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Abstract: Exploring the influence of pyrazinamide exposure and susceptibility on treatment response
is crucial for optimizing the management of multidrug-resistant tuberculosis (MDR-TB). This study
aimed to investigate the association between pyrazinamide exposure, susceptibility, and response to
MDR-TB treatment, as well as find clinical thresholds for pyrazinamide. A prospective multi-center
cohort study of participants with MDR-TB using pyrazinamide was conducted in three TB-designated
hospitals in China. Univariate and multivariate analyses were applied to investigate the associations.
Classification and Regression Tree (CART) analysis was used to identify clinical thresholds, which
were further evaluated by multivariate analysis and receiver operating characteristic (ROC) curves.
The study included 143 patients with MDR-TB. The exposure/susceptibility ratio of pyrazinamide
was associated with two-month culture conversion (adjusted risk ratio (aRR), 1.1; 95% confidence
interval (CI), 1.07–1.20), six-month culture conversion (aRR, 1.1; 95% CI, 1.06–1.16), treatment success
(aRR, 1.07; 95% CI, 1.03–1.10), as well as culture conversion time (adjusted hazard ratio (aHR) 1.18;
95% CI,1.14–1.23). The threshold for optimal improvement in sputum culture results at the sixth
month of treatment was determined to be a pyrazinamide AUC0–24h/MIC ratio of 7.8. In conclusion,
the exposure/susceptibility ratio of pyrazinamide is associated with the treatment response of
MDR-TB, which may change in different Group A drug-based regimens.

Keywords: pyrazinamide; multidrug-resistant tuberculosis; pharmacokinetics; minimum inhibitory
concentration; treatment outcome

1. Introduction

Multidrug-resistant tuberculosis (MDR-TB), defined as tuberculosis (TB) resistant to
rifampicin and isoniazid, is still a threat to the worldwide control of TB [1]. In the past few
decades, significant progress has been made, such as more effective treatment regimens
including new and repurposed anti-TB drugs [2]. In 2016, the WHO recommended an
18–24-month all-oral regimen including bedaquiline (BDQ), linezolid (LZD), and moxi-
floxacin (MFX) as Group A drugs, in which pyrazinamide was classified as a Group C
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agent [3]. Later, pyrazinamide was recommended in short-course all-oral regimens for
MDR-TB in 2020 [4]. Although the treatment success rate keeps increasing, MDR-TB
treatment still entails long treatment periods and limited drug options. Therefore, it is
important to optimize the use of currently available drugs through drug exposure and
pathogen susceptibility testing.

Pyrazinamide is often used as a potent first-line sterilizing agent against Mycobac-
terium tuberculosis (M. tuberculosis) both in China and worldwide. It has a unique efficacy
against persistent and semi-dormant bacilli [5,6], which enables a shortened treatment
length and a decrease in relapse rates. Both in long- and short-course regimens of MDR-
TB treatment, pyrazinamide has demonstrated its potential to improve treatment out-
comes in MDR-TB and reduce the time of sputum culture conversion [4,7,8] unless there is
confirmed resistance.

Treatment responses in participants with MDR-TB can be partly explained in terms
of drug exposure and M. tuberculosis susceptibility [9]. Pharmacokinetic parameters are
important indicators for evaluating exposure levels. Among them, the 0–24 h area under
the concentration–time curve (AUC0–24h) was used to estimate the total drug absorp-
tion [10]. Given the standard doses (20–30 mg/kg) of pyrazinamide, it typically falls
within the range of 200 to 400 mg·h/L. It is influenced by factors such as sex, wight, liver
function, comorbidities, and other drugs [11]. An adequate pyrazinamide AUC0–24h is
important for effective therapy, while a suboptimal level is correlated with unfavorable
treatment outcomes [10,12,13]. Previous studies indicated that pyrazinamide susceptibility
is associated with better treatment responses [6,8,14]. However, the proportion of pyraz-
inamide resistance ranges from 10% to 85% among patients with MDR-TB in different
geographic populations [15–18], which indicates the necessity of considering how to better
use pyrazinamide.

Therapeutic drug monitoring (TDM) is a tool for optimizing and individualizing
dosage [19]. Previous studies widely used the ratio of AUC0–24h to the minimum inhibitory
concentration (MIC) as a clinical threshold in TDM during TB treatment [20]. In 2014,
Chigutsa et al. [21] recommended pyrazinamide AUC0–24h/MIC at 11.3 based on the β-
slope, which reflects sterilizing activity, in patients with drug-susceptible TB (DS-TB). In
2021, our research group [22] derived its threshold to be 8.42 by CART analysis in Chinese
patients with DS-TB. Subsequently, a similar study [9] was conducted in Chinese patients
with MDR-TB but did not derive a clinical threshold of pyrazinamide due to limited
pharmacokinetic data. Considering the difference between DS-TB and MDR-TB regimens,
the threshold of pyrazinamide may require re-evaluation with respect to the currently
recommended regimen in MDR-TB treatment.

Based on the aforementioned situation, it is of great importance to determine the
clinical target of pyrazinamide in patients with MDR-TB. To fill this knowledge gap, the
objective of this study was to identify the correlation between pyrazinamide exposure, sus-
ceptibility, and treatment responses. We subsequently applied machine learning algorithms
to identify the clinical thresholds of pyrazinamide to predict treatment efficacy in patients
with MDR-TB using the current WHO-recommended long-term treatment regimen [4].

2. Materials and Methods
2.1. Study Design and Participants

We conducted a multicenter prospective cohort study from July 2019 to June 2020
in three hospitals in Henan, Jiangsu, and Guizhou Province in China as previously re-
ported [9,22]. We selected the field sites that represented varying levels of socioeconomic
development and TB burden. Jiangsu province was well economically developed with a
low TB burden, while Guizhou and Henan were less developed with a relatively higher
TB burden. The subjects of the present study were adult (aged ≥18 years) patients with
MDR-TB. Considering the objective of this study, we included patients with M. tuberculosis
isolates susceptible to pyrazinamide and used the treatment regimens including it. Patients
were excluded if they refused to participate. To avoid the impacts of possible confounders,
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we excluded patients aged >70 years; pregnant; diagnosed with hepatitis B, C virus, or
HIV; diagnosed with clinically significant abnormal renal or liver injury; and having been
treated for MDR-TB over one day. This study included all patients who met the inclusion
and exclusion criteria and provided written consent during the study period.

This study was approved by the Ethics Committee of the School of Public Health,
Fudan University (Shanghai, China; 2018-06-0929), and written informed consent was
obtained from all subjects.

2.2. MDR-TB Treatment and Information Collection

Upon diagnosis of MDR-TB, participants underwent inpatient treatment for two weeks,
followed by outpatient treatment in designated hospitals. The standardized long-term
oral regimen consists of a six-month intensive phase (mainly using fluoroquinolones, be-
daquiline, linezolid, clofazimine, and cycloserine) and an 18-month continuation phase
(mainly using fluoroquinolones, linezolid, clofazimine, and cycloserine). All the partici-
pants were treated with regimens based on susceptibility and availability of the anti-TB
drugs according to the WHO and national guidelines. All regimens consisted of five effec-
tive drugs including pyrazinamide [4]. Due to the observational properties of this cohort
study, no intervention was implemented and pharmacokinetic information was not used to
adjust treatment.

We used a questionnaire to collect demographic characteristics, while hospital records
were reviewed for clinical information as well as drug regimen and dosage. To record
treatment interruption or missing doses as well as other reasons, nurses directly observed
drug intake during the inpatient treatment. Community healthcare workers observed that
in the outpatient therapy. During the 24 months of follow-up, examinations were conducted
every month in the intensive phase and every two months in the continuation phase.

2.3. Drug Susceptibility Testing

We collected participants’ sputum samples at each visit and sent them to the reference
laboratories with a well-controlled quality of TB analysis. Bacterial culture was conducted
in the BACTEC MGIT 960 system (Becton Dickinson, Franklin Lakes, NJ, USA) [23,24].
Culture time to positivity (TTP) was considered a marker of M. tuberculosis load. The
positive inoculum was further used for phenotypic drug susceptibility testing (pDST) in
the same system. Pyrazinamide susceptibility (Sigma-Aldrich, Darmstadt, Germany) was
determined with a pH of 5.9 considering the specific pH requirement for effectiveness. The
critical concentration used for the classification of pyrazinamide drug susceptibility was
100 mg/L in accordance with the WHO technical guideline [25].

Then, the inocula of strains identified as pyrazinamide-susceptible via the pDST
were further transferred onto Lowenstein–Jensen medium to determine the minimum
inhibitory concentration (MIC) of pyrazinamide, the lowest concentration of pyrazinamide
to inhibit M. tuberculosis growth. The concentration used for testing of pyrazinamide was
1–100 mg/L. Since only pyrazinamide-susceptible isolates were included, the range of
MICs for statistical calculations was limited to 0–100 mg/L. Please refer to our previously
published study [22] for more details on the experimental procedure.

2.4. Drug Exposure

We used venous catheters to collect participants’ blood samples initially at pre-dose
as well as 1, 2, 4, 6, 8, 10, 12, 16, and 18 h after the observed intake of anti-TB drugs
after two weeks of inpatient treatment [26]. Blood samples were sent for chromatographic
separation and gradient elution on a Zorbax Aq-SB high-performance liquid chromatogra-
phy (HPLC) column (internal diameter: 2.1 × 50 mm; particle diameter: 1.8 µm; Agilent
Technologies, Santa Clara, CA, USA). The mobile phase was water containing 0.1% formic
acid (50:50, v/v) and acetonitrile and the flow rate was set to 0.3 mL/min. Then, we used
the liquid chromatography–tandem mass spectrometry method (LC–MS/MS) to measure
the concentration of pyrazinamide based on the previously established and validated
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method [27] with pyrazinamide-d3 as the internal standard. The detection of pyrazinamide
was based on the multiple reaction monitoring of m/z 124.1→81.0 operated in positive ion-
ization mode. Since only phenotypically pyrazinamide-susceptible isolates were included,
the range of MICs for analysis was limited to 0.1–100 mg/L. The inter- and intra-day
variation was 5–15% with r2 >0.99. The pyrazinamide AUC0–24h was calculated using
the non-compartmental analysis tool of the Phoenix WinNonlin® software (version 8.3,
Pharsight Corporation, Saint Louis, MO, USA) with the trapezoidal rule.

2.5. Definitions of Treatment Response and Main Variables

This study evaluated treatment response by time to culture conversion, two-month and
six-month sputum culture conversion, as well as final treatment outcome. Sputum samples
only accompanied with IDs were sent to the respective up-level prefectural TB reference
laboratory during the follow-up for laboratory examination. Sputum culture conversion was
defined as the occurrence of two consecutive negative cultures with an interval over one
month, with the collection date of the first negative culture considered to be the conversion
date [28]. The treatment outcome was classified based on the guidelines provided by the
WHO [29]. A successful outcome was defined as cure, while a failure outcome was defined
as treatment completed without cure, failure, death, and lost to follow-up.

Extensive pulmonary disease was defined by a Timika score (used to assess chest
radiograph severity) ≥ 71 [30]. A TB score ≥ 8 [31] was considered to be severe disease.
Effective drugs were defined as drugs with DST-confirmed susceptibility and those to
which participants had no previous exposure.

2.6. Statistical Analyses

The statistics were performed using the R program (version 4.0.0) and IBM SPSS 20.0
(IBM Corp., Armonk, NY, USA). We considered a p-value < 0.05 as statistical significance
and calculated 95% confidence intervals (CI). To evaluate between-group differences, ap-
propriate methods, such as the Mann–Whitney U-test and χ2 test, were used depending on
the dataset.

We compared the distribution of pyrazinamide MIC, AUC0–24h, and AUC0–24h/MIC
between participants with different treatment responses to detect their associations. A
multivariate modified Poisson regression model was applied to further evaluate these
effects. The correlation between AUC0–24h, AUC0–24h/MIC and time to sputum culture
conversion was evaluated by multivariate Cox proportional hazard regression models and
Kaplan–Meier survival analysis.

Univariable regression models were used to clarify risk factors to be adjusted. An
ordered logistic regression model was applied for MIC and linear regression was applied for
AUC0–24h and AUC0–24h/MIC. A modified Poisson regression model was used to calculate
the risk ratios for treatment response. The Cox proportional hazard regression model
was applied to calculate hazard ratios for culture conversion time. Potential confounders
included in the adjusted analysis consisted of area, sex, BMI, smoking, TTP at baseline,
severe disease, and Group A drug-based regimens according to the univariable analysis
above and the clinical experience. Subgroup analysis was performed among participants
receiving different Group A drug-based regimens.

We performed Classification Regression Tree (CART) analysis to identify the key
thresholds of pyrazinamide AUC0–24h/MIC predictive of treatment response at differ-
ent moments. It was conducted using Salford Predictive Miner 8.3.2.0 (Salford Systems,
San Diego, CA, USA) and presented as intuitive decision trees with the root node as the
primary predictor. The percentage of target attainment was calculated. The association be-
tween pyrazinamide thresholds and treatment response was analyzed using Kaplan–Meier
survival analysis, multivariate modified Poisson regression, as well as Cox proportional
hazards regression models. To make the regression analysis statistically feasible, the thresh-
olds were increased so that all groups contained at least one subject. The receiver operating
characteristic (ROC) curves were applied to evaluate the performance of the thresholds.
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3. Results
3.1. Study Population

During the study period, there were 374 patients newly diagnosed with MDR-TB,
among whom 143 patients were included. Nineteen percent (71/374) of patients were
excluded because of having pyrazinamide-resistant isolates detected (Figure 1). Of the
143 participants, the mean ±SD of age was 43.3 ±10.4 years, males accounted for 58.7%,
and the median (interquartile range (IQR)) of weight was 58 (50–69) kg (Table 1).

Table 1. Demographic characteristics, clinical features, treatment regimens, and responses among the
participants with multidrug-resistant tuberculosis using pyrazinamide (n = 143).

Characteristics Number (%)

Area
Guangzhou, China 43 (30.1)
Henan, China 50 (35.0)
Jiangsu, China 50 (35.0)

Age (years) 43.3 ± 10.4

Male 84 (58.7)

Weight (kg) 58.0 (50.0–69.0)

BMI (kg/m2) 20.9 ± 2.7

Current smoker 82 (57.3)

Diabetes mellitus type II 27 (18.9)

Pulmonary cavities 54 (37.8)

Extensive pulmonary disease (Timika score ≥ 71) 0 (0.0)

Severe disease (TB score ≥ 8) 31 (21.7)

Culture time to positivity (days) 11.9 ± 3.3

Drug intake
moxifloxacin (400 mg, once daily) 136 (95.1)
linezolid (600 mg, once daily) 106 (74.1)
bedaquiline (400 mg, once daily) 35 (24.5)
Clofazimine (100 mg, once daily) a 109 (76.2)
Cycloserine (500 mg, once daily) 129 (90.1)
P-aminosalicylic acid (3.3–6.6 g, twice a day) 9 (6.3)
Prothionamide (600 mg, three times a day) 41 (28.7)
pyrazinamide (1500 mg, three times a day) 143 (100.0)
Ethambutol (750 mg, once daily) 7 (4.9)

Pyrazinamide dosage (mg/kg) 26.9 ± 5.7

Using five effective drugs b 143 (100.0)

Group A drugs c

moxifloxacin + bedaquiline + linezolid 35 (24.5)
moxifloxacin + linezolid 64 (44.8)
moxifloxacin 37 (25.9)
linezolid 7 (4.9)

Two-month culture conversion 52 (36.4)

Six-month culture conversion 79 (55.2)

Time to culture conversion (months) 6 (2–24)

Treatment outcome d

Success 96 (67.1)
Failure 47 (32.9)

Data are present as mean ± SD, median (IQR), or No. (%); BMI: Body Mass Index; a: loading dosage 200 mg
twice daily for two months; b: Effective drugs referred to drugs with confirmed susceptibility by phenotypic DST
or no previous exposure history; c: Group A drugs were identified according to MDR-TB treatment guidelines
recommended by WHO [4]; d: a successful outcome was defined as cure, while a failure outcome was defined as
treatment completed without cure, failure, death, and lost to follow-up [28].
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Figure 1. The enrolment process of participants with multidrug-resistant tuberculosis. MDR-TB:
Multidrug-Resistant Tuberculosis; HIV: Human Immunodeficiency Virus.

Among one hundred and forty-three participants using pyrazinamide, the regimens
used were as follows: thirty-five participants (24.5%) received “moxifloxacin + bedaquiline
+ linezolid”-based regimens, sixty-four participants (44.8%) received “moxifloxacin +
linezolid”-based regimens, thirty-seven participants (25.9%) received “moxifloxacin”-based
regimens, and seven participants (4.9%) received “linezolid”-based regimens.

3.2. Pyrazinamide Exposure and Susceptibility

More than half (74, 51.1%) of the M. tuberculosis isolates from the 143 participants stud-
ied had baseline pyrazinamide MIC values of 64 mg/L, which was close to the critical con-
centration of 100 mg/L [25]. The median (IQR) values for AUC0–24h and the AUC0–24h/MIC
ratio were 336.8 (230.0–456.1) mg·h/L and 9.7 (4.8–13.7), respectively (Figure 2).
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Figure 2. The distribution of MIC (A), AUC0–24h (B), and AUC0–24h/MIC ratio (C) of pyrazinamide
in participants with multidrug-resistant tuberculosis.

Among one hundred and forty-three participants using pyrazinamide, the regimens
used were as follows: thirty-five participants (24.5%) received “moxifloxacin + bedaquiline
+ linezolid”-based regimens, sixty-four participants (44.8%) received “moxifloxacin +
linezolid”-based regimens, thirty-seven participants (25.9%) received “moxifloxacin”-based
regimens, and seven participants (4.9%) received “linezolid”-based regimens.

3.3. Treatment Responses

During the study, no participants were dead or lost to follow-up. There was a total
of 132 adverse events reported, including gastrointestinal disorders (26.6%), peripheral
neuropathy (14.7%), psychiatric disorders (12.6%), and OTcF prolongation (11.2%) (Table S2).
Thirteen participants were reported to experience pyrazinamide-induced serious adverse
events, such as hepatotoxicity (5, 3.5% of all participants), gastrointestinal intolerance (4,
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2.8%), cutaneous adverse reactions (2, 1.4%), and arthropathy (2, 1.4%). The adverse effects
showed no significant differences compared to those reported in the previous study [9].
Regimen modification was not conducted because of controlled adverse effects.

The median (IQR) time to culture conversion was 6 (2–24) months. After two months
of treatment, sputum culture conversion was achieved in 52 participants (36.4%). The
number increased to 79 participants (55.2%) after six months of treatment. Ultimately,
96 participants (67.1%) had a successful treatment outcome after 24 months of treatment
(Table 1).

The treatment responses varied among participants taking different Group A drugs
(Figure 3). Patients who received all three Group A drugs had a larger percentage of
sputum culture conversion at two (65.7%) and six months (82.9%), as well as a successful
treatment outcome (85.7%). Conversely, participants who received only one Group A drug
(e.g., moxifloxacin) were less likely to achieve sputum culture conversion at two (24.3%)
and six months (32.4%), as well as a successful treatment outcome (43.2%).
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Group A drug-based regimes.

The univariable analysis revealed that smoking, severe disease, and the use of less
than three Group A drugs were risk factors, while longer TTP and residing in Jiangsu were
protective factors for all of the evaluated treatment responses (Table S1).

3.4. The Correlation between Exposure and Susceptibility of Pyrazinamide and
Treatment Responses

Significant differences were observed in pyrazinamide MIC values of M. tb isolates
between participants with different sputum culture results (Figure 4). Participants with iso-
lates of lower MIC values were more likely to achieve 2-month sputum culture conversion
(MIC = 16 mg/L: 100.0%; MIC = 32 mg/L: 53.8%; MIC = 64 mg/L: 9.5%; p < 0.001). The
same association also appeared for 6-month sputum culture conversion (MIC = 16 mg/L:
100.0%; MIC = 32 mg/L: 61.5%; MIC = 64 mg/L: 40.5%; p < 0.001) and treatment outcome
(MIC = 16 mg/L: 100.0%; MIC = 32 mg/L: 80.8%; MIC = 64 mg/L: 50.0%; p < 0.001).

Pyrazinamide AUC0–24h varied significantly between participants with positive and
negative sputum culture results after two months’ treatment (282.6 vs. 432.7; p < 0.001),
six months’ treatment (237.4 vs. 446.3; p < 0.001), and 24 months’ treatment (245.8 vs. 435.8;
p < 0.001), with higher drug exposure for those with sputum culture conversion and success-
ful outcome. The median AUC0–24h/MIC varied significantly between participants with
positive and negative sputum culture results after two months’ treatment (5.2 vs. 13.9;
p < 0.001), six months’ treatment (4.5 vs. 13.4; p < 0.001), and 24 months’ treatment
(4.1 vs. 13.0; p < 0.001), with larger values in the sputum culture conversion or successful
outcome. There was no significant association between AUC0–24h levels and the two-month
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sputum culture conversion (p > 0.05) among participants using all three Group A drugs.
However, in all subgroups, a significant association was observed between AUC0–24h/MIC
levels and two-month and six-month sputum culture conversion, and treatment outcome
(p < 0.001) (Figure 4). Survival analysis shows the participants with M. tuberculosis isolates
showing lower pyrazinamide MIC values were more likely to have a shorter time to spu-
tum culture conversion, similar to participants with high AUC0–24h and AUC0–24h/MIC
(p < 0.001) (Figure 5).
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Figure 4. The distribution of MIC (A), AUC0–24h, (B,D), and AUC0–24h/MIC ratio (C,E) of pyrazi-
namide with different treatment responses in patients with multidrug-resistant tuberculosis. MFX:
moxifloxacin; LZD: linezolid; BDQ: bedaquiline.

After adjusting for geographic area, sex, BMI, smoking, severe disease, time to positiv-
ity at baseline, and Group A drug-based regimens, participants with higher pyrazinamide
AUC0–24h/MIC values had a larger probability of two-month culture conversion (aRR 1.1,
95% CI 1.07–1.20), six-month culture conversion (aRR 1.1, 95% CI 1.06–1.16), treatment
success (aRR 1.07, 95% CI 1.03–1.10), and earlier culture conversion time (aHR 1.18, 95% CI
1.14–1.23) (Table 2). In subgroups of Group A drug-based regimens, multivariate analysis
showed similar associations between AUC0–24h/MIC levels and all evaluated treatment
responses. However, pyrazinamide AUC0–24h/MIC had greater RR or HR values in par-
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ticipants who used fewer Group A drugs compared with those who used three Group
A drugs.
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Figure 5. Time to culture conversion among patients with multidrug-resistant tuberculosis grouped
by MIC levels, AUC0–24h, and AUC0–24h/MIC ratio quartiles of pyrazinamide. First quartile: 25% of
smallest numbers; Second quartile: between 25.1% and 50%; Third quartile: 50.1% to 75%; Fourth
quartile: 25% of the largest numbers. Dotted line: median survival time at which 50% of the
participants had still not achieved sputum culture conversion.

Table 2. Multivariate analysis for AUC0–24h/MIC in patients with multidrug-resistant tuberculosis
and different Group A drug-based regimens.

Treatment
Regimen

Two-Month
Culture Conversion

Six-Month
Culture Conversion Treatment Outcome Time to Culture Conversion

Negative
No. (%) a

Adjusted RR b

(95% CI)
Negative
No. (%) a

Adjusted RR b

(95% CI)
Success

No. (%) a
Adjusted RR b

(95% CI)
Month

Median (IQR)
Adjusted HR b

(95% CI)

All patients 52 (36.4) 1.1 (1.09–1.20) 79 (55.2) 1.1 (1.06–1.16) 96 (67.1) 1.07 (1.03–1.10) 6 (2–24) 1.18 (1.14–1.23)

MFX + LZD + BDQ 23 (65.7) 1.1 (1.03–1.12) 29 (82.9) 1.05 (1.02–1.08) 30 (85.7) 1.04 (1.01–1.07) 2 (2–4) 1.12 (1.05–1.21)

MFX + LZD 20 (31.3) 1.5 (1.31–1.62) 34 (53.1) 1.2 (1.14–1.26) 46 (71.9) 1.1 (1.05–1.12) 6 (2–24) 1.6 (1.44–1.86)

MFX 9 (24.3) 3.0 (2.03–4.22) 12 (32.4) 1.4 (1.26–1.65) 16 (43.2) 1.2 (1.06–1.26) 24 (3–24) 2.2 (1.44–3.40)

LZD 0 (0.0) 1.0 (0.79–1.25) c 4 (57.1) 21.0 (17.84–24.63) 4 (57.1) 21.0 (17.84–24.63) 6 (4–24) 153 (23.57–1036)
a: the proportion of patients with sputum culture conversion in patients using specific Group A drug-based
regimen; b: adjusted according to the area, sex, BMI, smoking, time to positivity, severe disease, and Group A
drug-based regimens; c: p > 0.05; MFX: moxifloxacin; LZD: linezolid; BDQ: bedaquiline; RR: risk ratio; HR: hazard
ratio; CI: confidence interval; IQR: interquartile range.

3.5. CART Analysis of Pyrazinamide Exposure/Susceptibility Target

CART analyses were performed among all participants (Figure 6). The primary
node for two-month culture conversion was pyrazinamide AUC0–24h/MIC of 12.7 (39.2%
achieved), where 92.9% of participants achieving this target had a two-month culture con-
version, compared with none in those below the target. Similarly, the primary nodes for the
six-month culture conversion and treatment outcome were pyrazinamide AUC0–24h/MIC
of 7.8 (55.2% achieved) and 6.3 (58.7% achieved), respectively.

Patients with 7.8 ≤ AUC0–24h/MIC < 12.7 all achieved sputum culture conversion
within six months with one or two Group A drugs used. If three group A drugs were used,
the sputum culture of participants with AUC0–24h/MIC in a range of 6.3–7.8 completely
achieved sputum culture conversion within eight months, and that with AUC0–24h/MIC
7.8–12.7 was achieved within four months. An AUC0–24h/MIC higher than 12.7 shortened
the time to sputum culture conversion by two months. An AUC0–24h/MIC less than
6.3 predicted a less successful treatment outcome (Figure 7).
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Figure 7. Time to culture conversion in patients with multidrug-resistant tuberculosis grouped by
CART-derived thresholds of pyrazinamide AUC0–24h/MIC. MFX: moxifloxacin; LZD: linezolid; BDQ:
bedaquiline. Dotted line: median survival time at which 50% of participants did not achieve sputum
culture conversion.

After modifying thresholds and adjusting for geographic area, sex, BMI, smoking,
severe disease, time to positivity at baseline, and Group A drug-based regimens (Table 3),
participants with pyrazinamide exposure above those CART-derived thresholds had a
greater probability of two-month (1.1% vs. 92.7%, aRR: 77.8, 95% CI: 10.7–546.3) and
six-month culture conversion (1.5% vs. 100.0%, aRR:67.8, 95% CI: 10.5–436.5), successful
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treatment outcome (22.0% vs. 98.8%, aRR: 4.2, 95% CI: 2.6–6.9), and achieving earlier
culture conversion (Figure 7).

Table 3. Univariate and multivariate analysis for AUC0–24h/MIC grouped by CART-derived threshold.

CART-Derived
Threshold

Sputum Culture Conversion/Treatment Outcome Time to Culture Conversion

Success/negative
No. (%) a

RR
(95% CI)

Adjusted RR b

(95% CI)
Month

Median (IQR) HR (95% CI) Adjusted HR b

(95% CI)

Two-month
AUC0–24h/MIC ≤ 12.8 c 1 (1.1) 1 1 24 (6–24) 1 1
AUC0–24h/MIC > 12.8 c 51 (92.7) 81.6

(11.6–573.6)
77.8

(10.7–564.3) 2 (2–2) 20.4
(11.8–35.3)

24.7
(12.9–47.3)

Six-month
AUC0–24h/MIC ≤ 8.5 d 1 (1.5) 1 1 24 (12–24) 1 1

AUC0–24h/MIC > 8.5 d 78 (100.0) 65.0
(9.3–454.5)

67.8
(10.5–436.5) 2 (2–4) 302.5

(40.2–2273.1)
334.2

(43.4–2576.3)

Treatment outcome
AUC0–24h/MIC ≤ 6.3 13 (22.0) 1 1 24 (18–24) 1 1
AUC0–24h/MIC > 6.3 83 (98.8) 4.5

(2.8–7.3)
4.2

(2.6–6.9) 2 (2–4) 28.2
(14.5–55.2)

30.6
(14.5–64.8)

a: the proportion of patients with sputum culture conversion in patients using specific Group A drug-based
regimen; b: adjusted according to the area, sex, BMI, smoking, time to positivity, severe disease, and Group A
drug-based regimens; c: the threshold of 12.7 was increased so that all groups contained at least one subject for
statistical feasibility; d: the threshold of 7.8 was increased so that all groups contained at least one subject for
statistical feasibility; RR: risk ratio; HR: hazard ratio; CI: confidence interval; IQR: interquartile range.

3.6. CART-Derived Threshold Performance Evaluation

The area under the ROC curves (AUC score) of two- and six-month culture, as
well as treatment outcome, was 0.978, 1, and 0.922, respectively (Table 4, Figure 8), in-
dicating that the CART-derived thresholds were good predictors of treatment responses.
AUC0–24h/MIC = 7.8 showed great predictive performance for six-month culture conver-
sion (AUC = 1) no matter what Group A drugs were used. All three CART-derived thresh-
olds were predominant predictors of respective treatment responses when treated with
three Group A drugs (AUC = 1).

Table 4. The areas under the ROC curves for CART-derived AUC0–24h/MIC thresholds.

Treatment
Regimen

AUC0–24h/MIC = 6.3
(for Treatment

Outcome)

AUC0–24h/MIC = 7.8
(for Six-Month

Culture Conversion)

AUC0–24h/MIC = 12.7
(for Two-Month

Culture Conversion)

MFX + LZD + BDQ 1.000 1.000 1.000
MFX + LZD 0.874 1.000 0.966
MFX 0.875 1.000 1.000
LZD / 1.000 1.000

MFX: moxifloxacin; LZD: linezolid; BDQ: bedaquiline.
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4. Discussion

This study demonstrated an increased probability of sputum culture conversion
and a successful treatment outcome with higher ratios of pyrazinamide AUC0–24h di-
vided by the MIC for M. tuberculosis during MDR-TB treatment in programmatic regi-
mens. This study also identified clinical thresholds of pyrazinamide at three time points:
12.7 (two months), 7.8 (six months), and 6.3 (treatment outcome at 24 months). Further-
more, clinical recommendations for pyrazinamide were made based on the test of AUC0–24h
and MIC.

A similar range of pyrazinamide AUC0–24h was observed and the variations may be
caused by the heterogeneity of the population, dosage, comorbidity, and other related
factors [6,10,12]. This study observed significant differences in AUC0–24h levels among
patients with different treatment responses, and higher exposure levels were associated
with shorter times to sputum culture conversion. These findings are consistent with
previous studies [10,13]. However, in this study, the aforementioned correlation was not
significant among patients who were treated with Group A drugs extensively. Therefore,
AUC0–24h may not be a perfect clinical target for pyrazinamide.

During the study period, M. tuberculosis isolates in 19.0% (71/374) of participants
were resistant to pyrazinamide, which is lower than 40% in the previous study conducted
in Chinese patients with MDR-TB [9]. This may be attributed to the fact that more than
80% of the registered patients during this study were newly diagnosed and no previous
usage of pyrazinamide may lead to a relatively lower resistance to pyrazinamide [18].
On the other hand, this study shows that the majority of patients with MDR-TB and
M. tuberculosis isolates resistant to pyrazinamide have high-level MICs. In this study, lower
MIC levels of pyrazinamide were significantly associated with better treatment responses.
This finding is inconsistent with some previous studies [8,14]. This discrepancy may be
explained by the fact that our study was conducted in a larger population of patients
with phenotypically pyrazinamide-sensitive MDR-TB. We also excluded some patients to
avoid the impact of confounders. We analyzed MICs as an ordered categorical variable
three levels below the critical concentration. Therefore, the present study suggested that
MIC testing proves valuable in guiding the treatment, even among patients with isolates
phenotypically sensitive to pyrazinamide.

This study further suggested that a higher AUC0–24h/MIC was associated with better
efficacy, consistent with previous research [6–9,22]. This association remained significant
regardless of the number of Group A drugs utilized and was more pronounced in patients
treated with fewer than three Group A drugs. Therefore, AUC0–24h/MIC is considered a
better clinical target parameter for pyrazinamide, taking into account its general applica-
bility across patients using various regimens. Monitoring AUC0–24h/MIC may be given
greater emphasis, particularly in patients using fewer Group A drugs.

This study identified three specific AUC0–24h/MIC values (12.7, 7.8, 6.3). Among
these thresholds, AUC0–24h/MIC = 12.7 (achieving a rate of 39.2%) is a good indicator for
predicting sputum culture conversion at two months. However, it can only be achieved in
a small number of patients with lower MIC levels or good pyrazinamide absorption, so it
is not strongly recommended. AUC0–24h/MIC = 6.3 (achieving a rate of 58.7%) is associ-
ated with treatment outcomes at 24 months, but its predictive performance is moderate.
AUC0–24h/MIC = 7.8 (achieving a rate of 55.2%) is a good indicator for predicting sputum
culture conversion at six months, balancing feasibility and shorter treatment duration. This
threshold is slightly lower than the previously established recommendation in DS-TB, but
comes with a significantly prolonged treatment duration (AUC0–24h/MIC > 8.42 as TDM
target for 2 weeks of culture conversion [22]). However, only 55.2% of participants in the
study population were able to reach the threshold using the dosage of pyrazinamide recom-
mended by the WHO, possibly due to high MIC levels. The pyrazinamide AUC0–24h/MIC
threshold may be selected according to Group A drug-based regimens. In the case of
insufficient Group A drugs, a higher threshold is required to achieve the same effect of
shortening the culture conversion time. On the other hand, the phenomenon also provides
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room for patients experiencing pyrazinamide-related adverse events due to high drug
exposure to reduce the dosage of pyrazinamide if more Group A drugs are used.

Considering the association between the AUC0–24h/MIC of pyrazinamide and treat-
ment responses, we propose recommendations to optimize the use of pyrazinamide in
MDR-TB treatment. First of all, quantitatively testing the level of resistance (i.e., MIC) to
pyrazinamide, instead of only the DST, may be conducted. Switching to other effective
drugs may be of high priority in patients with isolates borderline resistant to pyrazinamide.
Furthermore, for patients diagnosed with high-MIC isolates but still using pyrazinamide,
dosage may be individually adjusted by combining the blood concentration with the MIC
to trade off between efficacy and toxicity. The pyrazinamide exposure/susceptibility thresh-
old (i.e., AUC0–24h/MIC = 7.8 in the present study) should undergo further evaluation
in subsequent clinical trials to value its effectiveness in guiding treatment decisions. We
believe that lower pyrazinamide AUC0–24h/MIC levels contribute to treatment failure,
which has also been observed for other anti-tuberculosis drugs, especially Group A drugs.
Therefore, if treatment failure occurs, it is necessary to reassess the level of drug susceptibil-
ity of M. tb strains, transition to a regimen comprising anti-TB drugs to which the strains
are sensitive, and optimize the dose for sufficient drug exposure. It is also necessary to
assess treatment adherence, comorbidities, and nutritional status.

One of the notable strengths of this study is the validation of the impact of pyrazi-
namide exposure/susceptibility on treatment response in a real multicenter population.
This study further indicated that the appropriate use of pyrazinamide can lead to enhanced
efficacy and subsequently better treatment outcomes than the general long-term regimen,
consistent with previous controlled clinical studies in patients with MDR-TB [7]. In this
study, the CART-derived AUC0–24h/MIC thresholds of pyrazinamide were constructed
based on real pharmacokinetic data. By utilizing these thresholds, patients can potentially
adjust their regimens to achieve adequate levels of drug exposure, thereby enhancing
treatment efficacy. This study also analyzed the effect of group A drugs on the efficacy
of pyrazinamide in patients with MDR-TB, providing recommendations for personalized
TDM based on drug combinations.

There are some limitations in this study. Firstly, we included specific patients with
MDR-TB to control the impact of the possible confounders. Therefore, the study conclusions
can be directly applicable to the majority of adult MDR-TB patients in good condition. The
findings may also be generalized to populations with specific conditions (such as hepatitis,
HIV, diabetes, and hepatic or renal impairment) by adjusting for potential confounding
factors related to both drug exposure and treatment responses. Secondly, the predictive
performance of the thresholds was not analyzed in larger validation cohorts. Utilizing
limited sampling strategies and population pharmacokinetics models is a more effective
approach than intensive blood sampling in small clinical sample sizes [11] for establishing
extensive development and validation cohorts. Finally, this study only explored the target
values of pyrazinamide in the context of MDR-TB due to the limited data, and the same
approach can be extended to the study of other promising drugs.

5. Conclusions

Our study suggests that the drug exposure/susceptibility ratio of pyrazinamide is
significantly correlated with treatment response in patients with MDR-TB. A pyrazinamide
AUC0–24h/MIC ≥ 7.8 was identified as the best predictor for discerning the six-month
sputum culture conversion. In the treatment of MDR-TB, drug exposure and quantitative
susceptibility testing are still required to determine the use of pyrazinamide and ensure
the attainment of clinical thresholds, especially for patients with M. tb isolates showing
borderline resistance to pyrazinamide. Randomized controlled studies and further studies
in short-course regimens are recommended to validate the clinical targets of pyrazinamide.
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