which we characterized with dynamic light scattering. Our analysis
revealed that the nanoparticles were stable, with an average size of 244.6 nm and % PD
(percent polydispersity) of 26.8% upon formation (Figure 7A). Furthermore, despite an
increase in polydispersity, the particles remained on the nanoscale after incubation for over
3 years and had an average size of 225 nm and % PD of 49.7% (Figure 7B). These results
suggest that the salt nanosuspension would be a good choice of formulation for this poorly
soluble compound.

%
 In

te
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Radius (nm)

%
 In

te
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ity

Radius (nm)

(B)

(A)

Figure 7. Stability of GDC-0810 salt nanoparticles measured by dynamic light scattering. These
measurements were taken T ≈ 0 years (A) and T ≈ 3.5 years (B) after nanosuspension creation.

4.2. Leveraging Two-Dimensional Properties to Predict Nanosuspension Stability

The results with GDC-0810 support our previous theory that a higher polar fraction
of solvent-accessible surface area results in a more stable nanosuspension. In principle,
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one could run molecular dynamics simulations and test various combinations to discover
the optimal excipient for a given drug. However, such simulations are computationally
expensive, which motivated us to find underlying two-dimensional properties of drugs
and excipients that can predict the simulated values of FASAp.

We then hypothesized that hydrogen bond acceptors, hydrogen bond donors, and
charged molecules contribute most to FASAp. Using these properties for both the drug
(Table S6) and excipient (Table S7), we used the least absolute shrinkage and selection
operator (LASSO) to fit a linear regression model for FASAp with all systems we stud-
ied (Figures 4C and 6). LASSO is a technique that performs both variable selection and
regression, improving the accuracy and interpretability of the resulting regression model
(Figure S15). The model that minimizes the mean squared error (n = 32) takes the expression

FASApred
p = 13.9

HAdrug

MWdrug
+ 27.0

HDdrug

MWdrug
+ 2.3

HAexc

MWexc

+ 4.3
HDexc

MWexc
+ 118

|qdrug|
MWdrug

+ 10.6
|qexc|

MWexc
− 0.108, (2)

where FASApred
p is the predicted value of FASAp, MWdrug is the molecular weight of the

drug molecule, HAdrug is the number of hydrogen bond acceptors in the drug molecule,
HDdrug is the number of hydrogen bond donors in the drug molecule, qdrug is the charge
of each drug molecule, MWexc is the molecular weight of the excipient molecule, HAexc is
the number of hydrogen bond acceptors in the excipient molecule, HDexc is the number of
hydrogen bond donors in the excipient molecule, and qexc is the charge of each excipient
molecule. This model fits the calculated properties from simulations well, resulting in
a high correlation between the 2-D property-predicted and simulated FASAp (Figure 8).
Furthermore, hydrogen bond acceptors, hydrogen bond donors, and charge all contribute
to a higher value of FASApred

p . Interestingly, we also observe that hydrogen bond donors
contribute more than hydrogen bond acceptors, a common trend in drug discovery set-
tings [57]. This model suggests that excipients with more hydrogen bond donors, hydrogen
bond acceptors, and net charge will result in more stable nanosuspensions. Finally, the
charge state of drug molecules contributes significantly to FASApred

p , which suggests that
salt forms of drugs are more likely to form stable nanosuspensions.

FA
SA

p
Pr
ed
ic
te
d

FASAp Simulation

ρ=0.944

Figure 8. Predicting the FASAp from 2-D molecular properties. Predicted values of FASAp are
compared to those from the simulation, with ρ representing the Pearson correlation between the
two datasets.

To test whether our model of two-dimensional properties is capable of predicting
nanoparticle stability, we applied the same tests on our FASApred

p that we applied on FASAp.

First, we examined the correlation between FASApred
p and the min wt.% (Figure 9A). Unlike

the simulated values of FASAp, the FASApred
p shows little correlation with the min wt.%.

This deviation could originate from a variety of factors, such as the binding mode of a
given excipient or crystal size and shape.
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Figure 9. Determining nanoparticle stability using the the fraction of polar surface area predicted
from two-dimensional properties (FASApred

p ). (A) FASApred
p plotted against the minimum weight

percentage of excipient needed to form a stable nanosuspension (min wt.%). The Pearson correlation
coefficient (ρ) between FASApred

p and min wt.% is also shown. (B) Using FASApred
p to predict the

probability that a stable nanosuspension is formed (Ps) using a logistic regression. True data (orange
dots) and the resulting fit (blue line) are both shown.

Despite our modeled FASApred
p not correlating with min wt.%, it does show some

success at predicting nanosuspension stability. Following our procedure for FASAp, we
labeled a drug–excipient combination as a “success” if it formed a stable nanosuspension
upon milling at certain excipient:drug ratios and labeled it as a “failure” if it did not form
stable nanosuspensions upon milling at any excipient:drug ratios. For these binary data,
we performed logistic regression to calculate the probability of getting a “success” based
on the FASAp and found

log
(Pf

Ps

)
= 13.5 − 58.0 ∗ FASApred

p , (3)

where Pf is the probability of not successfully forming a nanosuspension, and Ps is the
probability of successfully forming a nanosuspension (Figure 9B, n = 16). Similar to
our previous regression model in Equation (1), we recomputed this updated model using
100 independent rounds of 4-fold cross validation and found a nearly identical classification
accuracy of 0.74 ± 0.20, indicating that our model should be applicable to data beyond the
training set. The expression itself is also similar to that found in Equation (1) and suggests
that higher values of FASApred

p result in more stable nanosuspensions. Finally, we apply
Equation (3) to predict the probability of “success” for GDC-0810 nanoparticles (Table 2).
Our model predicts that any excipient would be able to form a stable nanosuspension with
the salt form of GDC-0810, which aligns with our experimental observation that the salt of
GDC-0810 can form a nanosuspension without excipient.

Overall, our model suggests that drug–excipient combinations with a higher polar
fraction of solvent-accessible surface area will form the best nanosuspensions. This property
can be maximized by increasing the charge and hydrogen bonding properties of excipients
or by using salt forms of drug molecules. However, this simplified model should be used
with some amount of caution. First, to test the ability of excipients to adsorb to stable
nanoparticles, we placed restraints on the position of drug atoms. These extra potentials
prevent crystal rearrangements, which would be overestimated in unrestrained simulations,
because computational feasibility required using smaller nanoparticles than those predicted
experimentally. As such, effects arising from crystal deformation may not be fully captured
by our model. Further, it is possible that a sufficiently polar drug–excipient combination
will be soluble in solution and not form a stable nanosuspension. We begin to observe such
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trends with the ionic form of GDC-0810, where less excipients adsorb to the drug crystal
in our simulations. These effects may also manifest themselves in drug solubility, where
potentially soluble salt isoforms may prevent the formation of stable nanosuspensions.
Such considerations are not taken into account in our model, which may mean predictions
from Equations (1) and (3) might overestimate the stability of some nanosuspensions. As
our work here primarily addressed explored hydrophobic drug–excipient combinations
in which aggregation and Ostwald ripening are the primary concerns, future studies may
want to employ similar methods to test increasingly polar excipients and elucidate the
balance between stable nanosuspensions and solubility.

Table 2. Probability of success (Ps) for GDC-0810 nanosuspension formulations, predicted by
FASApred

p through the logistic regression in Equation (3). In the case of no excipient, the data
are not used for fitting the LASSO, and all terms involving excipients are set to 0.0.

Excipient Neutral Ps Ionic Ps

SDS 0.438 1.000
SOS 0.761 1.000
SDC 0.336 1.000
PEG 0.141 1.000
PPG 0.064 1.000

Poloxamer 0.091 1.000
Tween 80 0.097 1.000

no excipient 0.004 1.000

5. Conclusions

In this study, we utilized molecular dynamics simulations to evaluate the characteris-
tics that determine nanosuspension stability. We began by examining how hydrophobic
interactions drive how excipients adsorb to naproxen, indomethacin, and itraconazole.
Then, we showed that the polar fraction of solvent-accessible surface area from our simu-
lated drug–excipient nanoparticle was correlated with the minimum ratio of excipient:drug
necessary to form stable nanosuspensions. Inspired by this relationship, we created a
logistic regression model that predicts the probability of forming a stable nanosuspension
from the polar fraction of solvent-accessible surface area from simulation. To test this model,
we studied GDC-0810, which can be crystallized in different isoforms. Our simulations
revealed that the crystal isoform had a large impact on excipient adsorption. When we
studied the fraction of polar surface area, we found that the ionic crystal form is far more
polar, and, therefore, is more likely to form stable a stable nanosuspension than the neutral
crystal. These results aligned with experimental observations where we observed stable
nanosuspensions of GDC-0810 without any excipient. We were then able to extend our
model to two-dimensional properties and discovered our trends can be explained by hy-
drogen bonding and charge properties. While this simplified model was unable to resolve
the more subtle differences given by the minimum weight percentage, it could predict the
probability of forming a successful nanosuspension. Overall, we utilized a combination of
modeling and targeted experiments to discover that salt forms of drug crystals and more
polar excipients can improve nanosuspension stability. Future studies may want to expand
our model by increasing the coverage of excipient chemical space, including more polar
compounds, as well as aliphatic or aromatic polymers.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics16010050/s1, Figure S1: Images of the final configurations for
all training set simulations; Figure S2: Heavy atom contact maps for where indomethacin molecules
come in contact with excipient molecules; Figure S3: Heavy atom contact maps for where itraconazole
molecules come in contact with excipient molecules; Figure S4: Frequency of the number of drug
molecules bound to a single drug molecule during our simulations; Figure S5: Frequency of the
number of excipient molecules bound to a single drug molecule during our simulations; Figure S6:

https://www.mdpi.com/article/10.3390/pharmaceutics16010050/s1
https://www.mdpi.com/article/10.3390/pharmaceutics16010050/s1
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Frequency of the number of excipient molecules bound to a single excipient molecule during our
simulations; Figure S7: Evidence that other surface properties do not serve as good of predictors
of nanoparticle stability as FASAp; Figure S8: Images of the final configurations for all GDC-0810
simulations; Figure S9: Heavy atom contact maps for where neutral GDC-0810 molecules come
in contact with excipient molecules; Figure S10: Heavy atom contact maps for where ionic GDC-
0810 molecules come in contact with excipient molecules; Figure S11: Frequency of the number
of drug molecules bound to a single drug molecule during GDC-0810 simulations; Figure S12:
Frequency of the number of excipient molecules bound to a single drug molecule during GDC-0810
simulations; Figure S13: Frequency of the number of excipient molecules bound to a single excipient
molecule during GDC-0810 simulations; Figure S14: Additional surface properties for GDC-0180
crystals with various excipients; Figure S15: Fitting FASAp from 2-D molecular properties with
the least absolute shrinkage and selection operator (LASSO); Table S1: Additional experimental
characterization of naproxen, indomethacin, and itraconazole nanosuspensions; Table S2: Minimum
weight percentage of excipient:drug needed to form a stable nanosuspension (min wt.%) based
on experimental characterization; Table S3: Summary of experimental results used for our logistic
regression model; Table S4: Number of drug and excipient molecules used in creating our training
set; Table S5: Number of drug and excipient molecules used in creating our test set; Table S6: 2-
D properties of drug molecules used for fitting in Figure 8; Table S7: 2-D properties of excipient
molecules used for fitting in Figure 8.
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SOS Sodium octyl sulfate
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FASAp Fraction of polar surface area
ASA Accessible surface area
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