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Abstract: Infectious diseases are a predominant problem in human health. While the incidence of
many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for
vaccine researchers. In order to face these challenges, the field of vaccine development has changed
tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine
delivery systems that attempt to increase the immunogenicity by mimicking structural properties
of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of
different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens
and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the
efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This
review gives a compendious picture of two approaches that affect the immunogenicity of recombinant
LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-
existing or promiscuous cellular immunity, which might be beneficial for the development of tailored
prophylactic and therapeutic LbNP vaccine candidates.

Keywords: lipid-based nanoparticles; liposomes; Toll-like receptor ligand; heterologous T cell
help; intrastructural help; universal T cell epitope; immunogenicity; cellular immunity; vaccine
antigen; adjuvants

1. Introduction

While live-attenuated and recombinant antigen vaccines greatly contributed to the
containment of multiple pathogens and even enabled the eradication of smallpox in the
20th century, the ever-increasing number of licensed nanoparticle-based vaccines is about
to change the field of vaccinology in the 21st century [1,2]. Nowadays, vaccines have
evolved into recombinant products with precise formulation and molecular definition.
For non-replicating recombinant vaccines, a nanoparticulate structure that mimics viral
properties greatly contributes to an increased immunogenicity in vaccinees [3].

This review will focus on lipid-based nanoparticles (LbNPs) only and distinguishes
between (i) enveloped virus-like particles (VLPs) that post-translationally self-assemble
from viral subunits, (ii) virosomes, (iii) liposomes that contain a lipid bilayer with an
aqueous cavity and (iv) lipid nanoparticles (LNPs) with a micelle-like monolayer structure
in complex with internally loaded mRNA (Figure 1). For inorganic or polymer-based
nanoparticles, we refer to excellent reviews from colleagues [4–8].

Self-assembling VLPs represent the vaccine delivery platform that is most similar
to the biophysical properties of a prototype virus. Lentiviral enveloped VLPs were one
of the most promising vaccine candidates against human deficiency virus (HIV-1) in the
early 21st century since they resembled native virions presenting trimers of the surface
glycoprotein (Env). However, they were never approved for clinical vaccine trials [9,10].
Due to various hurdles in the production and licensing of enveloped VLPs (reviewed
in [11]), the focus of investigation recently shifted towards the development of tailored,
synthetic nanoparticle-based platforms [12].
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Figure 1. Overview of LbNPs. Displayed are different lipid-based nanoparticles and their compo-
nents. Created with BioRender.com. 

Virosomes combine the immunological benefits of “natural” enveloped VLPs with 
the advantages of controlled liposomal composition. Fundamentally, virosomes can be 
categorized as a subtype of LbNP subunit vaccines and exhibit lipid-anchored antigens 
on the surface of lipid vesicles. The lumen of virosomes, however, is free from the origi-
nal viral structural proteins and nucleic acids. These synthetic nanoparticles are assem-
bled in vitro by harnessing cell-free systems. Parts of their lipid membrane stem from 
purified viral membrane components (often derived from influenza A virus (IAV)) re-
assembling in the lipid nanoparticles with selected antigens of interest [13]. This feature 
ensures a tighter control of their composition in comparison to enveloped VLPs and 
provides the flexibility to adapt the particle to various types of antigens and adjuvants 
[14]. The licensed virosomal vaccines Inflexal®V and Epaxal® against IAV and hepatitis A 
virus (HAV), respectively, demonstrated impressive immunogenicity and tolerability 
profiles [15].  

Liposomes are spherical vesicles made of a lipid bilayer with an aqueous cavity. 
Antigens and other biomolecules can be conjugated to the liposomal surface or encap-
sulated in the inner cavity. In fact, liposomes are the first nanomedicine delivery platform 
that has effectively transitioned from theoretical design to clinical implementation [16]. 
Over the recent years, rapid advancements in modifying liposomes have been made by 
the incorporation of antigens, immunomodulators, adjuvants, and targeting molecules. 
This progress, coupled with the integration of innovative immunization devices, has 
transformed liposomes into a versatile and multifunctional delivery system (reviewed in 
[17]). To achieve effective immune modulation using liposome-based vaccines in vivo, 
the following key points must be taken into account: (i) the physicochemical characteris-
tics of the liposomes, (ii) the choice of antigens and their integration (e.g., embedding, 
encapsulation, conjugation), and (iii) additional triggers for innate and/or adaptive im-
munity [18–20].  

The liposomal formulation and the choice of lipid composition are easily adaptable 
for various approaches, i.e., the zeta potential of the nanoparticles may be switched from 
anionic to cationic by the exchange of only one lipid component [21]. In fact, several 
studies have shown that the surface charge of nanoparticles is decisive for efficient 
recognition and uptake by immune cells [22,23]. For example, a positive charge, which 
facilitates a beneficial interaction with the negatively charged cellular membrane, along 
with the interaction of APCs with the lipid head groups, seems to be a crucial element in 
triggering DC activation [18,24]. In contrast, anionic liposomes have been shown to pos-
sess tolerogenic properties [22,23]. They might mimic apoptotic bodies, which conse-
quently inhibit DC maturation by contact [25]. Besides the influence on the zeta potential, 
the choice of lipid composition can already be a significant factor. Huang et al. observed 
that liposomes composed of bacterial lipids derived from Deinococcus radiodurans 
demonstrated enhanced vaccine efficacy compared to liposomes composed of widely 
used lipids like 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) [26]. Additionally, the 

Figure 1. Overview of LbNPs. Displayed are different lipid-based nanoparticles and their components.
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Virosomes combine the immunological benefits of “natural” enveloped VLPs with
the advantages of controlled liposomal composition. Fundamentally, virosomes can be
categorized as a subtype of LbNP subunit vaccines and exhibit lipid-anchored antigens on
the surface of lipid vesicles. The lumen of virosomes, however, is free from the original
viral structural proteins and nucleic acids. These synthetic nanoparticles are assembled
in vitro by harnessing cell-free systems. Parts of their lipid membrane stem from purified
viral membrane components (often derived from influenza A virus (IAV)) reassembling in
the lipid nanoparticles with selected antigens of interest [13]. This feature ensures a tighter
control of their composition in comparison to enveloped VLPs and provides the flexibility
to adapt the particle to various types of antigens and adjuvants [14]. The licensed virosomal
vaccines Inflexal®V and Epaxal® against IAV and hepatitis A virus (HAV), respectively,
demonstrated impressive immunogenicity and tolerability profiles [15].

Liposomes are spherical vesicles made of a lipid bilayer with an aqueous cavity. Anti-
gens and other biomolecules can be conjugated to the liposomal surface or encapsulated
in the inner cavity. In fact, liposomes are the first nanomedicine delivery platform that
has effectively transitioned from theoretical design to clinical implementation [16]. Over
the recent years, rapid advancements in modifying liposomes have been made by the
incorporation of antigens, immunomodulators, adjuvants, and targeting molecules. This
progress, coupled with the integration of innovative immunization devices, has trans-
formed liposomes into a versatile and multifunctional delivery system (reviewed in [17]).
To achieve effective immune modulation using liposome-based vaccines in vivo, the fol-
lowing key points must be taken into account: (i) the physicochemical characteristics of the
liposomes, (ii) the choice of antigens and their integration (e.g., embedding, encapsulation,
conjugation), and (iii) additional triggers for innate and/or adaptive immunity [18–20].

The liposomal formulation and the choice of lipid composition are easily adaptable
for various approaches, i.e., the zeta potential of the nanoparticles may be switched from
anionic to cationic by the exchange of only one lipid component [21]. In fact, several studies
have shown that the surface charge of nanoparticles is decisive for efficient recognition
and uptake by immune cells [22,23]. For example, a positive charge, which facilitates
a beneficial interaction with the negatively charged cellular membrane, along with the
interaction of APCs with the lipid head groups, seems to be a crucial element in triggering
DC activation [18,24]. In contrast, anionic liposomes have been shown to possess tolerogenic
properties [22,23]. They might mimic apoptotic bodies, which consequently inhibit DC
maturation by contact [25]. Besides the influence on the zeta potential, the choice of lipid
composition can already be a significant factor. Huang et al. observed that liposomes
composed of bacterial lipids derived from Deinococcus radiodurans demonstrated enhanced
vaccine efficacy compared to liposomes composed of widely used lipids like 1,2-Dioleoyl-
sn-glycero-3-phosphocholine (DOPC) [26]. Additionally, the lipid composition may have
an influence on the liposomal rigidity. APCs more readily envelop rigid particles than
flexible ones, resulting in a more effective uptake [18,27,28].

Numerous research works and review papers highlighted and summarized the impact
of particle size on the mechanisms of uptake by APCs, which could subsequently affect
the processing and presentation of liposomal cargo to T cells [20,22,23]. It is feasible to
introduce reactive groups into the liposomal surface layer via phospholipids, which enables
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the non-covalent or covalent conjugation of linear and conformational antigens and/or
targeting antibodies on the liposomal surface [29–34]. Encapsulation of antigenic proteins
or immunodominant peptides (epitopes) into vaccine liposomes might be essential. For
the process of passive encapsulation, the volume captured within the liposome, which is
believed to be a product of the liposome’s size and the overall lipid concentration, plays a
significant role [35,36]. In contrast, electrostatically driven encapsulation might achieve a
controlled and efficient vaccine production. The wide-ranging characteristics of peptides,
such as their water solubility, hydropathicity, and isoelectric point, together with the
composition of the liposome (especially the inclusion of charged membrane components),
are key factors that influence the encapsulation process, which is primarily driven by
electrostatic forces for hydrophilic peptides and proteins [21,35,37,38].

In comparison to liposomes, LNPs consist of an ionizable lipid monolayer. These
particles form micelle-like structures that may incorporate antigen-encoding mRNA com-
plexed with cationic phospholipids. The successful development and the recent licensing
of LNP-based SARS-CoV-2 mRNA vaccines has greatly increased the interest of vaccine
researchers in these vesicles [39,40].

Liposomes and LNPs have the least cytotoxic effects in comparison to other major
types of nanoparticles (NPs) in various biomedical in vivo applications [40,41]. However,
the efficacy profile of most recombinant LbNP vaccine formulations is not as high as that of
live-attenuated vaccines and requires a series of injections to generate protective immunity.
For some pathogenslike HIV-1,limited immunogenicity of the target immunogen and poor
induction of neutralizing antibodies of the appropriate specificity are additional obstacles
in vaccine development [42]. Therefore, the design of LbNP vaccines that are both safe and
induce potent, long-lasting immune responses is a considerable challenge [43].

This review discusses two main approaches that affect the immunogenicity of LbNP
vaccines: (i) the incorporation of immunostimulatory compounds for innate immunity and
(ii) the harnessing of pre-existing or promiscuous adaptive cellular immunity. Utilizing
these strategies might be beneficial for the development of tailored prophylactic and
therapeutic LbNP vaccines.

2. Enhancement of LbNP Vaccine Efficacy via Toll-like Receptor Ligands
2.1. Toll-like Receptor (TLR) Ligands

The immune system possesses an inherent capability to identify molecular patterns
carried by microorganisms. These patterns, known as pathogen-associated molecular
patterns (PAMPs), activate specialized receptor sensors within cells and trigger a coordi-
nated response to eliminate invading pathogens. In general, PAMPs are molecules that
perform key functions for the microbes, but are not naturally found in the host organism.
Examples are lipopolysaccharides (LPS) on the surface of Gram-negative bacteria, double-
stranded RNAs (dsRNA) produced as part of viral replication, and flagellins that build
bacterial flagella [44–46].

The TLR family is a well-characterized group of innate signaling receptors that respond
to a variety of PAMPs. TLR1, TLR2 and TLR6 form heterodimers and recognize lipopeptides.
TLR4 senses LPS and derivatives like monophosphoryl lipid A (MPLA), and TLR5 binds
to flagellins. The endosomal TLR3 detects dsRNA, while TLR7 and TLR8 recognize single-
stranded RNA (ssRNA), and TLR9 responds to CpG-rich nucleotide patterns [45,47–51]. The
different TLRs are either located on the cell membrane or inside endosomes depending on the
source of the PAMPs, i.e. LPS shed from bacteria is picked up by lipopolysaccharide-binding
protein (LBP) and transported to TLR4 on the cell membrane, whereas the viral RNA sensors
(TLR3, TLR7, TLR8) are located in endosomes of the host cells (Figure 2) [52,53]. Upon
ligand binding, the downstream signaling pathways activate the transcription and secretion
of type I and II interferons as well as immunostimulatory cytokines and chemokines. TLR-
based adjuvants can trigger a T helper type 1 (Th1), Th2, or Th17 biased immune response.
For example, a Th1-prone response gets activated by binding of an adjuvant to TLR3, TLR4,
TLR7, TLR8, or TLR9 [54–56].
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Poor TLR stimulation might lead to inappropriate immune responses after vaccination.
An experimental inactivated respiratory syncytial virus (RSV) vaccine lacking proper TLR
signaling did not protect infants from infection, but instead exacerbated the symptoms of
natural RSV exposure in the vaccinees [57,58]. However, Delgado et al. suggested that
inactivated RSV vaccines may be rendered safe and effective by the incorporation of TLR
agonists in their formulation [59].

In this chapter, we will discuss several TLRs and their respective agonists that are
currently involved in experimental or licensed LbNP vaccines in detail (Figure 2).
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Figure 2. Toll-like receptors (TLRs) and their ligands. The extracellularly located TLR2 dimerizes with
TLR1 or TLR6 and senses triacyl-lipoproteins or diacetyl-lipoproteins, respectively, and initiates TRAF-
6 activation via MyD88 signaling. TLR4 and TLR5 are expressed on the cell surface. Upon binding of
LPS (derivatives) or flagellin displayed on LbNPs, the receptors activate TRAF-6 induction via TRIF
or MyD88, respectively. This triggers the initiation of the MAP-kinase (MAPK) and IKK complex
cascade, which ultimately leads to the transcription of pro-inflammatory cytokines via the activation
of NF-kB and AP-1. The phagocytic uptake of LbNPs containing nucleic acid-based adjuvants triggers
the activation of TLR3, TLR7/8, or TLR9 after endosomal release. Here, TLR3 binds dsRNA, TLR7/8
ssRNA, and TLR9 CpG-rich DNA. This mediates the downstream activation of TRAF-6, which, on
the one hand, triggers the induction of pro-inflammatory cytokines, as described for TLR4 and TLR5.
On the other hand, endosomal TRAF-6 induction leads to an additional upregulation of Type I IFNs
via the IRF5/IRF7 pathway. Created with BioRender.com.

2.2. TLR2 Heterodimers and Their Antagonists

The discovery and cloning of TLR2 were initially reported in 1998 [60]. The expression
of TLR2 has been observed in immune cells, as well as endothelial and epithelial cells [61].
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It is the sole TLR known to date that can form operational heterodimers with more than
two other TLR types (Figure 2). The idea of TLR2 operating as a functional homodimer
has been suggested by Jin et al., but there is currently no proof that it initiates a signaling
sequence in humans and/or mice [62]. TLR2 signaling is initiated by ligand-induced dimer-
ization and was described in detail elsewhere [63]. Briefly, ligand-induced dimerization of
the essential cytoplasmic TIR domains triggers a cascade of phosphorylation events that
vary depending on whether it was TLR2/1 or TLR2/6 stimulated. These signaling cascades
result in the MyD88-dependent activation of pro-inflammatory transcription factors such
as NF-κB and AP-1 (Figure 2).

The ability of TLR2 to form heterodimers not only diversifies downstream signaling
cascades but also facilitates the recognition of a wide variety of PAMPs from structurally
different bacterial compounds [64]. Many TLR2 agonists identified so far (e.g., glycolipids,
lipoproteins, lipopolysaccharides) contain a hydrophobic component, making them an
attractive adjuvant for liposomal vaccine formulations. One of the most promising lipid
moieties for use in such vaccines is S-[2,3-bis(palmitoyloxypropyl)]cysteine (Pam2Cys), a
simple synthetic metabolizable lipoamino acid derived from the lipid component present
in Mycoplasma [65]. Although Pam2Cys only consists of a cysteine, a thioglycerol and
two fatty acid residues, it signals via the TLR 2/6 pathway, activates dendritic cells, and
enhances both humoral and cellular adaptive immune responses [66].

The swift advancement of mRNA vaccines in recent years has been remarkable. These
vaccines, particularly those aimed at SARS-CoV-2, have rapidly moved from the laboratory
to clinical application, playing a significant role in combating the COVID-19 pandemic.
Concurrently, extensive research and development efforts are underway for mRNA vaccines
targeting various cancers and other infectious diseases. Recently, Gu et al. investigated
the enhancement of the efficacies of mRNA vaccines with Pam2Cys. The adjuvant was
incorporated into mRNA-LNPs to achieve co-delivery with mRNA. Adjuvanted mRNA-
LNPs effectively modulated the immune environment in the draining lymph nodes, leading
to the production of IL-12 and IL-17, among other cytokines. The presentation of antigens
by DCs resulted in significantly enhanced anti-tumor responses in both prophylactic
and therapeutic tumor models, dependent on CD4+ and CD8+ T cells. This process
also led to the establishment of memory anti-tumor immunity. Furthermore, the vaccine
stimulated a considerably stronger humoral and cellular immunity in a surrogate COVID-
19 prophylactic model. Importantly, these new Pam2Cys-adjuvanted mRNA vaccines
demonstrated promising initial safety profiles in murine models [67].

Since the onset of the SARS-CoV-2 pandemic, mucosal vaccination routes also have
become a point of interest within the scientific community. However, the lack of reliable
mucosal adjuvants is still one of the major challenges in the development of mucosal
recombinant vaccines. Naciutae et al. developed a liposomal vaccine formulation for oral
delivery consisting of a long tumor peptide and Pam2Cys in order to stimulate local and
systemic immune responses. Lipid-based vaccines (i) induced expansion of lymphocyte
populations in mesenteric lymph nodes of naïve (tumor-free) mice and (ii) reduced the
growth of tumor cells in the gastrointestinal tract of mice with colorectal cancer [68].

To trigger the TLR2/TLR1 pathway, triacylated lipopeptides such as Pam3CysSerLys4
(Pam3CSK4) and their derivatives have been tested in experimental vaccines [69]. Bal et al.
clearly demonstrated that co-encapsulation of Pam3CSK4 together with an antigen in
cationic liposomes modulates the type of immune response. First of all, liposome-based
Pam3CSK4 formulation induced superior DC maturation compared to the free adjuvant.
Surprisingly, co-encapsulation of ovalbumin and Pam3CSK4 in cationic liposomes did not
influence the total anti-ovalbumin IgG titers compared to the antigen/adjuvant solution
but shifted the IgG1/IgG2a balance [70].

In the context of versatile liposomal constructs for co-delivery of tumor peptide epi-
topes in combination with TLR ligands, Thomann et al. performed a direct comparison
between synthetic TLR2/1 and TLR2/6 agonists. It was demonstrated that the TLR2/6 ago-
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nists (Pam2CAG and Pam2CGD) were more efficient than the TLR2/1 agonist (Pam3CAG)
for the therapeutic anti-tumor vaccination [71].

Besides synthetic lipopeptides, various proteins, including lipoproteins and glycopro-
teins, can trigger TLR2 [64]. An elegant example of liposomal vaccine development was
demonstrated by Banerjee et al. Porin of Shigella dysenteriae was incorporated into liposomes
(PIL). On the one hand, liposomes served as an attractive vehicle to embed the porin in the
liposomal bilayer and present it to the adaptive immune system. On the other hand, the
porin molecule in its native form could serve as a TLR2 adjuvant. Indeed, PIL triggered the
TLR2/TLR6 pathway on DCs, leading to their maturation. PIL-stimulated DCs provided
activation and Th1 polarization of allogeneic CD4+ T cells, thereby successfully bridging
innate and adaptive immunity [72].

Thus, lipopeptides are the most broadly used ligands for TLR2 heterodimers in vaccine
development. The process of integrating variable synthetic TLR2 ligands into liposomal
structures is quite straightforward, which simplifies the manufacturing of entirely synthetic
LbNP vaccines. TLR2 adjuvants stimulate DCs, thereby enhancing cell-mediated reactions
and modulating antibody levels, which could be advantageous in warding off infections or
eradicating tumors. However, the capability of vaccines with TLR2 adjuvants to generate
CTL responses is not particularly notable. Therefore, the merits of focusing on TLR2 for
vaccine development remain a contentious issue, calling for additional research (rev in [73]).

2.3. TLR3-Activating Adjuvants

TLR3 is mainly expressed in endosomal compartments of myeloid DCs (mDCs)
and recognizes viral dsRNA [74]. Synthetic dsRNA analogs like NexaVant or polyri-
boinosinic:polyribocytidylic acid (poly(I:C)) also bind to TLR3, which induces TRIF/TRAM
pathway-dependent signaling, resulting in the secretion of inflammatory cytokines and
IFN-β [75,76]. Furthermore, poly(I:C) is able to activate intracellular receptors like retinoic
acid-inducible gene I (RIG I) or melanoma differentiation-associated gene 5 (MDA-5), re-
sulting in adjuvant activity [77]. In general, TLR3 ligands induce a potent activation of
dendritic cells, which promotes the elicitation of strong Th1 CD4+ T cell, CD8+ T cell and
NK cell responses. Major flaws that should always be considered with regard to poly(I:C)-
adjuvanted formulation are its low stability and toxic side effects. Once applied, it may be
degraded by serum nucleases. This can not be counteracted by increasing the dosage of
poly(I:C) since it is not well tolerated in high doses [78].

The encapsulation of poly(I:C) inside liposomes protects them from degradation
in vivo and has shown promising results in several animal studies [79–82]. The intradermal
injection of liposomes that incorporated poly(I:C) together with a synthetic peptide har-
boring a model CTL epitope resulted in stronger induction of peptide-specific CD8+ T cell
responses compared to the control groups, which included poly(I:C)-adjuvanted soluble
peptide or peptide-loaded liposomes mixed with poly(I:C). The poly(I:C)-encapsulating
liposomal formulation resulted in a 25-fold increased peptide-specific CD8+ T cell fre-
quency in comparison to the soluble peptide control. Although the priming of CD8+ T cell
responses was improved in mice immunized with adjuvanted liposomes irrespective of the
way poly(I:C) was delivered (encapsulated or mixed), the authors observed a significant
difference in the functionality of the induced T cells between the peptide/poly(I:C)-loaded
liposomes and the peptide-loaded liposomes + poly(I:C) formulations [83].

In order to analyze humoral immune responses, poly(I:C) was co-encapsulated ei-
ther with a model antigen (ovalbumin (OVA) [79]) or with a pathogen-derived antigen
(Diphtheria Toxin (DT) [81]). OVA/poly(I:C)-loaded liposomes significantly increased
the antigen-specific IgG2a response compared to soluble OVA and poly(I:C) solutions in
immunized mice [79]. Surprisingly, both liposomal DT/poly(I:C) formulations and lipo-
somes that encapsulated either poly(I:C) or DT induced higher IgG2a titers compared to the
control groups. Furthermore, DT and poly(I:C) individually encapsulated into liposomes
resulted in similar IgG2a titers than DT/poly(I:C) co-encapsulated into liposomes [81].



Pharmaceutics 2024, 16, 24 7 of 26

In a study by Hu and colleagues, the liposome-encapsulated administration of poly(I:C)
was able to enhance the immune response against Dengue virus. Here, the vaccinated mice
showed high antibody levels and, upon virus challenge, decreased loss of body weight and
fewer viral copies in the brain tissue [82].

Thus, different liposomal antigen/poly(I:C) formulations might, in general, be suit-
able for (i) therapeutic vaccine candidates against cancer since antigen/poly(I:C) co-
encapsulation appeared to be effective regarding the induction of cytokine-secreting
CD8+ T cells with increased killing capacity [83,84], and for (ii) prophylactic antiviral
vaccine candidates, because a strong Th1-biased immune response during viral infections
or after vaccination was demonstrated to be beneficial for the induction of antiviral
antibody responses [85,86].

2.4. TLR4-Activating LPS Derivatives

TLR4 is expressed by the majority of circulating immune cells but was first described in
macrophages and mDCs [87,88]. TLR4 signals in MyD88-dependent and TRIF-dependent
ways, inducing a robust IL-12-mediated secretion of type I interferons (IFNs) and a strong
Th1-biased T cell and humoral immune response [89]. Within DCs, the activation of TLR4
leads to a reorganization of lysosomal distribution dependent on Rab34. This rearrange-
ment results in a delay in antigen degradation, temporarily boosting cross-presentation.
Consequently, this optimization contributes to the effective priming of CD8+ T cell re-
sponses against pathogens [90].

A variety of TLR4 ligands that are derived from fungi, viruses, parasites, endogenous
ligands and bacterial products have been characterized [91–95]. The major agonists that
were described first and remain the best characterized are lipopolysaccharides from Gram-
negative bacteria [91,96].

MPLA, manufactured from Salmonella enterica endotoxin, has been widely used for
clinical applications and replaced alum as the predominantly accepted adjuvant for licensed
vaccines and therapeutics [97]. Purification of MPLA can easily be achieved by acid
hydrolysis of LPS followed by centrifugation and washing of the precipitated heptose-free
MPLA [98]. Removal of the glucosamine-1-phosphate group from the polar head of lipid
A results in the generation of MPLA. The absence of glucosamine-1-phosphate reduces
the toxic effects in vivo compared to LPS, but MPLA is still recognized by TLR4 [99,100].
Since MPLA contains a negative charge, MPLA liposomes usually bear an anionic zeta
potential. MPLA liposomes can easily be generated at room temperature and are ready to
use as adjuvants [101].

MPLA/TLR4 binding induces a strong Th1-biased immunity as well as the secretion
of pro-inflammatory cytokines and promotes antigen-specific CD8+ T cell responses, which
has been reported for liposomal vaccine formulations against parasitic (Leishmania) [102],
bacterial [103,104] (Mycobacterium tuberculosis) and viral (HIV-1, Ebola virus (EBOV), SARS-
CoV-2) pathogens [105–108].

Although these studies were performed with lipid vesicles carrying antigens in the
aqueous core and MPLA embedded in the vesicle walls, co-presentation of B cell antigens
and MPLA on the LbNP surface also improves humoral immune responses. For example,
Ingale et al. manufactured MPLA liposomes that displayed the HIV-1 surface glycoprotein
(Env) on the surface [30]. The authors demonstrated higher anti-Env antibody levels, a
stronger induction of neutralizing antibody responses, and a more dominant germinal
center formation in rabbits immunized with Env/MPLA-liposomes compared to control
animals that received soluble Env trimers only. Hanson et al. managed to elicit antibody
responses against the membrane-proximal external region (MPER) of the HIV surface
glycoprotein Env when the protein subunit was anchored on the surface of liposomes.
Immunization with soluble MPER + oil-in-water adjuvants or alum did not elicit MPER-
specific antibodies. High-titer anti-MPER IgG responses could be induced when MPLA
was additionally incorporated in the MPER-liposomes [109].
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MPLA was also used as an adjuvant in virosomal vaccines. Kamphuis et al. utilized
RSV virosomes that incorporated MPLA adjuvant to boost immunogenicity and direct the
immune response towards a Th1 phenotype. The inclusion of MPLA amplified the overall
immunogenicity of the virosomes in comparison to virosomes without adjuvants in mice.
The intramuscular delivery of the vaccine resulted in the production of RSV-specific IgG2a
levels comparable to those produced by the animals exposed to live RSV [110]. Dong et al.
created a modified virosomal platform that comprised the membrane lipids and proteins
of the influenza virus. MPLA was additionally integrated into the membrane and the
conserved IVA nucleoprotein was conjugated to the membrane. In vitro, such virosomes
containing MPLA triggered a more robust activation of APCs than virosomes without
adjuvants. In vivo, virosomes adjuvanted with MPLA effectively generated antigen-specific
antibody responses and effectively primed CTLs [111].

Vaccines containing MPLA-LbNPs as a part of the licensed Adjuvant System 01 (AS01)
have been licensed in some countries and included in vaccination programs. AS01, a
liposome-based adjuvant, is utilized in two approved vaccines: RTS,S/AS01 (against
malaria) and Shingrix (a recombinant zoster vaccine). This adjuvant comprises two im-
munostimulatory agents: MPLA and QS-21 (a saponin molecule derived from the bark
of Quillaja saponaria Molina). MPLA and QS-21 demonstrate a synergistic effect, working
together to amplify antigen-specific responses. This synergy operates via a mechanism that
involves the early induction of IFN-γ in the draining lymph node, subsequently fostering
a robust Th1 response [112]. In general, MPLA is the most favorable TLR agonist for the
adjuvantation of HIV-1 Env immunogens since it was shown to have no negative influence
on the stabilized pre-fusion conformation of this trimeric antigen, unlike other adjuvants
that slightly interfered with the immunogen structure (CpG, imiquimod) or even resulted
in the dissociation of the trimeric complex (alum) [113]. Notably, MPLA-liposomes are the
adjuvant of choice for two phase-1 prophylactic HIV vaccine studies using Env trimers as
main immunogens (NCT03816137, NCT03699241).

Another LPS derivative with agonistic TLR4 adjuvant activity is deacylated lipooligosac-
charide (dLOS). dLOS consists of a core oligosaccharide lacking the terminal glucose residue,
a glucosamine disaccharide with two phosphate groups, and two N-linked acyl groups.
dLOS-induced cytokine production in mouse peritoneal macrophages is comparable to
MPLA but exhibits superior activation capabilities in human monocytes and DCs [114]. In
preclinical animal studies, the adjuvant CIA09, comprising cationic liposomes and dLOS,
effectively boosted antibody and cell-mediated immune responses against recombinant
tuberculosis antigens, inactivated Japanese encephalitis vaccine (JEV), and recombinant
varicella-zoster virus (VZV) glycoprotein E (gE) antigen [115–118].

In summary, LbNPs containing LPS derivatives have shown considerable promise as
adjuvants for immunization. In comparison to LPS, they have a decreased toxicity and,
therefore, are safe for use in humans.

2.5. Flagellin—A TLR5 Agonist

TLR5 is found on numerous cell types, such as lymphocytes, macrophages, monocytes,
neutrophils, NK cells, DCs, epithelial cells and stromal cells in the lymph nodes [119]. It
identifies bacterial flagellin, which is a structural element of the flagellum—a movement
apparatus primarily linked with Gram-negative bacteria—as an extracellular PAMP and
activates both the MyD88-dependent signaling pathway and NF-κB-mediated production
of pro-inflammatory cytokines [120]. Flagellin is a potent activator of the innate and
adaptive immune system and has shown its tremendous potency as an adjuvant, either in
the context of a fusion protein or by co-administration with antigens (reviewed in [119] and
in [121]). Truncated, less inflammatory forms of flagellin can be used to avoid side effects.

More than a decade ago, it was demonstrated that the adjuvant properties of flagellin
could be conveniently harnessed to target liposome-associated antigens to APCs, as well
as to induce potent antigen-specific and anti-tumor immunity. Antigen-functionalized
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liposomes coated with flagellin-related peptides could effectively enhance the immune
response against tumor cells, leading to a reduction in tumor growth [122].

Given that TLR5 is widely expressed in lung and intestinal epithelial cells, flagellin
has garnered significant interest as a mucosal adjuvant [123]. Chimeric VLPs of IAV
(H5N1) that bear membrane-anchored flagellin (FliC-VLP) were applied to mice both
intramuscularly and orally. These mice exhibited stronger humoral and cellular immune
responses compared to those receiving H5N1 VLPs without flagellin. Mice that received
an oral immunization with Flic-VLPs demonstrated significant protection against lethal
exposure to both homologous and heterologous H5N1 influenza viruses, while mice that
received oral immunization with VLPs lacking flagellin invariably fell victim to the infection.
Additionally, mice orally immunized with FliC-VLPs displayed virus-specific IgG titers
tenfold higher than their counterparts [124]. In a guinea pig model, HIV-1 VLPs with
membrane-anchored flagellin induced enhanced antibody responses by either systemic or
mucosal vaccination, as demonstrated by high levels of HIV-specific serum IgG as well
as mucosal IgG and IgA. VLPs incorporating full-length flagellin were more effective in
inducing systemic responses, while VLPs containing truncated forms of flagellin were more
effective in inducing mucosal IgA responses [125].

Unlike the majority of TLR ligands, flagellin, being a protein, has the ability to elicit an
immune response directed against itself. Barnowski et al. observed in B cell-targeting lentivi-
ral VLP vaccines that flagellin acts as an antigen, potentially overwhelming the antibody
response to a less immunogenic antigen. However, when paired with a potent immunogen,
the adjuvant activity of flagellin might overshadow its own immunogenicity [126].

In summary, the use of flagellin as a TLR5-activating adjuvant in LbNP vaccines has
shown promising results in enhancing the immune response and inducing anti-tumor
immunity. Further research in this area could lead to the development of more effective
vaccines and immunotherapeutic strategies. Because of its potential immunogenicity,
concerns about diminished efficacy and possible reactogenicity after repeated adminis-
tration exist. Immunization with truncated flagellin derivatives while preserving the
TLR5-mediated immunomodulatory activity should be the most reasonable option for
clinical applications [127,128].

2.6. Adjuvants Interacting with TLR7 and TLR8

TLR7 and TLR8 (CD288) are both expressed in NK cells, neutrophils, monocytes,
macrophages, eosinophils and Langerhans cells. B cells and plasmacytoid DCs (pDCs)
contain TLR7 only, while T cells only express TLR8 [129]. TLR7 and TLR8 are located
intracellularly within endosomal compartments. Activation of TLR7 and TLR8 initiates
signaling pathways involving MyD88/Mal, NF-κB and IRF7, leading to the secretion
of pro-inflammatory cytokines, chemokines, and other mediators. In DCs, activation of
TLR7/TLR8 promotes cell maturation, expression of co-stimulatory molecules (CD40,
CD80, and CD86), enhanced antigen presentation, and secretion of Th1 pro-inflammatory
cytokines (IL-12, TNF-α and IFN-α). TLR7 signaling results in the secretion of immunoglob-
ulins, IL-6, and TNF-α by B cells, as well as IFN-γ by NK cells [130,131]. Activation of TLR8
enhances T cell proliferation, IFN-γ, IL-2 and IL-10 production, memory T cell activation,
and reduces CD4+ Treg-mediated immunosuppression [132].

The ligands for TLR7 and TLR8 include ssRNA enriched for poly-U or poly-GU se-
quences, synthetic imidazoquinolinamines like imiquimod (R-837) and resiquimod (R-848),
as well as guanosine analogs such as loxoribine [133,134]. While resiquimod and its analogs
have proven to be effective as vaccine adjuvants in various murine models, it is evident that
these specific molecules may not be universally optimal adjuvants, especially when the TLR
agonist is mixed with an antigen and administered via conventional injections [135]. Most
notably, R-848 showed a poor tolerability profile in humans as well as common systemic
side effects. These side effects included injection site reactogenicity and flu-like symptoms
(fever, headache, and malaise) that correlated with systemic immune activation, i.e., as
shown by high concentrations of numerous cytokines in the blood [136]. Additionally,
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in contrast to adjuvants with a “depot effect”, the small, synthetic TLR7/TLR8 agonist
molecules are rapidly distributed throughout the body after subcutaneous injection and
may cause systemic rather than localized stimulation [137,138]. Therefore, nanoparticulate
formulations (e.g., liposomal encapsulation of TLR7/8 agonists) might improve immuno-
genicity due to restricted adjuvant distribution and prolongation of activity in draining
lymph nodes [138,139].

By addition of an 18-carbon chain to 3M imidazoquinoline (IRM), Smirnov et al. cre-
ated a molecule called 3M-052, which is more amenable to incorporation in lipid-based
formulations such as liposomes or emulsions [140]. Later, Van Hoeven et al. developed
a formulation for 3M-052 liposomes as an adjuvant for pandemic influenza vaccines.
The modified 3M-052 liposomes increased the protective capacity of H5N1 antigens, pro-
moting the broadening of antibody responses, antigen dose sparing, and protection in
pre-clinical studies [141].

So far, TLR7/TLR8 agonists have not been clinically approved as vaccine adju-
vant components [142]. Nevertheless, various formulations of vaccines adjuvanted with
TLR7/TLR8 agonists are currently undergoing different stages of clinical trials. The
adaptive response elicited in these adjuvant studies is marked by a Th1-like phenotype,
characterized by the production of IFN-γ by CD4+ cells and IgG2 by B cells, along with
a simultaneous suppression of Th2 immunity. Continued assessment and refinement of
these TLR7/TLR8 adjuvant strategies, including potential dose-sparing effects, reduced re-
actogenicity profiles, and thorough examination of long-term safety and efficacy outcomes,
are undeniably warranted [136].

2.7. TLR9-Dependent Adjuvants

In humans, TLR9 (CD289) is found in intracellular endosomal compartments of im-
mune cells, especially in B cells and pDCs [143]. TLR9 signaling via the MyD88 path-
way, involving IRAK and TRAF-6 but not Mal, triggers the production of Th1-type pro-
inflammatory cytokines (IL-1, IL-6, IL-12, IL-18, TNF-α, and IFN-γ), upregulation of CD40,
CD80, CD86, and MHC molecules on the APC surface, enhanced antigen processing and
presentation, as well as CD8+ T cell responses [144,145]. Notably, IL-12 and type I IFNs
induced in pDCs via TLR9 contribute to robust Th1-type immunity and CD8+ CTL cytotox-
icity, while B cell activation dependent on TLR9 leads to increased antigen-specific humoral
responses and IgG class switching [146,147].

The ligands for TLR9 include bacterial and viral DNAs containing unmethylated CpG
motifs, as well as synthetic oligodeoxynucleotides (ODN) expressing CpG motifs [148].
Synthetic TLR9 ligands, which maintain the immunostimulatory activity of bacterial DNA,
are categorized into three main classes based on their structure, biological properties, and
their ability to activate immune cells in vitro [149,150].

TLR9 agonists have been extensively studied in pre-clinical and clinical studies [151–154].
ODN adjuvants were tested in vaccine models targeting malaria, hepatitis B virus (HBV),
IAV, anthrax, and SARS-CoV-2 [155–159]. CpG-ODN triggered a potent antibody response
to the malarial Apical Membrane Antigen 1 (AMA1) and the Merozoite Surface Protein
142 (MSP142) [160]. In the context of HBV, a B-type CpG-ODN known as CPG 7909
amplified specific, long-term antibody responses to the Engerix-B® vaccine (a recombinant
HBsAg vaccine absorbed on alum) compared to Engerix-B® alone [161]. Another CpG-
ODN, the 1018 immunostimulatory sequence (ISS), has been demonstrated to enhance
the efficacy of the HBV vaccine Heplisav® with minor local side effects [162]. Conversely,
the inclusion of CpG 7909 in the influenza vaccines Fluarix® is considered less impactful,
although it enhanced IFN-γ secretion and was well-tolerated, providing an advantage for
reducing the vaccine dosage [157].

Since the utilization of nanoparticle-based vaccines has increased over the last decade,
multiple studies have reported liposomal vaccine candidates that co-encapsulated both
CpG-ODN and the immunogen of choice (OVA as a model system; Listeriolysin O of Listeria
monocytogenes; a recombinant Leishmania Stress-Inducible Protein 1). All immunizations
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resulted in a strong Th1 response, mediated through a combination of liposomal delivery
of antigen and CpG-ODN to the cytoplasm and endosomal uptake of the whole liposomes,
triggering the TLR9 pathway. This also resulted in a robust CTL response, the generation
of IFN-γ-secreting CD4+ and CD8+ T cells, and the production of Th1-type antibodies. In
comparison to control groups, the total antibody levels were not significantly different, but
a shift in the IgG1/IgG2a ratio to an IgG2a predominance was observed [70,163–167].

Based on the strong immunogenicity of liposomal CpG-ODN/antigen formulations,
they can be considered an effective vaccine platform for the induction of antiviral immunity.

To sum up this chapter, TLR ligands are small biomolecules of different properties and
origins that can easily be incorporated into LbNP vaccines and strongly promote humoral
immune responses. The TLR4 agonist MPLA, in particular, is already the adjuvant of
choice in a multitude of clinically licensed vaccines or part of complex adjuvant systems.
Synthetic ssRNA-based TLR7/TLR8 agonists are currently in the process of being licensed
for clinical vaccines. In general, TLR agonists already replaced alum as the predominant
adjuvant in licensed vaccines. LbNPs with a lipid bilayer and aqueous cavity inherit the
ideal properties to act as carriers for TLR delivery in combination with the immunogen
of choice. Lipid-based TLR agonists such as MPLA can be incorporated in the bilayer
of LbNPs, while soluble small TLR molecules like CpG or ssRNA may be encapsulated
inside the nanoparticle. Such combinations of polyfunctional carriers and state-of-the-art
adjuvants will shape vaccinology in the 21st century.

3. Improvement of Humoral Immune Responses via Heterologous Cellular Immunity

Since classical adjuvants and TLR agonists primarily target innate immunity and
may cause undesirable side effects, a bolder way to enhance the acceptance of novel
vaccines would be to induce robust and potent humoral immune responses without the
need for any adjuvants in the formulation. Another challenge faced by recombinant protein
vaccines is the potential lack of immunodominant epitopes, which can lead to suboptimal
T cell help despite appropriate adjuvantation and, consequently, low-magnitude and low-
affinity antibody responses. For LbNP formulations utilizing recombinant proteins, we
present another possibility of adjuvant-free vaccine design that greatly influences and
modifies humoral immune responses–the utilization of pre-existing or promiscuous cellular
immunity to provide help for B cells specific for the antigen of interest. In the following
chapter, we introduce two major routes to achieve this.

3.1. Intrastructural Help Harnessing Pre-Existing Immunity

A number of licensed live-attenuated vaccines, such as the measles virus vaccine,
induce strong antibody responses with a plasma half-life of virus-specific IgG levels in
excess of 100 years [168]. In contrast, antibody levels induced by Tetanus vaccines or
experimental HIV vaccines decline relatively rapidly with a half-life of 11 years and less
than one year, respectively, even if the vaccine antigen is delivered in the presence of
adjuvants (reviewed in [169]). The prevailing hypothesis for these striking differences
is that the strength of the signals an antigen-specific B cell receives during the germinal
center (GC) reaction determines the half-life of the antibody response. In particular, signals
from B cell receptor crosslinking, stimulation by T follicular helper (Tfh) cells, and/or
triggering of pattern recognition receptors (PRRs) determine the numbers and the activity
of long-lived plasma cells that ultimately derive from one B cell. In addition, these signals
also determine the IgG subtype response and, thus, define the Fc-effector functions of the
antibodies [170–173]. Consequently, the quality of the antibody response and its duration
is already imprinted during the induction and affinity maturation phase.

The concept of intrastructural help (ISH), which was first described for influenza
virus [174] and more recently for HIV VLPs [175], can be used to achieve a modulation
of humoral immune responses by harnessing pre-existing cellular immunity specific for
heterologous epitopes. Accordingly, a naïve B cell specific for the surface protein of a
virus would take up the entire virion or VLP via a B cell receptor-dependent mechanism
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and present peptides derived from both the surface protein as well as from other proteins
encapsidated in the particle on MHC-II molecules. Thus, T helper cells specific for the non-
surface proteins of the particle may provide help for the B cell to elicit antibody responses
against the surface protein (reviewed in [176]). Extending this concept with regard to
the development of a widely applicable vaccine platform, one would generate “T helper
LbNPs” that display the vaccine immunogen of choice on their surface and contain T
helper cell epitopes from efficacious licensed vaccines inside [29,177]. B cells specific for
the vaccine antigen on the surface of the LbNPs should internalize the entire nanoparticles
and subsequently present the encapsulated peptide epitopes to T helper cells specific for
and previously induced by the licensed vaccines (Figure 3).

Liposomes seem particularly well-suited as a vaccine platform in the context of ISH.
Hydrophilic T helper cell epitopes could readily be encapsulated inside the liposomes by
passive inclusion during liposomal formation or by electrostatically driven approaches that
optimize the buffer condition as well as the lipid and peptide concentrations to actively
promote encapsulation [21]. Alternatively, whole immunodominant protein antigens
may also be encapsulated [178]. Furthermore, the lipid membrane provides a barrier for
recognition of the T helper cell epitopes (peptides or proteins) present in the aqueous
cavity by antibodies and B cell receptors, which prevents the T helper cell epitopes from
distraction by the specific humoral immune response [179].

In addition, the vaccine antigen can be coupled to the surface of LbNPs in an ordered
array that displays repetitive epitope structures for improved B cell recognition and
activation via crosslinking of the BCRs [30]. Especially for HIV-1 Env, a multitude of
conjugation strategies that maintain the pre-fusion conformation of the protein were
established [31,180–182]. Since there is (i) an urgent need for a prophylactic HIV vaccine
and (ii) Env—as a weak immunogen—only induces a particularly short-lived antibody
response, when administered as an adjuvanted soluble antigen, HIV-1 is a perfect candi-
date to monitor enhancement of Env-specific antibody levels by ISH [169]. In order to
induce ISH effects, the heterologous T helper epitope does not need to be encapsulated
inside the nanoparticles. It may also be displayed on the surface alongside the antigen
of interest. However, this may lead to a weakened phenotype of the immune response
modulation against the antigen of interest if the B cell response to the heterologous epitope
is too dominant [126].

Hills et al. were among the first to exploit pre-existing immunity in order to improve
the immune response against an antigen of interest via liposomal vaccines in the context of
ISH. As a proof-of-concept, the authors encapsulated OVA-derived OT-II peptide in liposomes
that were surface-functionalized with the malarial circumsporozoite (CSP) antigen from
Plasmodium falciparum. Mice were primed with OT-II peptide for the generation of OT-II-
specific CD4+ T cell responses. The animals were then boosted with CSP/OT-II-liposomes
(ISH group). Control groups received either a mock prime or empty CSP-liposomes as
booster immunizations. The ISH mice showed a faster and higher anti-CSP humoral
immune response with stronger avidity of the antibodies compared to the control groups.
In particular, anti-CSP IgG2c antibodies, which are known to have highly antiviral Fc
effector functions, were rapidly elicited and reached higher levels. In a translational follow-
up experiment, mice were infected with murine cytomegalovirus (MCMV) and boosted
with CSP-liposomes that encapsulated MCMV m09133–147 peptide. Likewise, anti-CSP
IgG1, IgG2b, and IgG2c were significantly upregulated compared to control animals that
were not infected with MCMV before. Thus, this study demonstrated systematically that
vaccine- or infection-induced CD4+ T cell responses may be harnessed to modulate the
immune response against an antigen of choice using T helper liposomes [183].
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Figure 3. Intrastructural help. (1) Upon priming with a licensed vaccine, naïve CD4+ T cells bind
corresponding peptides complexed on MHC-II molecules of APCs. (2) This interaction leads to
the proliferation and expansion of the CD4+ T cells with the following differentiation into CD4+
T helper memory (Thm) cells. (3) T helper LbNPs, carrying viral glycoproteins on the surface and
peptides from licensed vaccines inside, administered as booster immunization, are taken up in a BCR-
dependent manner by glycoprotein-specific B cells. (4) After LbNP processing, peptides derived from
heterologous proteins are presented on MHC-II molecules of the B cells. (5) These peptide/MHC-II
complexes are recognized by previously induced heterologous T helper (Th) cells. (6) Subsequently,
these non-cognate T cells provide help for the B cells, which leads to differentiation in plasma cells
and the effective secretion of glycoprotein-specific antibodies. Created with BioRender.com.

These findings were later translated into the HIV-1 vaccine context. Mice were immu-
nized first with OT-II peptide and then boosted with Env/OT-II-liposomes. A similarly
modulated phenotype of the Env-specific humoral immune response was observed com-
pared to mock-primed control groups or animals that received T helper liposomes with
an irrelevant peptide encapsulated. The anti-Env antibody response could further be
modulated by immunizing mice with DNA encoding the HBV surface antigen (HBsAg)
and boosting with Env-liposomes that encapsulated an HBsAg-derived peptide, which
strongly overlapped in its amino acid sequence with a promiscuous HBV T cell epitope de-
scribed in a study from 1992 [184]. Surprisingly, this immunization regimen only improved
Th2 responses [185].

More studies addressing ISH effects with LbNP vaccine candidates were performed
with VLPs. In an initial proof-of-concept study, mice were primed with DNA coding for
the HIV capsid precursor protein p55 (Gag) and boosted with lentiviral VLPs bearing
Env on the surface and the HIV capsid core inside [186]. Here, ISH effects were medi-
ated by CD4+ T cell responses specific for Gag. In subsequent studies, the system was
translated to harnessing pre-existing CD4+ T cells elicited by licensed vaccines or clinical
vaccine candidates to modulate HIV-specific humoral immune responses. Mice were immu-
nized with the licensed Tetanus vaccine Tetanol®pur containing Tetanus Toxoid (TT) and
boosted with lentiviral VLPs that incorporated the immunodominant TT peptide p30 [187].
Likewise, Klessing et al. performed priming immunizations with an experimental Tubercu-
losis vaccine (H1/CAF01), which contains epitopes from the antigens Ag85B and ESAT-6.
These mice then received VLPs displaying Env on the surface and incorporating a Gag-H1
fusion protein [188].

While Gag- and H1-mediated ISH strongly promoted Th1-type anti-Env IgG2a/c
subtype responses with antiviral Fc effector functions, the Tetanus Toxoid-mediated sys-
tem predominantly increased anti-Env IgG1 antibodies. Notably, the adjuvant system
of the licensed vaccine plays a crucial role in the Th polarization that is imprinted on
the Env-specific immune response. On an interesting side note, the study describing the
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Tuberculosis vaccine-mediated ISH also demonstrated a correlation between ISH effects
and higher numbers of Env-specific long-lived plasma cells [188]. Additionally, the high-
titer Env-specific IgG subtype levels shaped by ISH in this study demonstrated durable
longevity with a plateau-like progression up to week 24 after the last nanoparticle boost in
the murine model.

A mechanism related to ISH is the so-called intramolecular help (IMH). Here, the
main immunogen is recombinantly fused with a helper peptide or protein. This does not
require a nanoparticulate delivery and, thus, is beyond the scope of this review. Just to give
two examples, Narayanan et al. fused the major timothy grass pollen allergen (Phl p 1) with
an allergen-unrelated epitope to induce allergen-specific IgE antibody responses without
cognate T cell help, which may path the way for novel allergy vaccines [189]. Ng et al.—like
Klessing et al. mentioned above-harnessed an epitope derived from the Mycobacterium
tuberculosis antigen Ag85B to modulate humoral immune responses via IMH. They primed
mice with M. bovis bacille Calmette–Guérin (BCG), which also comprises the Ag85B protein.
The animals were boosted with immunogens (OVA and Ebola virus glycoprotein (EBOV-
GP)) fused to an immunodominant CD4+ T cell epitope derived from Ag85B. The induction
of IMH resulted in an isotype switching to IgG2c in both anti-OVA and anti-EBOV-GP
antibody responses. Additionally, promoted anti-EBOV-GP IgG1 demonstrated a high
affinity to the antigen as well as neutralizing activity. The authors further observed the
dose-sparing effects of BCG-specific Tfh cells on the phenotypic outcome of IMH, which
might also be relevant for ISH [190].

Until now, no study has directly compared the modulation of immune responses
following immunization with TLR agonist-adjuvanted LbNPs vs. T helper LbNPs in
the context of ISH. However, in a recent study„ we performed immunizations of mice
with inorganic calcium phosphate (CaP) nanoparticle-based vaccines. Animals previously
immunized with Tetanol®pur received HIV-1 Env trimer-conjugated CaP nanoparticles
either with encapsulated p30 peptide derived from TT (Env-CaP-p30) or with encapsulated
TLR9 ligand CpG (Env-Cap-CpG). Both Env-CaP-p30 and Env-Cap-CpG induced compa-
rable levels of total anti-Env IgG, although the anti-Env IgG subtype distribution varied
between the groups [191]. These results clearly demonstrated that the ISH strategy for
nanoparticle-based vaccines might indeed efficiently substitute excessive TLR stimulation.

Taken together, both ISH and IMH are nifty mechanisms that harness loopholes in
the immune system to enhance and modulate antibody responses without the need for
additional TLR agonists as adjuvant. Based on the vaccination status of the population in
different parts of the world, ISH-based nanoparticulate vaccine candidates may be tailored
to encapsulate matching CD4+ T cell epitopes. Especially in countries that struggle with
a high HIV-1 incidence and regular EBOV outbreaks, pre-existing BCG-specific cellular
immunity may be harnessed to generate effective vaccines against those viruses. However,
more systematic research needs to be performed on the role of Tfh cells that provide ISH
and the dose-dependency of encapsulated T cell epitopes and/or displayed antigens on
in vivo effects.

3.2. Universal T Cell Epitopes

Recombinant nanoparticle vaccines based on a single protein may elicit only sub-
optimal T cell help, which results in a poor antibody response. This problem cannot be
completely solved by the incorporation of TLR ligands only [192]. The introduction of a T
helper cell epitope might increase MHC-II-restricted responsiveness and the magnitude
and affinity of the antibody responses [192,193].

The co-evolution of humans and pathogens like Clostridium tetani, Corynebacterium
diphteriae, or various herpesviruses resulted in the presence of naïve T cell clones within
the total T cell repertoire that may be triggered by pathogen-derived peptide epitopes even
though the host organism never had a vaccination against or contact with the respective
pathogen [194]. These stimulating epitopes are called “universal T cell epitopes” [195].
Especially in the late 20th century, multiple studies screened such epitopes derived from
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Tetanus Toxoid or Diphtheria Toxoid [196–198]. Importantly, these identified universal T
cell epitopes may be encapsulated into nanoparticulate vaccines to induce ISH-like effects
without pre-existing cellular immunity against the peptides (Figure 4).
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with those T helper LbNPs, naïve CD4+ T cells recognize these universal epitopes complexed on
MHC-II molecules of APCs, which leads to proliferation and differentiation of the CD4+ T helper
cells. Simultaneously, glycoprotein-specific, naïve B cells take up LbNPs in a BCR-dependent manner.
(2) After processing the LbNPs in the B cells, the encapsulated epitopes are presented on the MHC-II
molecules of these B cells. These epitope/MHC-II complexes are subsequently recognized by the
simultaneously induced universal T helper cells (Th). (3) After the immune reaction is resolved,
elicited universal T helper memory cells (Thm) could be further recruited via the ISH mechanism (see
Figure 3). Created with BioRender.com.

In 1991, Garcon et al. described a “thymus-dependent” liposomal vaccine to pro-
vide universal T cell help for weak antigens. They co-incorporated a lipophilic hapten
(DNP-aminocaproyl phosphatidylethanolamine) and a helper peptide derived from hemag-
glutinin of influenza A virus (HA2) into liposomes. Mice that were immunized with
hapten/HA2-liposomes showed an improved hapten-specific antibody response with a
multitude of IgG subclasses elicited and also a memory response for the hapten. The
control group that received hapten-liposomes without helper peptides only showed a
hapten-specific IgM response. Furthermore, the authors demonstrated that the liposomes
must be intracellularly processed in order to elicit the modulated immune response phe-
notype [199]. In the same line, Boeckler et al. designed liposomal di-epitope constructs
that allowed the physical combination of B and “universal” T cell epitopes as structurally
separate entities within the same vesicle. Liposomal preparations that carried B and T cell
epitopes on the same vesicles were very effective in generating strong antibody responses
against the B cell epitope, characterized by high titers and by a long duration. Moreover,
the authors demonstrated the importance of the association of the two epitopes within a
single vesicle [200].

In a more recent study, the encapsulation of a TT-derived peptide (p30) in nanoparticles
displaying HIV-1 Env significantly enhanced the anti-Env antibody response in mice
compared to animals that were immunized with Env-coupled nanoparticles only [191].

Similarly, Fraser et al. designed LbNP-like water-in-oil nanoparticles that were cou-
pled with nicotine on the surface and encapsulated a chimeric MHC-II-restricted peptide
containing epitopes from Tetanus Toxoid and Diphtheria Toxoid (TpD) [201]. These T helper
nanoparticles strongly increased anti-nicotine humoral immune responses in non-human
primates compared to control nanoparticles without TpD. Notably, all nanoparticle formu-
lations in this study additionally contained the TLR7/TLR8-agonist R-848 (resiquimod).
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Hanson et al. formulated liposomes displaying HIV MPER peptides on the surface
and incorporating two universal T cell epitopes in the vesicle walls: LACK1 derived from
Leishmania infantum and HIV30 derived from the HIV Env subunit gp120. The T cell help
elicited by these liposomes resulted in an enhancement of anti-MPER antibody responses
in a comparable range to MPLA- or CpG-supplemented MPER-liposomes [109]. This
study and a subsequent study using an identical liposome formulation (MPER/LACK1-
liposomes) further compared immunological effects of LACK1 anchored on compounds
of the lipid bilayer and, thus, being displayed in the liposomal cavity, but also alongside
MPER on the nanoparticle surface (pLACK), and of soluble LACK1 peptides in the aqueous
cavity (sLACK). The data demonstrated that sLACK resulted in improved MPER-specific
germinal center (GC) B cell formation, probably because the humoral immune system is less
distracted when the antigen of interest alone is displayed on the liposomal surface and the
T helper peptides are hidden inside. On the other hand, pLACK induced a higher frequency
of LACK1-specific GC B cells. MPER-specific antibody titers were (not significantly) higher
with sLACK, but pLACK induced anti-MPER antibodies with higher affinity [202].

Another example of universal T cell peptides is the pan(-HLA)-DR-binding epitope
(PADRE) [203]. This 13-aa-long peptide binds with high affinity to the most common human
HLA-DR types and, thus, overcomes HLA-DR polymorphisms [204]. One publication
indicates that PADRE is up to 100-fold more potent in inducing human T cell proliferation
than Tetanus-derived universal T cell epitopes [196]. In a clinical phase-1 study, PADRE
was shown to be well-tolerated and safe [205]. Moreover, a PADRE-derivatized dendrimer
complexed with amphotericin B (AmB) on liposomes as a therapeutic vaccine against
cutaneous leishmaniasis enhanced drug efficacy by 83% and reduced AmB toxicity via
dose-sparing effects [206]. Another liposomal vaccine combining PADRE with HER2/neu-
derived peptides AE36 and E75 resulted in a reduction of tumor growth via induction of
potent CD8+ T cell responses in a mouse model for breast cancer [207].

Taken together, the incorporation of universal T cell epitopes into nanoparticulate
vaccine formulations is an elegant way to harness an evolution-shaped epitope selection to
improve humoral immune responses against the immunogen of choice in an ISH/IMH-like
fashion. On a critical side note and also relevant for ISH/IMH, most of the studies men-
tioned above were performed in inbred animal systems. Here, identified immunodominant
T cell epitopes are hypothetically capable of restimulating CD4+ T cell populations with
100% coverage among the animals of a cohort. The situation in humans with a multitude
of MHC-II alleles is different. One immunodominant peptide encapsulated in liposomes
might not be enough to induce a broad coverage of pre-existing T cell restimulation in the
population. This may require screenings of peptide libraries to identify a combination of T
helper cell epitopes that may mediate ISH effects with sufficient coverage. Alternatively,
whole heterologous antigens need to be encapsulated in the nanoparticles, which will then
be processed into a multitude of polyclonal T helper epitopes.

Once these challenges are overcome, the harnessing of heterologous cellular immunity
to modify and improve antibody responses against weak immunogens from threatening
pathogens may alter the face of vaccinology in the current century and increase vaccine
acceptance due to a lack of adjuvants in the formulation.

4. Conclusions and Future Perspectives

The development of vaccines has traditionally been an empirical process, relying on
trial and error to identify effective formulations. While this approach has yielded numerous
life-saving vaccines, it often lacks the precision and predictability needed to address
emerging pathogens and optimize vaccine efficacy. The current landscape of vaccine
development highlights a transition from empirically designed to rationally designed
vaccines, guided by a deeper understanding of the immune system and the mechanisms
underlying protective immune responses.

In this review, we contrasted two distinct approaches: the incorporation of TLR ligands
as triggers of innate immunity or heterologous/universal T cell epitopes that harness a
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loophole in the adaptive immune system. Both approaches, however, ultimately lead to the
same aim: increasing the immunogenicity of lipid-based vaccines.

Conventional adjuvants, such as alum salts, have been developed empirically and
used for decades to enhance the immunogenicity of vaccines. However, their redundant
mode of action remains incompletely elucidated, making it challenging to tailor their effects
“on demand”. In contrast, TLR agonists offer greater control over immune activation by
targeting defined pathways. This enables the fine-tuning of vaccine-induced responses to
achieve improved protection and facilitates the optimization of vaccine formulations for
enhanced efficacy and safety.

While TLR agonists primarily target innate immunity, intrastructural and intramolecu-
lar help, as well as the incorporation of universal T helper cell epitopes, represent novel
strategies to engage the adaptive arm of the immune system. Due to a lack of immun-
odominant epitopes, recombinant protein vaccines may elicit suboptimal T cell help despite
appropriate adjuvantation. Recruitment of pre-existing, heterologous T cell responses
via ISH/IMH efficiently accelerates the kinetics and magnitude of antibody responses.
Alternatively, the incorporation of universal T cell epitopes into nanoparticulate vaccine
formulations can effectively substitute cognate T cell help.

Notably, the advancement of lipid-based vaccine formulations (including mRNA-
LNPs) represents a promising avenue, offering a versatile platform for the incorporation of
these diverse strategies. The potential future of lipid-based vaccine development may lie in
the integration of these approaches to bridge the gap between innate and adaptive immunity.
By combining TLR agonists and adaptive immunity-harnessing strategies, it might be
possible to capitalize on the strengths of each approach, leading to a comprehensive and
synergistic enhancement of vaccine efficacy.
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