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Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disease influenced by a complex
interplay of genetic and environmental factors. The activation of the JAK-STAT pathway increases
the expression of inflammatory cytokines such as IL-4 and IL-13, further deteriorating AD. Therefore,
for the treatment of AD, the JAK-STAT pathway is emerging as a significant target, alongside
inflammatory cytokines. This study investigates the potential therapeutic effects of a novel herbal
complex, LK5, composed of Scutellaria baicalensis, Liriope platyphylla, Sophora flavescens, Dictammus
dasycarpus, and Phellodendron schneider, known for their anti-inflammatory and immune-modulating
properties. We examined the anti-inflammatory and anti-AD effects of the LK5 herbal complex in
HaCaT cells stimulated by LPS and IL-4/IL-13, as well as in a mouse model of AD induced by
DNCB. In HaCaT cells stimulated with LPS or IL-4/IL-13, the LK5 herbal complex demonstrated
anti-inflammatory effects by inhibiting the expression of inflammatory cytokines including TNF-α,
IL-6, and IL-1β, and downregulating the phosphorylation of STAT proteins. In a murine AD-like
model induced by DNCB, administration of the LK5 herbal complex significantly ameliorated clinical
symptoms, including dermatitis, ear thickness, and TEWL. Histological analysis revealed a reduction
in epidermal thickness and mast cell infiltration. The LK5 herbal complex also inhibited pruritus
induced by compound 48/80. Furthermore, the LK5 herbal complex treatment significantly decreased
the levels of inflammatory cytokines such as TSLP, IL-6, and IgE in plasma and ear tissue of AD-
induced mice. These findings suggest that the LK5 herbal complex may modulate the immune
response and alleviate AD symptoms by inhibiting STAT pathways.

Keywords: LK5 herbal complex; atopic dermatitis; signal transducers and activators of transcription;
itching; anti-inflammation

1. Introduction

Atopic dermatitis (AD), characterized by inflammatory skin diseases, is known to
occur mainly in infants and toddlers, but recently it was also found to occur in adult-
hood [1–3]. The pathophysiology of AD is not entirely understood, but it is caused by a
combination of environmental and genetic factors [4,5]. External antigens stimulate T cells

Pharmaceutics 2024, 16, 40. https://doi.org/10.3390/pharmaceutics16010040 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics16010040
https://doi.org/10.3390/pharmaceutics16010040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-1885-0540
https://orcid.org/0000-0002-0395-207X
https://orcid.org/0000-0002-9370-5258
https://doi.org/10.3390/pharmaceutics16010040
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics16010040?type=check_update&version=1


Pharmaceutics 2024, 16, 40 2 of 18

to produce thymic stromal lymphopoietin (TSLP), which induces T cells to differentiate into
T helper 2 (Th2) cells, and IL-4 and IL-13 are expressed by Th2 cells [6,7]. IL-4 and IL-13,
which are expressed by Th2 cells, stimulate B cells to produce immunoglobulin E (IgE)
antibodies, histamines, and inflammatory cytokines released from mast cells by IgE [8,9].
The Janus kinases (JAK)-signal transducer and activator of transcription (STAT) pathway
activated by IL-4 and IL-13 plays a pivotal role in the pathogenesis of AD [10]. Although,
the JAK-STAT pathway is mainly known to cause cancer, it disrupts skin barriers and
eventually induces worsened AD by increasing IgE production as well as the expressions of
inflammatory cytokines such as IL-25 and IL-33 [11,12]. Moreover, STAT inhibitors such as
tofacitinib and anti-IL-4/IL-13 monoclonal antibodies including dupilumab, were recently
approved for medication against AD [13,14]. In addition, AD is accompanied by severe
itching and redness [15]. The skin of AD patients is infiltrated with abnormal inflammatory
cytokines and increased IgE and immune cells, such as macrophages, eosinophils, and
mast cells [6]. Consequently, it is well documented that patients with AD experience
increased epidermal thickness in the outermost layer of the skin, along with persistent skin
inflammation and dryness [15].

AD is difficult to cure because it quickly recurs and repeats depending on the envi-
ronment and personal conditions [16]. The most commonly used treatments for AD are
steroids and antihistamines, which prevent skin damage by decreasing inflammation and
itching [17]. Since side effects may occur when used for a long time, the application of
steroids and antihistamine is limited [18]. Therefore, the need for medication with fewer
side effects has increased, and various studies are being conducted using natural products
such as plants and foods [19].

Scutellaria baicalensis belongs to Lamiaceae, and is known to control the immune system
and have antioxidant and antibacterial effects [20]. Liriope platyphylla has been found to
have anti-inflammatory effects, and Sophora flavescens, belonging to the Fabaceae, is used
for eczema. Substances such as flavonoids and alkaloids have been separated, and further
research has been conducted [21,22]. Dictammus dasycarpus, which belongs to Rutaceae,
is the skin of the white pine tree root; it has anti-allergy and antifungal effects, since it
contains components such as dictamnine and lemonine [20,23]. The anti-inflammatory and
antibacterial properties of Phellodendron schneider have also been reported previously [24]. In
this study, we hypothesized that the LK5 herbal complex composed of Scutellaria baicalensis,
Liriope platyphylla, Sophora flavescens, Dictammus dasycarpus, and Phellodendron schneider
with anti-inflammatory and anti-allergic effects would exhibit anti-AD effects. Based on
this hypothesis, the LK5 herbal complex was investigated for its anti-inflammatory effects
in vitro, in LPS or IL-4/IL-13-stimulated HaCaT cells. We also determined whether the
LK5 herbal complex exhibited inhibitory effects on AD development in a DNCB-induced
AD-like animal model.

2. Materials and Methods
2.1. Animals

Six-week-old female mice were purchased from Orient Co., Ltd. (Seongnam, Republic
of Korea). During the experimental period, the environment was maintained at a temper-
ature of 23 ± 2 ◦C, humidity of 50 ± 10%, and a 12-h light–dark cycle (06:00–18:00). The
experimental animals were provided with free access to solid feed (2018S; Envigo, Madi-
son, WI, USA) and water from a tap. This animal test was conducted with the approval
of the Institutional Animal Care and Use Committee of Kangwon National University
(KW-200903-2).

2.2. Materials

The LK5 herbal complex (Lot NO. S-LKG2-p-210521) was donated by LK Co., Ltd.
(Hwaseong, Republic of Korea). The LK5 herbal complex was a mixture of five plants,
(Scutellaria baicalensis, Liriope platyphylla, Sophora flavescens, Dictammus dasycarpus, and
Phellodendron schneider), extracted with 30% ethanol at 96 ◦C and spray-dried. Acetone,
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isopropyl alcohol, and olive oil were purchased from Daejung (Seongnam, Republic of
Korea). Griess reagent, lipopolysaccharides from Escherichia coli O26:B6 (LPS), 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), DNCB, compound 48/80,
dexamethasone, terfenadine, and 10% formalin solution were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA). RNA isoPlus and Dulbecco’s modified Eagle’s medium
(DMEM), Dulbecco’s phosphate-buffered saline (DPBS), and penicillin–streptomycin (P/S)
were procured from Takara Bio Inc. (Kusatsu, Japan) and Welgene (Gyenogsan, Republic
of Korea), respectively. Fetal bovine serum (FBS) was purchased from Atlas Biologicals
(Fort Collins, CO, USA). TransScript® All-in-one First-Strand cDNA Synthesis SuperMix
for qPCR (One-Step cDNA Removal) was purchased from TransGen Biotech Co. (Beijing,
China). PowerSYBR® Green PCR Master Mix from Applied Biosystems was purchased
from Thermo Fisher Scientific (Rockford, IL, USA). IL-1β, IL-6, TNF-α, iNOS, TSLP, IL-
4, IL-13, IL-25, IL-33 and β-actin oligonucleotide coupled primers were synthesized by
Integrated DNA Technologies (Coralvile, LA, USA). Lysis buffer for protein extraction was
purchased from Jubiotech (Dajeon, Republic of Korea). Primary antibodies against rabbit
p-STAT1, STAT1, p-STAT6, STAT6, p-STAT3, STAT3, and β-actin were purchased from Cell
Signaling Technology® (Danvers, MA, USA). All materials used in this study were of the
highest available quality.

2.3. High-Performance Liquid Chromatography (HPLC) Analysis

HPLC analysis of the LK5 herbal complex was performed using a Waters Alliance
e2695 separation module coupled to a Waters 2998 photodiode array (PDA) detector. The
HPLC column was a YMC J’sphere ODS-H80 column (4.6 × 250 mm, 4 µm) with an
injection volume of 10 µL. Then, the temperature of the column oven was maintained at
35 ◦C, and the flow rate was set at 0.95 mL/min. The mobile phases used for the analysis
were (A) water and (B) acetonitrile, with the following elution system: 0–5 min, (A) 92%
(B) 8%; 5–10 min, (A) 86% (B) 14%; 10–19 min, (A) 74% (B) 26%; 19–30 min, (A) 71% (B)
29%; 30–35 min, (A) 32% (B) 68%; 35–44 min, (A) 0% (B) 100%; 44–46 min, (A) 92% (B)
8%; and 46–56 min, (A) 92% (B) 8%. The wavelength of the detector was set at 210 nm.
The five standard compounds of oxymatrine, chlorogenic acid, baicalin, palmatine, and
obacunone were obtained from the Natural Product Institute of Science and Technology
(www.nist.re.kr, accessed on 11 December 2023, Anseong, Republic of Korea). Standard
solutions were prepared by dissolving 1.5 mg of each of the five standard compounds in
80% methanol. Additionally, the LK5 herbal complex was dissolved in 80% methanol to
a concentration of 50 mg/mL. Both the standard and the LK5 herbal complex solutions
were filtered through a 0.45 µm PVDF membrane. The concentrations of the five standard
compounds were determined by constructing a calibration curve using concentration (X,
mg/10 µL) and peak area (Y), and the mean ± standard deviation was calculated.

2.4. Cell Culture

The HaCaT cells were donated by the food chemistry laboratory (Prof. O.H Lee)
at Kangwon National University. The cell culture medium was used in DMEM with 100
units/mL P/S and 10% FBS. The cells were cultured at 37 ◦C and 5% CO2, with subculturing
every three days.

2.5. Cell Viability and Nitrite Determination

The cell viability was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetr
azolium bromide (MTT) assay. The HaCaT cells were treated with the LK5 herbal complex
(1, 3, 10, and 30 mg/mL). Following a 4 h incubation with MTT solution (5 mg/mL in
PBS) at 37 ◦C, the cells were subsequently treated with DMSO (100 µL/well) to solubilize
the formazan crystals. The optical density was measured at 540 nm using a microplate
spectrophotometer (Molecular Devices, Sunnyvale, CA, USA). The concentration of NO in
the culture medium was determined as nitrite by the griess reagent. The concentration of
nitrite was converted into the sodium nitrite concentration as a standard [25].

www.nist.re.kr
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2.6. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)

The total RNA was extracted from the HaCaT cells and ear tissue using RNAiso
Plus. The extracted total RNA was used to generate cDNA through reverse transcription
with All-in-One first-strand cDNA synthesis SuperMix [26]. The QuantStudio 3 (Applied
Biosystems, Foster City, CA, USA) system with PowerSYBR Green PCR Master Mix and
gene-specific primers was utilized for RT–qPCR analysis, with the synthesized cDNA used
as the template. The Ct value was determined and normalized to the average Ct value
of the control gene (β-actin), and the relative expression was quantified with the 2−∆∆Ct
method. Each primer sequence is shown in Table 1. The PCR analyses were conducted
utilizing the following parameters: 40 cycles of 95 ◦C for 15 s, 57 ◦C for 20 s, and 72 ◦C
for 40 s (IL-1β, IL-4, IL-6, IL-13, IL-25, IL-33, TNF-α, and iNOS) in the in vitro study; 40
cycles of 95 ◦C for 15 s, 50 ◦C for 10 min, and 70 ◦C for 10 min (TSLP, IL-4, and IL-13) in the
in vivo study.

Table 1. Primer sequences.

Target Gene Primer Sequence

IL-1β
F 5′-ACCT GCT GGT GTG TGA CGT T-3′

R 5′-TCG TTG CTT GGT TCT CCT TG-3′

IL-6 F 5′-GAG GAT ACC ACT CCC AAC AGA CC-3′

R 5′-AAG TGC ATC ATC GTT GTT CAT ACA-3′

TNF-α F 5′-AAATGGGCTCCCTCTCATCAGTTC-3′

R 5′-TCTGCTTGGTGGTTTGCTACGAC-3′

iNOS F 5′-CAT GCT ACT GGA GGT GGG TG-3′

R 5′-CAT TGA TCT CCG TGA CAG CC-3′

TSLP F 5′-GGA CCA CTG GTG TTT ATT CT-3′

R 5′-CGA GGT TTA GAT GCT GTC AT-3′

IL-4 F 5′-AGA TGG ATG TGC CAA ACG TCC TCA-3′

R 5′-AAT ATG CGA AGC TTG GAA GCC-3′

IL-13 F 5′-GCA ACG GCA GCA TGG TAT GGA-3′

R 5′-TGG TAT AGG GGA GGC TGG AGA C-3′

IL-25 F 5′-ACA GGG ACT TGA ATC GGG TC-3′

R 5′-TGG TAA AGT GGG ACG GAG TTG-3′

IL-33 F 5′-CAC ATT GAG CAT CCA AGG AA-3′

R 5′-AAC AGA TTG GTC ATT GTA TGT ACT CAG-3′

β-actin F 5′-ATC ACT ATT GGC AAC GAG CG-3′

R 5′-TCA GCA ATG CCT GGG TAC AT-3′

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

In the in vitro studies, the expressions of TNF-α, IL-1β, and IL-6 in the culture super-
natants obtained from the HaCaT cells were evaluated using ELISA kits (R&D Systems,
Minneapolis, MN, USA). The cells were pretreated with the LK5 herbal complex for 1 h at
various concentrations (0.1, 0.3, 1, and 3 mg/mL) and subsequently stimulated with LPS
(1 µg/mL) for 1 day.

In the in vivo animal study, the blood was centrifuged (4 ◦C, 10,000 rpm, 5 min) in
a heparinized tube. Supernatant from the blood was collected to obtain plasma. The
TSLP, IgE, and IL-6 levels in the plasma were measured using an ELISA kit (R&D Systems,
Minneapolis, MN, USA) according to the manufacturer’s protocol.

2.8. Western Blot Analysis

The protein was isolated from the cells using lysis buffer (Jubiotech, Daejeon, Re-
public of Korea) with a protease phosphatase inhibitor cocktail (Thermo Fisher Scientific,
Rockford, IL, USA). The proteins were quantified using a Bradford assay. The protein was
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subjected to 8% SDS-PAGE and transferred to a PVDF membrane. The membrane was
incubated with blocking buffer for 2 h. Primary antibodies (p-STAT1, p-STAT3 = 1:500,
p-STAT6 = 1:1000, STAT3, STAT1, STAT6, β-actin = 1:1000) were incubated overnight at
4 ◦C. Then, the membrane was washed five times with TBST. Finally, the membrane was
incubated for 2 h with a secondary antibody at room temperature. Immunoblots were
imaged using an ImageQuantTM LAS 500 (GE Healthcare, Chicago, IL, USA). Additionally,
the immunoblots were analyzed using the Image J program (LOCI, University of Wisconsin,
Madison, WI, USA) and the phosphorylation level was determined by calculating the ratio
of phosphorylated protein to total protein on the same membrane.

2.9. DNCB-Induced Animal Model of Atopic Dermatitis

For the sensitization step, 200 µL of 1% 2,4-dinitrochlorobenzene (DNCB) solution
dissolved in an acetone and olive oil mixture (3:1) was applied on the dorsal skin and 20 µL
to the right ear. Various concentrations of the LK5 herbal complex (12.5, 25, 50 mg/kg,
and dexamethasone 1 mg/kg) were administered daily after sensitization for 10 days, and
a 0.6% DNCB solution was applied to the dorsal skin and right ear every other day to
maintain symptoms (Figure 1). We assessed clinical symptoms every other day until the
end of the experiment.
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Figure 1. Time schedule for the DNCB-induced AD model. The mice were sensitized with 1%
DNCB twice. Then, the mice were treated with the LK5 herbal complex (12.5, 25, 50 mg/kg and
dexamethasone 1 mg/kg) for 10 days.

2.10. Measurement of Clinical Symptoms Including Dermatitis Score and Ear Thickness

The dermatitis score was evaluated based on the SCORAD index. Skin dermatitis was
evaluated on the basis of 0–3 points according to the severity of the four items such as
erythema/hemorrhage edema, erosion/excoriation, and dryness/lichenification (none—0,
mild—1, moderate—2 and severe—3) [27]. The thickness of the right ear was measured us-
ing a digital micrometer (Mitutoyo, Kawasaki, Japan). The clinical symptom measurements
were blinded, and the information regarding each experimental group was not disclosed.

2.11. Transepidermal Water Loss

To measure transepidermal water loss (TEWL) in the dorsal skin of AD mice, we used
GPSKIN Barrier Pro (GPpower, Hanam, Republic of Korea) through the GPSKIN Research
program. The TEWL was assessed every other day along with clinical symptoms.

2.12. Histological Analysis

The skin on the back of the mouse was collected with a biopsy punch and fixed in 10%
formalin. The fixed tissue was cut into 5 µm thick sections and stained with hematoxylin
and eosin (H&E) and toluidine blue (TB). For the histological analysis, images were obtained
using a light microscope (Olympus, Tokyo, Japan). For epidermal thickness, the stained
area was observed at a magnification of 200× and analyzed. The infiltration of mast cells
was evaluated by counting the number of mast cells in two randomly selected sections.

2.13. Pruritus

Six-week-old male mice were purchased from KOATECH Inc. (Pyeongtaek, Republic
of Korea). The LK5 herbal complex (12.5, 25, and 50 mg/kg) was orally administered for
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7 days. The positive control terfenadine (histamine H1 receptor antagonist, 10 mg/kg)
was orally administered 1 h before the behavior test. Pruritus was assessed for 30 min
immediately after subcutaneous injection of compound 48/80 (50 µg/50 µL) on the final
day of treatment with the LK5 herbal complex. The scratching and subsequent paw
withdrawal moment of the itchy area on the back of the neck were evaluated as one
event [28]. Additionally, the evaluation was conducted in a blinded manner, similar to the
clinical symptom measurements.

2.14. Statistic

The statistical analyses were conducted with GraphPad Prism version 8.0 (GraphPad,
La Jolla, CA, USA). The mean ± S.E.M. was used to present the experimental values.
Two-way analysis of variance (ANOVA) was conducted for statistical analysis of the ear
thickness, TEWL, and dermatitis score. One-way ANOVA was performed for RT-qPCR,
ELISA, NO assay, MTT assay and pruritus, and histological analysis. When the data were
significant, the Newman–Keuls test was used for multiple comparisons. Significance was
defined as p < 0.05.

3. Results
3.1. Quantification of the LK5 Herbal Complex Using HPLC

The LK5 herbal complex contains Scutellaria baicalensis, Liriope platyphylla, Sophora
flavescens, Dictammus dasycarpus, and Phellodendron Schneider. In the LK5 herbal complex,
the standard compound for S. baicalensis is baicalin, while for S. flavescens, the standard
compound is oxymatrine [29,30]. Additionally, the standard compound for P. Schneider is
palmatine, and for D. dasycarpus and L. platyphylla, the standard compounds are obacunone
and chlorogenic acid, respectively [22,31,32]. The five standard compounds were detected
through HPLC chromatograms (Figure 2, Table 2). Based on the HPLC results, it was
determined that the LK5 herbal complex has anti-inflammatory properties due to its high
content of baicalin and oxymatrine [33,34]. Specifically, we can speculate that the five
standard compounds known for their anti-inflammatory properties may exhibit even more
potent anti-inflammatory effects when combined.
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indicator substances are oxymatrine, chlorogenic acid, baicalin, palmatine, and obacunone, which
were analyzed sequentially via HPLC. Oxymatrine was separated sequentially on a YMC J’sphere
ODS-H80 column (4.6 × 250 mm, 4 µm) at 13 min, with chlorogenic acid at 15 min 20 s, baicalin
at 23 min, palmatine at 24 min 20 s, and obacunone at 36 min. The detection of the five standard
compounds was confirmed by comparison with the standards of each compound.

Table 2. The contents of the LK5 herbal complex of indicator substances measured with HPLC.

Standard
Compounds Oxymatrine Chlorogenic Acid Baicalin Palmatine Obacunone

Content
(mg/g) 2.52 ± 0.00 0.40 ± 0.00 2.61 ± 0.01 0.75 ± 0.00 0.36 ± 0.00

3.2. The LK5 Herbal Complex Inhibited LPS-Stimulated Inflammatory Mediators and
Inflammatory Cytokines in HaCaT Cells

HaCaT cells are human-derived keratinocytes with properties similar to human ker-
atinocytes [35]. It is also known that HaCaT cells can secrete inflammatory cytokines
by stimuli and express inflammation-related genes to induce or modulate inflammatory
responses such as AD [36]. Therefore, we determined the anti-inflammatory effects of
the LK5 herbal complex in HaCaT cells stimulated with LPS. First, we conducted an
MTT assay to determine the cytotoxic concentrations of the LK5 herbal complex. At both
1–30 mg/mL concentrations, cell viability was not reduced by the LK5 herbal complex
treatment (Figure 3A). Next, HaCaT cells were stimulated with 1 µg/mL LPS for 24 h
after treatment with the LK5 herbal complex at each concentration for 1 h. The LK5
herbal complex reduced NO production in a concentration-dependent manner and inhib-
ited the expression of iNOS mRNA, which is involved in NO production and synthesis
(Figure 3B,C). LPS is known to stimulate the production of inflammatory cytokines such
as TNF-α, IL-1β, and IL-6 [37–39]. Therefore, we investigated whether the LK5 herbal
complex inhibits inflammatory cytokine production. Treatment with the LK5 herbal com-
plex significantly reduced the LPS-induced production of inflammatory cytokines such as
IL-1β, TNF-α, and IL-6 (Figure 3D–F). Additionally, the LK5 herbal complex inhibited the
production of IL-1β, TNF-α, and IL-6 at the protein level (Figure 3G–I). All of the results
suggest that the LK5 herbal complex exerts anti-inflammatory effects by inhibiting NO
production and inflammatory cytokine expression in HaCaT cells.

3.3. The LK5 Herbal Complex Downregulated the Phosphorylation of STAT in LPS-Stimulated
HaCaT Cells

Increasing inflammatory cytokines by LPS can activate the JAK-STAT pathway [40,41].
In particular, when STAT1, STAT3, and STAT6 are activated as transcription factors by
inflammatory cytokines, they can induce the expressions of genes and lead to inflammatory
conditions such as asthma, rheumatoid arthritis, and AD [42,43]. As shown in Figure 3D–I,
we found that the LK5 herbal complex effectively reduced the inflammatory cytokines
increased by LPS in HaCaT cells. Therefore, we evaluated the effect of the LK5 herbal
complex on the changes in transcription factor STAT phosphorylation in LPS-stimulated
HaCaT cells. The LPS-induced increase in STAT1, STAT3, and STAT6 phosphorylation was
dose-dependently reduced by LK5 herbal complex treatment in LPS-stimulated HaCaT
cells (Figure 4A–C). These results suggest that the LK5 herbal complex may regulate
inflammation by modulating the transcription factor STAT.
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Figure 3. Anti-inflammatory effects of the LK5 herbal complex in LPS-stimulated HaCaT cells.
(A) Cell viability. (B) NO production. (C–F) iNOS, IL-1β, TNF-α, and IL-6 mRNA expressions via
RT-qPCR. (G–I) IL-1β, TNF-α, and IL-6 production via ELISA. The data were determined after LPS
stimulation for 24 h. Statistical analysis was performed using one-way ANOVA. The data represent
the means ± S.E.M. # p < 0.05, ### p < 0.001 vs. the Con group, * p < 0.05, ** p < 0.01, *** p < 0.001 vs.
the 0 (LPS-stimulated) group. Con, control; LK5, LK5 herbal complex.
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Figure 4. Effects of the LK5 herbal complex on LPS-stimulated STAT signaling in HaCaT cells. HaCaT
cells were pretreated with the LK5 herbal complex for 1 h, and then exposed to 1 µg/mL LPS for 3 h.
The treated cells were assessed for activation of (A) STAT1, (B) STAT3, and (C) STAT6 expressions
using Western blot analysis. Statistical analysis was performed using one-way ANOVA. The data
represent the means ± S.E.M. # p < 0.05, ### p < 0.001 vs. the Con group, * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. the 0 (LPS-stimulated) group. Con, control; LK5, LK5 herbal complex.
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3.4. The LK5 Herbal Complex Regulated Inflammatory Cytokines by Inhibiting STAT
Phosphorylation in IL-4/IL-13-Stimulated HaCaT Cells

Activation of the transcription factor STAT is involved in various inflammatory dis-
eases and, in particular, STAT3 and STAT6 are known to play a role in exacerbating AD [44].
The IL-4, IL-13, IL-25, and IL-33 that are expressed in response to the transcription of
STAT3 and STAT6, have been implicated in the exacerbation of AD, and are known to be in-
creased in AD patients [45–48]. Therefore, given that the LK5 herbal complex decreased the
phosphorylation of STAT in LPS-stimulated HaCaT cells, we further investigated whether
the LK5 herbal complex shows similar effects after stimulation with IL-4/IL-13. The LK5
herbal complex downregulated IL-4/IL-13-induced phosphorylation of STAT3 and STAT6
(Figure 5A–C). Additionally, the LK5 herbal complex dose-dependently decreased the
expressions of the inflammatory cytokines such as IL-4, IL-13, IL-25, and IL-33, which are
regulated by STAT3 and STAT6 (Figure 5D–G). These results demonstrate that the LK5
herbal complex reduces the expression of inflammatory cytokines in IL-4/IL-13-stimulated
HaCaT cells by inhibiting STAT signaling.
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Figure 5. Effects of the LK5 herbal complex on IL-4/IL-13-stimulated STAT signaling and inflam-
matory cytokines in HaCaT cells. HaCaT cells were pretreated with the LK5 herbal complex for
1 h, and then exposed to IL-4/IL-13 (30 ng/mL) for 45 min. The treated cells were assessed for
(A,B) STAT3, and (A,C) STAT6 expression using Western blot analysis. HaCaT cells were pretreated
with the LK5 herbal complex for 1 h, and then exposed to IL-4/IL-13 (30 ng/mL) for 24 h. The LK5
herbal complex-treated cells were evaluated for AD-related inflammatory cytokines such as (D) IL-4,
(E) IL-13, (F) IL-25, and (G) IL-33 mRNA expressions via RT-qPCR. Statistical analysis was performed
using one-way ANOVA. The data represent the means ± S.E.M. # p < 0.05, ### p < 0.001 vs. the Con
group, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the 0 (IL-4/IL-13-stimulated) group. Con, control; LK5,
LK5 herbal complex.

3.5. The LK5 Herbal Complex Ameliorated Clinical Symptoms and Histological Analysis in
DNCB-Induced AD and Compound 48/80-Induced Pruritis Animal Models

Based on the anti-inflammatory effects of the LK5 herbal complex in HaCaT cells, we
further evaluated whether the LK5 herbal complex exhibits anti-AD effects in a DNCB-
induced AD-like lesion model. After inducing AD-like lesions with DNCB, the LK5
herbal complex was administered orally for 10 days to assess improvement in critical AD
symptoms such as dermatitis, epidermal water loss, and infiltration of mast cells [49].
While the LK5 herbal complex treatment showed no decrease in mouse body weight,
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dexamethasone reduced body weight compared to the DNCB-only group (Figure 6B).
The dermatitis score, ear thickness, and TEWL of the DNCB-only group were increased
compared to those of the control group (Figure 6A). However, we perceived that the
ear thickness and dermatitis score were dose-dependently decreased by the LK5 herbal
complex compared to the DNCB-only group (Figure 6C,D). In addition, administration
of the LK5 herbal complex reduced the TEWL in comparison with the DNCB-only group
(Figure 6E).
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Figure 6. Effects of the LK5 herbal complex on clinical symptoms in DNCB-induced skin lesions.
(A) Images of the dorsal skin were taken on day 10, and are shown as representative images for
group. Every 2 days, the clinical symptoms, including (B) body weight, (C) ear thickness (µm),
(D) dermatitis score, and (E) TEWL, were assessed (n = 8). Statistical analysis was performed using
two-way ANOVA. The data represent the means ± S.E.M. ### p < 0.001 vs. the control group, * p < 0.05,
** p < 0.01, *** p < 0.001 vs. the DNCB-only group. Con, control; Dexa, dexamethasone; LK5, LK5
herbal complex.

AD is characterized by increased skin thickness in the lesioned area and increased
infiltration of mast cells that express itch-inducing substances [9,15]. We found that the
LK5 herbal complex reduced the epidermal thickness and the number of infiltrated mast
cells in mice in a concentration-dependent manner (Figure 7A–C). Since the LK5 herbal
complex reduced mast cells, we also investigated whether it also affected itching behavior, a
common symptom of AD [50]. In the itching behavior test, the compound 48/80-only group
exhibited vigorous scratching behavior compared to the control group. However, the LK5
herbal complex or the positive control terfenadine effectively inhibited scratching behavior
induced by compound 48/80 at all concentrations (Figure 7D). These results suggest that
the LK5 herbal complex improves the clinical symptoms and histologic changes of AD and
inhibits pruritus, which a typical symptom of AD.
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Figure 7. Effects of the LK5 herbal complex on histological changes in DNCB-induced skin lesions
and itching in compound 48/80-induced mice. (A) Dorsal skin images stained with H&E and TB
were captured at 200× magnification (scale bar: 200 µm). Analysis was conducted on (B) epidermal
thickness (black line), and (C) mast cell infiltration (red arrows) was assessed (n = 4). (D) Changes
in pruritus with the LK5 herbal complex administration following compound 48/80 treatment.
Statistical analysis was performed using two-way ANOVA. The data represent the means ± S.E.M.
### p < 0.001 vs. the control group, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the DNCB- and compound
48/80-only group. Con, control; Dexa, dexamethasone; Terf, terfenadine, LK5; LK5 herbal complex.

3.6. The LK5 Herbal Complex Inhibited IgE and Inflammatory Cytokines in the DNCB-Induced
AD Animal Model

IgE, IL-6, and TSLP, which are known to be elevated in AD patients, play a central
role in exacerbating AD symptoms [6,7]. In the plasma of the DNCB-induced AD-like
animal models, the LK5 herbal complex treatments significantly inhibited TSLP, IL-6, and
IgE levels compared to the DNCB-only group (Figure 8A–C). These data indicate that
downregulating the inflammatory cytokines TSLP, IL-6, and IgE could be an important
strategy in the treatment of AD.

Inflammatory cytokines such as TSLP, IL-4, and IL-13 can activate inflammatory cells in
skin tissues, causing edema and worsening symptoms, especially in AD patients [51–53]. To
determine whether AD symptoms were improved by inhibition of inflammatory cytokines,
we evaluated whether the LK5 herbal complex reduces inflammatory cytokines in DNCB-
induced lesional ear tissue. We found that DNCB-induced increases in inflammatory
cytokines, including IL-4, IL-13, and TSLP, were fully inhibited by the LK5 herbal complex
in lesional ear tissue (Figure 8D–F). These results demonstrate that the LK5 herbal complex
effectively suppresses the increased inflammatory cytokines in DNCB-induced ear tissue,
ultimately alleviating AD-like symptoms such as edema.
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Figure 8. Effect of the LK5 herbal complex on the levels of IgE and inflammatory cytokines, including
IL-4, IL-13, and TSLP, in AD-like lesioned mice. The plasma protein levels of (A) IgE, (B) IL-6, and
(C) TSLP were determined using an ELISA kit (n = 6). The mRNA expressions of (D) IL-4 (E) IL-13,
and (F) TSLP in DNCB-induced ear tissue were evaluated via RT-qPCR. Statistical analysis was
performed using one-way ANOVA. The data represent the means ± S.E.M. # p < 0.05, ### p < 0.001
vs. the control group, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the DNCB-only group. Con, control;
Dexa, dexamethasone.

4. Discussion

AD is a chronic inflammatory skin disease that typically occurs in early childhood, but
it has recently been recognized as having a high prevalence in adults [2]. AD is characterized
by a vicious itching-scratching cycle, and is believed to be caused by a combination of
genetic and environmental factors [4,5]. AD is caused by the release of TSLP and IL-4/IL-13
from T cells by foreign antigens, activating the JAK-STAT pathway [44]. The subsequent
transcription of STAT produces inflammatory cytokines, which can induce inflammation
and itching [11,12]. This process disrupts the skin barrier and ultimately contributes to
the onset and worsening of AD [54]. Current treatments for AD aim to improve the
outward phenotype rather than cure it [55]. Steroids and antihistamines are currently
the most common treatments for AD due to their role in reducing skin inflammation and
relieving itching, but they can be associated with side effects such as growth retardation
and osteoporosis [17,18].

In this study, we used the LK5 herbal complex, a combination of five plants includ-
ing Scutellaria baicalensis, Liriope platyphylla, Sophora flavescens, Dictammus dasycarpus, and
Phellodendron Schneider. S. baicalensis exhibited anti-AD effects in an IgE-induced murine
allergy model by suppressing histamine expression, Mitogen-Activated Protein Kinase
(MAPK) phosphorylation, and inflammatory cytokine expression [56,57]. L. platyphylla
alleviated ear swelling and inhibited IgE expression and inflammatory cytokines in a
phthalic anhydride-induced mouse model of AD [58,59]. Similarly, S. flavescens relieved
scratching behavior in serotonin-induced itching in mice [60,61]. D. dasycarpus has demon-
strated anti-psoriatic effects in an imiquimod-induced murine model, reducing inflamma-
tory cytokine expression by inhibiting STAT3 phosphorylation [61–63]. P. Schneider has
demonstrated anti-inflammatory effects in an LPS-induced sepsis model, inhibiting the
phosphorylation of MAPK, thereby suppressing the expression of inflammatory cytokines
in the liver [64]. Therefore, we assume that the five plants in the LK5 herbal complex
possess anti-inflammatory properties. In addition, baicalin, a standard compound of
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S. baicalensis, has been shown to exhibit anti-AD in a DNCB-induced AD model by inhibit-
ing JAK-STAT phosphorylation, reducing inflammatory cytokines [29,65,66]. Chlorogenic
acid, a standard compound of L. platyphylla, alleviated pruritus in surfactant-induced mice
by inhibiting histamine secretion, and reduced increasing eosinophils and lymphocytes
induced by ovalbumin [67–69]. Furthermore, oxymatrine, a representative standard com-
pound of S. flavescens, inhibited JAK-STAT phosphorylation and decreased the expression
of inflammatory cytokines in MC903-induced AD mice [30,70]. Obacunone, a standard
compound of D. dasycarpus, demonstrated anti-inflammatory efficacy by reducing inflam-
matory cytokines such as IL-6 in CCl4-induced liver fibrotic mice [31,71]. Palmatine, the
representative compound of P. Schneider, alleviated skin lesions in ovalbumin-induced mice
of urticaria, and alleviated itching by inhibiting the infiltration of mast cells [72,73]. Thus,
these compounds promote immunological control and inhibit the inflammatory response,
eventually relieving symptoms, including skin rashes and itching [31,34,65,66,68,71,72]. In
the present study, we found that the LK5 herbal complex effectively ameliorated DNCB-
induced AD-like lesions without side effects such as weight loss. In addition, the LK5
herbal complex inhibited inflammatory cytokines, which can aggravate inflammation and
attenuate itching. These results were attributed to the combined anti-inflammatory effects
of oxymatrine, chlorogenic acid, baicalin, palmatine, and obacunone, which are the indica-
tor substances of the LK5 herbal complex. Therefore, the LK5 herbal complex may provide
new research material for the prevention, treatment, and alleviation of AD with fewer side
effects, such as weight loss, and is safer.

This study observed the anti-inflammatory properties of the LK5 herbal complex in
HaCaT cells stimulated with LPS and IL-4/IL-13. Inflammatory cytokines such as TNF-α,
IL-6, and IL-1β are increased by LPS, which is known to promote inflammatory responses
such as vasodilation and immune cell migration [37–39]. Recently, studies have shown
that these cytokines can regulate the transcription factor STAT, which expresses several
inflammatory genes [74,75]. In LPS-induced HaCaT cells, we found that the LK5 herbal
complex inhibited TNF-α, IL-1β, and IL-6 expression levels and reduced phosphorylation
of STAT1, STAT3, and STAT6. In addition, STAT3 and STAT6 are also activated by IL-4/IL-
13, which has been implicated in the AD immune response [10]. In this study, the LK5
herbal complex inhibited the phosphorylation of STAT3 and STAT6 that was increased by
IL-4/IL-13, which also reduced the subsequent expression of inflammatory cytokines such
as IL-4, IL-13, IL-25, and IL-33. Mounting evidence has reported that regulating STAT and
inflammatory cytokines can modulate the activity of immune cells and suppress immune
response imbalance, thereby reducing inflammation [76,77]. These previous studies may
support our results that the LK5 herbal complex has anti-inflammatory properties.

We also found that the LK5 herbal complex suppressed IgE, TSLP, and IL-6 in plasma,
and increased epidermal thickness and mast cell infiltration in a DNCB-induced AD-like
lesion model. In the case of the epidermis, the thickness increases are known to result
from inflammatory factors and migration of immune cells [15]. Therefore, inhibiting the
expressions of inflammatory cytokines such as TSLP and IL-6 may have anti-inflammatory
properties that reduce epidermal thickness, alleviating edema. In addition, histamine
released by mast cells is known to cause itching, a typical symptom of AD [6]. Therefore,
the decrease in scratching behavior can be attributed to the suppression of histamine.
Previous studies have shown that injection of compound 48/80 into mice increases the
expression of histamine, resulting in increased scratching behavior [78]. The LK5 herbal
complex was shown to attenuate itching behavior induced by the histamine derivative
compound 48/80. Thus, the LK5 herbal complex appears to have antipruritic activity by
inhibiting histamine release in mast cells.

Notably, IL-4 and IL-13 are known to upregulate other inflammatory cytokines, pro-
moting inflammatory responses such as edema and contributing to AD exacerbation [79,80].
Additionally, anti-IL-4/IL-13 monoclonal antibodies have been used for the treatment of
AD patients in clinics [10]. Therefore, modulating IL-4 and IL-13 may improve AD by
suppressing the inflammatory response. This study showed that the LK5 herbal complex
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inhibited IL-4 and IL-13 in DNCB-induced mouse ear tissue. This evidence supports the
notion that the LK5 herbal complex has anti-AD effects by alleviating edema through its
role in regulating the expression of inflammatory cytokines as well as reducing vascular
permeability at the lesional site.

In conclusion, the LK5 herbal complex has anti-inflammatory properties that reduce
LPS- and IL-4/IL-13-induced inflammation, and has anti-AD effects in animal models of
DNCB-induced AD and compound 48/80-induced pruritus. Accordingly, we suggest that
the LK5 herbal complex has high potential for development as a natural AD treatment.
These findings provide a new direction for treating AD, and are recognized as an important
study that opens up the possibility of clinical applications of the LK5 herbal complex.
Further mechanistic studies are needed to determine whether the LK5 herbal complex
also inhibits STAT and other signaling pathways upstream of inflammatory cytokines in
DNCB-induced animal models.
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