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Abstract: Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications.
Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising
outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial
role in regulating the trabecular meshwork and canal of Schlemm’s aqueous humor outflow. This
study aims to investigate the ocular absorption pathway of Fasudil hydrochloride and, subsequently,
develop a nanoparticle-based delivery system for enhanced corneal absorption. Employing the ionic
gelation method and statistical experimental design, the factors influencing chitosan nanoparticle (Cs
NP) characteristics and performance were explored. Fasudil in vitro release and ex vivo permeation
studies were performed, and Cs NP ocular tolerability and cytotoxicity on human lens epithelial cells
were evaluated. Permeation studies on excised bovine eyes revealed significantly higher Fasudil
permeation through the sclera compared to the cornea (370.0 µg/cm2 vs. 96.8 µg/cm2, respectively).
The nanoparticle size (144.0 ± 15.6 nm to 835.9 ± 23.4 nm) and entrapment efficiency range achieved
(17.2% to 41.4%) were predominantly influenced by chitosan quantity. Cs NPs showed a substantial
improvement in the permeation of Fasudil via the cornea, along with slower release compared to the
Fasudil aqueous solution. The results from the Hen’s Egg Test Chorioallantoic Membrane (HET-CAM)
and Bovine Corneal Opacity and Permeability (BCOP) tests indicated good conjunctival and corneal
biocompatibility of the formulated chitosan nanoparticles, respectively. Lens epithelial cells displayed
excellent tolerance to low concentrations of these nanoparticles (>94% cell viability). To the best of
our knowledge, this is the first report on the ocular absorption pathway of topically applied Fasudil
hydrochloride where the cornea has been identified as a potential barrier that could be overcome
using Cs NPs.

Keywords: ROCK; Fasudil hydrochloride; chitosan; nanoparticles; cornea absorption; ocular
tolerability

1. Introduction

Glaucoma refers to a group of eye disorders with different clinical indications. Glau-
coma causes progressive optic nerve neuropathy, leading to the loss of the visual field and,
if not treated, blindness [1]. Generally, this occurs due to high pressure inside the eye,
which can damage the optic nerve and retina by causing the loss of retinal ganglion cells [2].
However, it is also possible for glaucoma to occur in people with normal eye pressure,
which typically ranges from 10 to 21 mmHg [3]. Among those, about 36 million people are
blind, and an estimated 217 million experience significant visual impairment, ranging from
moderate to severe [4]. In the UK, glaucoma impacts around 2% of individuals aged over
40 and increases to 10% among those older than 75, especially within the African-Caribbean
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population [5]. Treating ocular hypertension can be achieved by either decreasing the
production of aqueous humor or increasing the outflow of aqueous humor.

Rho-kinase (ROCK) inhibitors are a novel class of anti-glaucoma medicines [6,7].
Unlike other medicines, ROCK inhibitors offer advantages beyond lowering intraocular
pressure; they enhance blood flow to eye tissues and protect optic nerve cells from oxidative
stress, resulting in improved neuron survival and regeneration [8]. Fasudil, depicted as
the hydrochloride salt in Figure 1, is a selective ROCK inhibitor that has demonstrated
promising results in the treatment of glaucoma [7,9]. It works by inhibiting the ROCK
pathway, which plays a crucial role in regulating the trabecular meshwork and canal of
Schlemm’s aqueous humor outflow. Fasudil works by decreasing the formation of stress
fibers and actomyosin contractility and reducing the expression of extracellular matrix
proteins [10]. This leads to an increase in the aqueous outflow, leading to a decrease in
IOP. In addition to its IOP-lowering effect, Fasudil has been shown to improve blood flow
to ocular tissues and protect optic nerve cells against oxidative stress, promoting neuron
survival and regeneration [11]. However, due to its hydrophilic nature (log P 0.16) and low
molecular weight (MW 327.83 g/mL), attempts to formulate Fasudil using drug carriers
like poly (lactic-co-glycolic acid) microspheres [10] and liposomes [12] have encountered
issues, notably low entrapment efficiency and drug leakage. These limitations translate to
low ocular bioavailability and pose a challenge for effective delivery of the drug to target
ocular tissues. On the other hand, nanoparticles with mucoadhesive properties were found
to be useful in modifying the pharmacokinetics and bioavailability of small hydrophilic
molecules [13].
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Nanoparticles have a large surface area-to-volume ratio, allowing for better entrap-
ment efficiency [14]. They can prolong ocular drug residence time, sustain drug release,
and potentially enhance ocular drug bioavailability [15]. However, when nanoparticles lack
mucoadhesive properties, they are susceptible to rapid drainage from the ocular surface
into the nasolacrimal duct, resulting in reduced effectiveness. Conversely, mucoadhesive
nanoparticles for topical administration to the eyes were shown to prolong the precorneal
retention of the topically applied formulation, hence enhancing drug bioavailability and
reducing adverse effects associated with frequent dosing [16].

Chitosan (Cs) is one of the most abundant natural polysaccharides, primarily sourced
from marine crustaceans [17]. Cs exhibits many advantages when employed in the formu-
lation of nanoparticles for drug delivery, including biocompatibility and biodegradability.
Moreover, the positive charge present on the surface of chitosan grants it mucoadhesive
properties, rendering it a promising candidate for ocular drug delivery [18]. Cs nanopar-
ticles interact with the negatively charged residues of sialic acid in the corneal and con-
junctival mucosa, prolonging the drug’s presence and enhancing its bioavailability in the
ocular region [19]. Additionally, Cs enhances ocular drug permeation by disrupting tight
cell junctions in the corneal and conjunctival epithelial cell surfaces [20,21]. Sonaje et al.’s
study strongly affirms the capability of chitosan to transiently and reversibly open these
junctions, as indicated by their results [22].

Cs NPs have been used for delivering various drugs used in the treatment of eye
conditions. These drugs include diclofenac [23], a non-steroidal anti-inflammatory agent;
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daptomycin, an anti-bacterial agent [24]; brimonidine, an anti-glaucoma agent [25]; and
dexamethasone, a corticosteroid effective in managing ocular inflammatory disorders [26].
Cs is a promising drug delivery material with numerous advantages, but concerns have
emerged regarding its potential ocular surface toxicity. Despite receiving approval from the
US-FDA and EU for dietary and wound-dressing applications due to its biocompatibility
and biodegradability, it has yet to achieve FDA approval for drug delivery applications [27].
Additionally, there have been reports indicating that cationic polymers can display toxicity
due to their positive charge [28]. Therefore, one aspect of this article is to investigate
chitosan’s ocular cytotoxicity to address some of these concerns.

Different methods have been reported for preparing Cs nanoparticles. These include
ionic gelation, emulsion crosslinking, coacervation–precipitation, and spray drying [29].
Ionic gelation remains one of the most reported methods of preparation due to its simplicity
and cost-effectiveness. It does not require the use of organic solvents, thus reducing the risk
of toxicity due to residues [30]. This method is based on the electrostatic interactions that
occur in the presence of oppositely charged groups; for example, those between protonated
amino groups of Cs (positive charge) and negatively charged groups of polyanions, such
as sodium tripolyphosphate (TPP), sodium alginate, and hyaluronic acid. Nanoparticles
are produced due to the formation of crosslinks in between (intramolecular) and within
(intermolecular) molecules [31].

Ocular surface absorption of topically applied drugs happens via the corneal or
conjunctival/scleral routes. Elucidating the absorption pathway of a topically applied
ocular drug is important to inform and guide further formulation development. To the best
of our knowledge, no such studies have been conducted on Fasudil. Hence, the objectives
of this study are to:

• Investigate the ocular absorption pathway of Fasudil hydrochloride using an appro-
priate ex vivo model.

• Develop a chitosan nanoparticulate system using the ionic gelation method and investi-
gate (using statistical experimental design) the parameters that affect the characteristics
of chitosan nanoparticles.

• Conduct in vitro release and ex vivo permeation studies of Fasudil from the prepared
chitosan nanoparticles and assess their ocular (conjunctival and corneal) tolerability.

• Evaluate the cytotoxic effect of the formulated system on a human lens epithelial cell
line using the neutral red uptake assay.

2. Materials and Methods
2.1. Materials

Fasudil hydrochloride was obtained from Biosynth Ltd., Compton, UK. Low-molecular-
weight chitosan (deacetylation degree 75–85%) (Cs), sodium tripolyphosphate (TPP), fetal
bovine serum (FBS), Trypan blue, sterile phosphate-buffered saline, Dimethyl sulfoxide
(DMSO), penicillin–streptomycin, 0.25% trypsin-EDTA, and neutral red were all purchased
from Sigma Aldrich Chemical Co., London, UK. Glacial acetic acid, Industrial Methylated
Spirit (IMS), and absolute ethanol were purchased from Fisher Scientific, Leicestershire,
UK. Eagle’s Minimum Essential Medium (EMEM) and Human Lens Epithelial Cell line
(HLEC line-B3) were obtained from the American Type Culture Collection (ATCC), London,
UK. All other solvents and buffer salts were obtained from Sigma Aldrich Chemical Co.,
London, UK; they were of analytical grade and used as received.

2.2. High-Performance Liquid Chromatography (HPLC) Analysis of Fasudil

Fasudil was separated and quantified by liquid chromatographic analysis using an
Agilent HPLC Infinity system (Agilent, Waldbronn, Germany) coupled with a photodiode
array detector (PDA). Separation was achieved using the Phenomenex® Gemini 5 µm
C6-Pheny column (150 × 4.6 mm) at room temperature (Phenomenex, Torrance, CA, USA).
The mobile phase consisted of 90/10 (v/v) purified water/acetonitrile, with the addition of
0.1% trifluoroacetic acid by volume to both phases. Prior to use, the mobile phases were
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degassed using bath ultrasonication to eliminate any trapped gas bubbles. The flow rate
was set at 1 mL/min, and the injection volume was 10 µL. When analyzed at a λmax of
235 nm, Fasudil exhibited a retention time of 3.5 min. The validation of the method was
carried out in accordance with FDA guidelines. A calibration curve was established within
concentration ranges of 2–75 µg/mL, exhibiting a coefficient of determination value of
0.999 and a curve equation (y = 40.889X + 2.5458). The method demonstrated high accuracy
and selectivity, with a low limit of detection (LLOD) of 0.22 µg/mL and a low limit of
quantification (LLOQ) of 0.65 µg/mL.

2.3. Ex Vivo Permeation of Fasudil Hydrochloride through Excised Bovine Cornea and Sclera

In this ex vivo trans-corneal/scleral permeation study, freshly excised bovine corneas
and scleras were used. The experiments were conducted with a Franz diffusion cell appa-
ratus (FDC-6, Logan Instrument Corp., Somerset, NJ, USA), which provided a diffusion
area of 1.7 cm2. The bovine eyes were obtained from a local slaughterhouse (ABP Food
Group, Guildford, UK) and transported to the laboratory in cold saline (8–10 ◦C). Prior to
dissection, the eyes were examined for corneal damage. The excised bovine ocular mem-
brane (cornea or sclera) separated the two compartments in such a way that the epithelial
surface of the cornea/conjunctival side of the sclera faced the donor chamber. The receptor
chamber (12 mL) was filled with simulated tear fluid (STF). STF was prepared by dissolving
0.67 g NaCl, 0.21 g NaHCO3, and 0.008 g CaCl2.2H2O in 100 mL of purified water and
adjusted to pH 7.4 [32]. The temperature of the cell was maintained at 35 ± 0.5 ◦C with
continuous stirring. Samples of the Fasudil solution (2 mL, 1 mg/mL) were placed into the
donor compartment. At predetermined time intervals (every hour), a sample (0.4 mL) of
the receptor medium was taken and immediately replaced with an equivalent volume of
fresh STF. The quantity of Fasudil permeated was subsequently measured using HPLC. A
graph was created by plotting the cumulative amount of Fasudil permeated vs. time, and
this graph was then used to calculate the apparent permeability coefficient (Papp, cm/s)
as follows:

Papp =
∆Q

∆t(3600)AC0

where ∆Q/∆t indicates the permeability flux rate of Fasudil (µg/cm2.h) through the excised
bovine corneas, calculated as the slope from the graph plotting the amount of Fasudil
permeated vs. time; A is the exposed area (cm2) of the corneal/scleral surface; C0 represents
the initial concentration (µg/mL) of Fasudil; and 3600 is the conversion constant from
hours to seconds. The lag time (tL) calculation involves using the intercept and slope values
from a regression line of permeation studies.

2.4. Statistical Experimental (Factorial) Design

A two-level full factorial design was utilized to investigate the effects of three indepen-
dent variables (Cs concentration, Cs:TPP mass ratio, and sonication time) on the desired
responses (dependent variables), namely, particle size, polydispersity index (PDI), zeta
potential, and entrapment efficiency (EE) (Table 1). The design of 8 experimental runs and
one center point was developed using Minitab software, version 21.4 (Minitab, Inc., State
College, PA, USA). All experiments were carried out in triplicate (Table 2). Response surface
plots were generated to demonstrate how independent variables affect the response.

Table 1. Independent and dependent variables and their levels used in the experimental design study.

Independent Variables Low Level High Level Dependent Variables

Cs conc. (mg/mL) 1.2 6.2 Particle size (nm)

Cs:TPP mass ratio 1:1 5:1 Polydispersity index

Sonication time (s) 45 90 Zeta potential (mV)

Entrapment efficiency (EE%)



Pharmaceutics 2024, 16, 112 5 of 20

Table 2. Matrix of 23 factorial design used to optimize Cs nanoparticles.

Formulation
Code StdOrder RunOrder Cs Concentration

(mg/mL)
Cs:TPP Mass

(mg) Ratio
Sonication

Time (s)

F1 3 1 1.2 5:1 45

F2 2 2 6.2 1:1 45

F3 5 3 1.2 1:1 90

F4 8 4 6.2 5:1 90

F5 * 9 5 3.7 3 67.5

F6 6 6 6.2 1:1 90

F7 4 7 6.2 5:1 45

F8 1 8 1.2 1:1 45

F9 7 5 1.2 5:1 90
* Center point.

2.5. Preparation of Chitosan Nanoparticles (Cs NPs)

Cs NPs were prepared via the ionic gelation method as previously reported by Calvo
et al. [33], with minor modifications. Briefly, Cs solutions at concentrations of 1.2, 3.7, and
6.2 mg/mL were prepared by dissolving appropriate amounts of Cs (with low molecular
weight and degree of deacetylation ranging between 75 and 85%) in 8 mL of acetic acid
(1% v/v, pH 4). Next, 1 mL of Fasudil aqueous solution (0.5% w/v) was added to the
Cs solution and stirred for 10 min. To prepare the nanoparticles, 1 mL of aqueous TPP
solution (Table 2) was added dropwise to the Cs solutions by means of sonication over
an ice bath using a probe sonicator (150 plus, MSE, London, UK) at 16% amplitude. The
nanoparticles were separated by centrifugation at a speed of 40,000× g for 45 min at 4 ◦C.
Then, the nanoparticles were washed by dispersing the formed pellet in distilled water and
recentrifuged at the same previous conditions; then, the washed pellet was lyophilized,
collected, and stored for further characterization.

2.6. Characterization of Fasudil-Cs NPs
2.6.1. Particle Size, Polydispersity Index (PDI), and Zeta Potential Measurements

The particle size and PDI were analyzed at 25 ◦C using dynamic light scattering
with a Malvern Zetasizer (Malvern Instruments Ltd., Malvern, UK). Freshly prepared
Cs NP samples were used for these measurements. For particle size analysis, a square
disposable cuvette was employed, and all samples were diluted with deionized water at a
ratio of 1:10 (v/v). The zeta potential of the nanoparticles was also determined using the
same instrument. In this analysis, a folded capillary cell was used, and all samples were
diluted with deionized water at a ratio of 1:100 (v/v). Electrophoretic mobility analysis
was conducted at 25 ◦C with a scattering angle of 90◦. Each experiment was conducted
in triplicate, and the results are presented as the mean ± SD. These measurements were
performed with a 120 s interval between each sample run. Data were obtained by measuring
the random changes in the intensity of light scattered from the moving nanoparticles.

2.6.2. Scanning Electron Microscopy (SEM)

The surface morphology of the optimized Cs NPs was examined by scanning elec-
tron microscopy (SEM, Zeiss Evo50-Oxford instrument, Cambridge, UK). A drop of the
nanoparticle suspension was placed over a slide cover and left to dry at room temperature
before being attached to an aluminum stud using carbon double-sided tape. The samples
were coated with a layer of gold using a sputter coater. Nanoparticle morphology was
determined at 20.00 kV.
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2.6.3. Entrapment Efficiency (EE) determination

The amount of Fasudil entrapped within the nanoparticles was determined using an
indirect method by calculating the amount of unentrapped drug (free drug) in the super-
natant. Following the previously mentioned process, the nanosuspension was centrifuged,
and the clear supernatant containing the free, unentrapped drug was carefully collected
and diluted with deionized water. The amounts of Fasudil in the Cs NPs were determined
using the validated HPLC method mentioned above. The percentage of drug entrapment
efficiency (EE%) was then calculated by using the following equation:

EE(%) =
(Initial amount of drug − Free drug)

Initial amount of drug
× 100

2.7. In Vitro Drug Release Study

An in vitro release study of Fasudil from Cs NPs was conducted using a standard
Franz diffusion cell (Copley scientific limited, Colwick, UK). Receptor chambers (11 mL
volume) were filled with freshly prepared STF and constantly stirred using small magnetic
bars. Lyophilized Cs nanoparticles (20 mg) were dispersed in two milliliters of PBS (pH 7.4)
and transferred into the donor chamber before sealing it with Parafilm. The two chambers
of Franz cells, a donor and a receptor, were separated by a dialysis membrane (12,000–14,000
Dalton molecular weight cut-off). The membrane was previously pre-soaked overnight
in the receptor medium. The Franz cells were set at 35 ± 0.5 ◦C in order to mimic the
ocular surface temperature. Care was taken to eliminate air bubble entrapment at the
membrane/liquid interface. Samples (0.4 mL each) were withdrawn at different time
intervals during the running experiment and replaced with fresh receptor medium. The
samples were analyzed using the developed HPLC method to measure the amount of
Fasudil released from nanoparticles. The experiments were performed in triplicate.

2.8. Ex Vivo Trans-Corneal Permeation of Fasudil from Fasudil-Cs NPs

A modified Franz diffusion cell apparatus (FDC-6, Logan Instruments Corp., Som-
erset, NJ, USA) was used for the ex vivo permeation study of Fasudil from both chitosan
nanoparticles and Fasudil solution across freshly excised bovine corneas. See Section 2.3
for the detailed experimental procedure. In the donor compartment of the apparatus, 2 mL
each of both the Fasudil solution and the Fasudil-Cs NPs dispersion, was placed. The
samples withdrawn from the receptor compartment were analyzed using the developed
HPLC method to quantify the amount of Fasudil permeated. Samples were measured in
triplicate, and the results were presented as the mean value ± SD. A graph was created
by plotting the amount of Fasudil that permeated vs. time. The permeation flux, apparent
permeability coefficient, and lag time were calculated.

2.9. Conjunctival Irritation Test

The conjunctival tolerability of the Cs NPs was evaluated by a modified HET-CAM
test, as reported previously [34]. Freshly collected fertilized hen’s eggs were incubated for
3 days at 37.5 ± 0.5 ◦C and 65 ± 5% relative humidity. During the incubation period, eggs
were manually rotated 4–5 times a day and left in a horizontal position to ensure the correct
development and viability of the embryo. On day three, the eggshells were sterilized with
70% IMS and opened by cracking at the edge of the growing chamber. The contents of
the egg were poured into the fabricated growing chamber. Each egg was examined, and
only viable embryos with intact chorioallantoic membranes (CAMs) and yolk sacs were
further incubated at the same conditions after being covered with a Petri dish. On day 10 of
incubation, 0.2 mL of each test formulation and control solution was gently dropped onto
the surface of the CAM. Sodium hydroxide (0.5 M) was used as a strong irritant, propylene
glycol as a moderate irritant, and normal saline as a negative control. After treatment,
the CAMs and blood vessels, including the capillary system, were visually observed at
three time points over 5 min (0.5, 2, and 5 min) to monitor the following irritant effects
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(responses): hyperemia, hemorrhage, and clotting. A time-dependent numerical score
was assigned to every response, as indicated in Table 3. The cumulative score obtained
for all three irritant responses provides a single numerical value (cumulative score). This
numerical score serves as an interpretation of the conjunctival irritation potential of the
respective test substance (Table 4). In the evaluation of each substance, three CAMs were
employed for each test sample.

Table 3. HET-CAM test scoring system.

Title Score

Response/Time (min) 0.5 2 5

Hyperemia 5 3 1
Hemorrhage 7 5 3

Clotting/coagulation 9 7 5

Table 4. Cumulative score classification of the HET-CAM.

Cumulative Score Interpretation

0.0–0.9 Non-irritant
1.0–4.9 Slight irritant
5.0–8.9 Moderate irritant
9.0–21 Severe irritant

2.10. Bovine Corneal Opacity and Permeability (BCOP) Assay

Freshly excised bovine eyes were carefully examined for epithelial integrity and
corneal damage, and those presenting defects, such as neovascularization, pigmentation,
or scratches, were discarded. Plastic weighing boats were used to hold the eyes with the
cornea facing upwards in the humid atmosphere of a closed shaking water bath shaken
for 10 min at 37 ± 0.5 ◦C. Silicone O-shaped rings were placed on the center of the cornea
in order to localize the effect of the testing materials. The positive and negative controls
used were NaOH (0.5 M) and NaCl (0.9% w/v), respectively. A drop of saline was applied
to the corneal surface before incubating for 5 min. Testing materials and controls (0.1 mL)
were applied to the corneal surface for 30 s before the eyes were rinsed with 10 mL of
normal saline and left in incubation for 10 min. Then, the degree of corneal damage was
visually determined from the extent of opacification and was further assessed for corneal
epithelium integrity using sodium fluorescein staining (2% w/v, pH 7.4) under a cobalt
blue light. The observations were graded according to individual numerical scores in terms
of opacity, epithelial integrity, and epithelial detachment, as reported previously [35]. The
cumulative scores were calculated, and the mean of 3 independent scores was used to
interpret the corneal irritation potential for the test materials (Table 5).

Table 5. BCOP scoring system and interpretation.

Opacity Score Epithelial Integrity Score Epithelial Detachment Score Cumulative
Score Interpretation

None 0 None 0 No gross abnormalities 0 ≤0.5 Non-irritant

Slight 1 Diffuse and weak 0.5 Wrinkling of corneal surface 2 0.6–1.9 Slight irritant

Market 2 Confluent and weak 1 Loosening of epithelium 3 2.0–4.0 Moderate irritant

Severe 3 Confluent and intense 1.5 Epithelium absent 4 >4 Severe irritant

Opaque 4

2.11. Human Lens Epithelial Cell Viability Investigation Using the Neutral Red Uptake Assay

Cell viability upon exposure to varying concentrations of Cs NPs was evaluated
by providing a quantitative estimation of the number of live cells in a culture. Neutral
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red uptake assays were carried out on human lens epithelial cells (HLECs B-3) to assess
the cytotoxicity of the studied Cs NPs. The assay depends on the ability of living cells
(with functional lysosomes) to take up and bind the basic dye neutral red (which is a
pH indicator), while dead cells cannot take up the dye. Liquid nitrogen-stored HLEC
B-3 cells were thawed and grown in a humidified incubator at 37 ◦C in an atmosphere
of 5% CO2 and 95% air. All cell lines were cultured in cell complete medium (EMEM)
supplemented with 20% (v/v) fetal bovine serum and 1% (v/v) penicillin–streptomycin.
Cells were passaged by trypsinization using trypsin-EDTA (0.25%) and seeded in a cell
culture flask for adherent cells. A neutral red assay was conducted as previously described,
with slight modifications [36,37]. In brief, cells were seeded into 96-well plates at a seeding
of 8 × 103 cells in a total complete medium volume of 200 µL per well and incubated
at 37 ◦C with 5% CO2 for 24 h. Then, the complete medium (EMEM + 20% FBS + 1%
penicillin–streptomycin) was discarded, and cells were exposed to different concentrations
of Cs NPs dispersed in treatment medium (EMEM + 5% FBS + 1% penicillin–streptomycin)
and incubated for 24 h. After medium aspiration, the cells were washed with 150 µL
of phosphate-buffered saline (PBS) and 100 µL of complete medium supplemented with
neutral red (40 µg/mL), then added to the cells and incubated for three hours at the same
conditions. Later, the cells were again washed with PBS, and an NR de-staining solution
(50% ethanol, 49% deionized water, and 1% glacial acetic acid) was added to the cells. The
plates were shaken for 10 min to extract the NR. The optical density (OD) was measured at
540 nm using a plate reader to calculate the cell survival rate.

2.12. Statistical Analysis

All experiments were conducted in triplicate, and the results were presented as the
mean value ± standard deviation (SD). A one-way analysis of variance (ANOVA) was
performed using Minitab® software, version 21.4, (Minitab, Inc, State College, PA, USA).
The resulting data were deemed statistically significant when the p-value was less than 0.05.

3. Results and Discussion
3.1. Ex Vivo Permeation of Fasudil Hydrochloride through Excised Bovine Cornea and Sclera

To facilitate the development of a more effective ocular formulation for Fasudil, it is
vital to investigate its permeability across the primary barriers located at the front of the
eye, namely the cornea and sclera. The trans-corneal/scleral permeation profiles of Fasudil
solution were investigated using bovine excised eyes. Permeation parameters, including
the apparent permeability coefficient (Papp), flux, and lag time, were calculated for Fasudil
across both membranes (cornea and sclera). The results from trans-corneal/scleral perme-
ation indicated that both the cornea and sclera remained intact throughout the experiment,
as evidenced by the linear permeation profile (Figure 2). The amounts of Fasudil that
permeated at 2 h and 6 h were calculated and used to compare and contrast the resulting
profiles. The amount of Fasudil that permeated through the cornea at 2 h and 6 h was
14.4 µm/cm2 and 96.8 µm/cm2, respectively. Fasudil permeation through the sclera was
significantly higher (p < 0.05), with 109.1 µm/cm2 and 370.0 µg/cm2 at the same time
points, respectively.

Table 6 provides a summary of the trans-corneal/scleral permeation parameters for the
Fasudil solution. Both the steady flux and Papp values for Fasudil permeation through the
cornea were significantly lower (p < 0.05) compared to those observed for the sclera. These
results suggest that Fasudil permeates at a higher rate through the sclera when compared
to the cornea (approximately 3.4 times higher). This difference can be attributed to the
distinct structural characteristics of these eye tissues. The sclera, characterized by collagen-
based pores, facilitates easier permeation of hydrophilic molecules [38]. In contrast, the
hydrophobic nature of the external corneal stratified epithelium acts as a barrier, impeding
the permeation of hydrophilic substances [38].

The permeation data generated from this experiment clearly highlight the need for a
formulation strategy to perturb and overcome the barrier properties of the cornea in order
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to improve the ocular absorption of Fasudil. Chitosan nanoparticles are likely to achieve
such an objective.
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Figure 2. Ex vivo permeation study of Fasudil from Fasudil simple solution through excised bovine
cornea and sclera for 6 h. Results are expressed (n = 3 ± SD), t-test was performed.

Table 6. Flux, apparent permeability coefficient (Papp), lag time (tL), and regression coefficient (R2)
of Fasudil simple solution through cornea and sclera.

Ocular Tissues Flux (µg/cm2.h) Papp × 10−6 (cm/s) Lag Time (h) R2

Cornea 20.6 * ± 2.24 3.4 * ± 0.37 1.4 ± 0.17 0.9870

Sclera 70.4 ± 3.93 11.5 ± 0.64 0.7 ± 0.16 0.9745
Note: * p < 0.05.

3.2. Design of Experiment

Design of experiment (DoE) was performed to optimize Cs nanoparticles and in-
vestigate the correlation between responses and factors. Independent factors were Cs
concentration, Cs:TPP mass ratio, and sonication time. The data generated by the Minitab
software system, version 21.4, were employed to evaluate the effects of independent factors
and their interaction effects on particle size, PDI, zeta potential, and EE. The design of
eight experimental runs was developed in order to optimize the properties of nanoparticles
produced in terms of particle size (less than 300 nm), high surface charge, and entrapment
efficiency. ANOVA was used to check the significance of the effect on the responses when
the p-value was < 0.05. Table 7 presents the outcomes related to particle size, PDI, zeta
potential, and entrapment efficiency for the generated formulations.

Table 7. Particle size, polydispersity index, zeta potential, and entrapment efficiency for the generated
formulations (mean ± SD, n = 3).

Formulation Code Particle Size (nm) Polydispersity Index Zeta Potential (mV) Entrapment Efficiency (%)

F1 149.2 ± 15.4 0.135 ± 0.008 20.8 ± 2.9 17.2 ± 2.79

F2 835.9 ± 23.4 0.762 ± 0.013 34.9 ± 4.0 41.4 ± 4.15

F3 290.9 ± 12.3 0.129 ± 0.006 22.7 ± 3.3 31.4 ± 2.53

F4 475.2 ± 11.8 0.334 ± 0.008 43.8 ± 3.2 30.4 ± 3.83
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Table 7. Cont.

Formulation Code Particle Size (nm) Polydispersity Index Zeta Potential (mV) Entrapment Efficiency (%)

F5 * 170.8 ± 4.8 0.357 ± 0.02 16.4 ± 0.9 33.3 ± 1.5

F6 820.2 ± 27.4 0.756 ± 0.012 34.5 ± 2.5 40.3 ± 2.6

F7 492.1 ± 17.8 0.330 ± 0.037 43.8 ± 1.8 27.6 ± 3.7

F8 297.0 ± 13.4 0.21 ± 0.034 17.6 ± 2.3 32.0 ± 3.2

F9 144.0 ± 15.6 0.127 ± 0.007 21.4 ± 3.1 18.1 ± 3.7

* Represents the center point.

3.3. Characterization of Fasudil-Cs NPs
3.3.1. Effect of Independent Variables on Particle Size and PDI

Particle size and PDI are essential factors, considering their importance for effective
topical ophthalmic administration. A small particle with a more uniform size provides
higher ocular bioavailability by increasing permeation across ocular tissues and is less
irritating [39,40]. The main effects of the investigated independent variables and their
interactions on the particle size were observed in a 3D surface plot (Figure 3a). The results
indicate that Cs concentration, Cs:TPP mass ratio, and their interaction significantly im-
pacted particle size. An increase in the concentration of Cs led to the creation of large-sized
nanoparticles, which agrees with previous reports [41–43]. When the concentration of Cs
rises, the molecules become more interlinked, and viscosity increases, making it difficult
for TPP anions to disperse within the Cs molecules. This leads to ineffective crosslinking,
which results in the formation of larger particles [44]. The creation of Confirmed, ‘n’ should
not appear in italics as variables. nanoparticles mainly depends on the ionic interactions
between the molecules of Cs and TPP. Therefore, it is believed that the mass ratio between
the two molecules has a crucial role in defining the size of the nanoparticles [33,45]. When
the mass ratio of Cs to TPP was changed from 5:1 to 1:1, the size of the nanoparticles
was significantly increased (p < 0.05). As the Cs TPP mass ratio decreased, more sodium
tripolyphosphate became accessible. Hence, excess sodium tripolyphosphate linked the
mono-nanoparticles to produce larger nanoparticles. Similar behavior was also seen at
lower Cs:TPP mass ratios by Hu et al. [45] and Antoniou et al. [46]. These findings were
consistent with the data provided by Leelapornpisid et al. [47], who claimed that maintain-
ing Cs and TPP concentrations within a certain range is necessary for producing Cs NPs
on a nanoscale. In terms of polydispersity index (PDI), the results showed that the pattern
of particle size was linearly associated with the PDI, i.e., an increase in particle size was
accompanied by an increase in PDI (Figure 3b).

3.3.2. Effect of Independent Variables on Zeta Potential

The positive values of the zeta potential are due to the presence of protonated Cs
amino groups on the surface of the nanoparticles [48,49]. The 3D surface plot in Figure 3c
demonstrates a significant effect of Cs concentration on the nanoparticle’s zeta potential.
The zeta potential increased with increasing Cs concentration due to the increased amount
of protonated amino groups of Cs in the system [50–53]. The given data imply a positive
correlation between the zeta potential and the Cs:TPP mass ratio. The surface charge
dropped when the Cs-to-TPP mass ratio decreased from 5:1 to 1:1. The reduction in zeta
potential at lower Cs:TPP mass ratios may result from the neutralization of positively
charged amino groups on Cs by TPP anions [50,54]. However, the ANOVA results showed
that Cs concentrations had the most significant impact on the zeta potential of the produced
nanoparticles, while the sonication time had no effect.
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size (nm), (b) PDI, (c) zeta potential (mV), and (d) entrapment efficiency (EE%).
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3.3.3. Effect of Independent Variables on EE

The results obtained from measuring the amount of Fasudil in the supernatant after
centrifugation of the nanoparticles indicated an EE range of 17.2–41.40%. The relationship
between Cs concentration and EE is positive. This means that increasing the concentration
of chitosan leads to an increase in entrapment efficiency, as can be observed in Figure 3d.
When the Cs concentration was increased, the protonated amino group was more easily
accessible in the system. As a result, the crosslinker, TPP, had access to additional binding
sites, which increased the EE% [51–53]. However, the Cs:TPP mass ratio had the opposite
impact on the EE%. As the mass ratio of Cs to TPP increased, the EE% decreased. This
could be explained by the limited quantity of TPP anions available for crosslinking with
Cs. Similar results were reported by Abosabaa et al. [53]. However, the relatively low EE
of Fasudil in the nanoparticles could be attributed to the hydrophilic nature of the drug
by causing partitioning into the hydrophilic phase rather than trapping in the generated
nanoparticles. These findings were also supported by Lazaridou et al., who claimed low
EE in Cs TPP nanoparticles because of their high water solubility [55].

The application of the desired constraints, such as the maximum EE% and a particle
size of less than 300 nm, led to formulation optimization. With a computed desirability of
0.76, a set of conditions was identified and chosen for further formulation development,
namely, a Cs concentration of 1.2 mg/mL, a Cs:TPP mass ratio of 1:1, and a sonication time
of 45 s.

3.3.4. Scanning Electron Microscopy (SEM)

Figure 4 shows SEM images of the optimized Cs NPs loaded with Fasudil. The particles
exhibit typical spherical shapes with evidence of particle aggregation. It is important to
point out that the observed particle aggregation could be a consequence of the drying
process during SEM sample preparation [56,57].
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3.4. In Vitro Drug Release Study

The ability of Cs NPs to release the drug in vitro was investigated in STF under
physiological conditions representative of the ocular surface (pH 7.4, 35 ◦C) for 24 h. The
performance of the optimized chitosan nanoparticles was compared to that of the Fasudil
solution. Figure 5 shows that approximately 60% of the drug was recovered in the receptor
chamber from the solution within the first hour, indicating that the drug had the ability
to permeate almost unrestrictedly through the dialysis membrane. In contrast, Cs NPs
displayed an initial burst release of Fasudil followed by a sustained release over 24 h.
An initial burst release of 35.51% occurred within two hours, followed by an extended
release of 47.8% and 55.6% at four and six hours, respectively. The initial burst release
may be associated with the desorption of the Fasudil molecules that have been adsorbed at
the surface of the Cs nanoparticles or those poorly trapped within the polymeric matrix.
From a clinical point of view, an initial rapid release may be advantageous to achieve
the therapeutic concentration of the drug in the shortest amount of time, followed by a
sustained release. The drug’s presence in the particle’s core may be responsible for the
sustained release. M. Bin-Jumah et al. reported similar release profiles for clarithromycin,
an anti-bacterial agent [48].
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Figure 5. Cumulative release of Fasudil loaded into Cs NPs and Fasudil solution (control) in simulated
tear fluid (STF). Results are presented as mean ± SD, n = 3.

The release kinetics of Fasudil from chitosan nanoparticles were assessed using the
zero-order, first-order, Higuchi, and Korsmeyer–Peppas release models. Table 8 displays
the generated coefficient of determination (R2) values derived from the model fitting
results of the release data. The values reveal the best fit of the release data with the
Higuchi and Korsmeyer–Peppas models (Table 8), suggesting that the release of Fasudil
is primarily governed by diffusion. Additionally, the release exponent (n) value obtained
from the Korsmeyer–Peppas model is 0.35, confirming that Fickian diffusion serves as the
predominant process influencing drug release.

Table 8. The coefficients of determination (R2) and the release exponent (n) were obtained through
model fitting of the release data of Fasudil from the optimized Cs NPs (results represent mean
values ± SD, n = 3).

Coefficient of
Determination Zero Order First Order Higuchi Korsmeyer–Peppas Release Exponent (n)

R 2 0.8962 ± 0.05 0.8642 ± 0.04 0.9460 ± 0.04 0.9650 ± 0.02 0.35 ± 0.03
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3.5. Ex Vivo Trans-Corneal Permeation of Fasudil from Fasudil-Cs NPs

Figure 6 illustrates the trans-corneal permeation profiles of Fasudil through excised
bovine corneas. Permeation parameters such as the apparent permeability coefficient
(Papp), flux, and lag time (tL) were calculated. Notably, Cs NPs demonstrated a substantial
enhancement in Fasudil permeation through the cornea compared to the Fasudil aqueous
solution. The flux and Papp values for Cs NPs were 2.1-fold higher than those for the
Fasudil solution (Table 9). The cornea’s ability to effectively control Fasudil permeation is
evidenced by the linearity of the Fasudil permeation profile. The significant improvement
in permeation (p < 0.05) can be attributed to the ionic interactions between the negatively
charged corneal surface and the positively charged amino groups on Cs NPs. These findings
align with a previous report [58]. Additionally, increased permeation might be caused by
the ability of Cs nanoparticles to transiently affect the barrier properties between corneal
epithelial cells, which could potentially increase drug flux through the cornea [59].
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Figure 6. Trans-corneal permeation profiles of Fasudil from Cs NPs and Fasudil solution (mean ± SD,
n = 3).

Table 9. Flux, apparent permeability coefficient (Papp), lag time (tL), and regression coefficient (R2)
of Fasudil through cornea from Fasudil simple solution and Fasudil-Cs NPs.

Samples Title Flux (µg/cm2.h) Papp × 106 (cm/s) Lag Time (h) R2

Fasudil solution 20.6 * ± 2.24 3.46 * ± 0.37 1.4 ± 0.17 0.9870

Fasudil-Cs NPs 43.2 ± 1.75 7.1 ± 0.31 1.2 ± 0.05 0.9772

Note: * < 0.05.

Reflecting on both in vitro release and ex vivo permeation results of Fasudil from
Cs NPs and extrapolating these findings to what is likely to happen once applied to
the ocular surface, one could postulate that a faster (pulsed) release along with poor
corneal permeation from the aqueous solution would result in quick ocular surface loss,
leading to poor corneal absorption. On the other hand, a slower Fasudil release along with
improved corneal permeation (characteristics of Cs NPs) is likely to result in improved
corneal absorption.

3.6. Conjunctival Irritation Test

The HET-CAM assay is beneficial for assessing the irritation effect of test substances
on ophthalmic tissues such as the conjunctiva [60]. This is because the CAM is a functional
membrane that encompasses vasculature and inflammatory responses that can be analyzed
for ocular injury-related outcomes. The HET-CAM assay measures the capacity of a test
substance to harm blood vessels and provoke adverse effects like hyperemia, hemorrhage,
and clotting/coagulation [61]. As seen in Figure 7A, a strong irritant reaction, including
clotting and hemorrhage, occurred when the CAM was subjected to a 0.5 M NaOH solution,
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a potent irritant. Testing with a moderate irritant (propylene glycol) produced a weaker
response (compared with NaOH), as depicted in Figure 7B. This finding aligns with the
previous report by Smail et al., which stated that propylene glycol can cause a minor irritant
effect when used on its own [34]. On the other hand, neither the Cs NPs as depicted in
Figure 7D nor the saline solution (negative control) produced any signs of ocular irritation
(Figure 7C). The results suggested that the formulated Cs NPs are non-irritant when applied
to the surface of the CAM. Figure 8 shows the cumulative scores of the controls and Cs NPs.
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(A) NaOH 0.5 M (strong irritant), (B) propylene glycol (PG) (moderate irritant), (C) normal saline
(negative control), and (D) Cs NPs formulation.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 7. Images displaying the irritant effects of substances applied to the CAMs over a 5 min 
period: (A) NaOH 0.5 M (strong irritant), (B) propylene glycol (PG) (moderate irritant), (C) normal 
saline (negative control), and (D) Cs NPs formulation. 

 

Figure 8. Cumulative scores of the HET-CAM assay results and subsequent classification for the 
controls and Cs NPs. Results are expressed as mean values ± SD, n = 3. 

3.7. Bovine Corneal Opacity and Permeability (BCOP) Assay 
The BCOP is an ex vivo assay that determines how topically applied substances alter 

the opacity and permeability of freshly excised bovine corneas [34]. Corneal opacity is 
generally caused by protein denaturation or precipitation in the epithelial or stromal lay-
ers as a result of exposure to an irritant [62]. The permeability of the cornea is assessed 
using sodium fluorescein, a dye that normally cannot pass through corneal epithelial cells. 
Permeability may rise in the presence of injury to the corneal epithelium [34]. Images of 
the bovine’s corneas before and after staining are shown in Figure 9. Corneal opacity and 
fluorescein staining could be seen in images of the positive control, 0.5 M NaOH, a severe 
irritant (Figure 9a). The use of NaOH led to denaturation of the corneal proteins, resulting 
in a reduction in corneal transparency and an increase in corneal opacity. The damaged 
epithelium layer allowed for greater penetration of the fluorescent dye into the stroma, 
which was identified through fluorescent staining and reduced corneal luster. Acetone 
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3.7. Bovine Corneal Opacity and Permeability (BCOP) Assay

The BCOP is an ex vivo assay that determines how topically applied substances
alter the opacity and permeability of freshly excised bovine corneas [34]. Corneal opacity
is generally caused by protein denaturation or precipitation in the epithelial or stromal
layers as a result of exposure to an irritant [62]. The permeability of the cornea is assessed
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using sodium fluorescein, a dye that normally cannot pass through corneal epithelial cells.
Permeability may rise in the presence of injury to the corneal epithelium [34]. Images
of the bovine’s corneas before and after staining are shown in Figure 9. Corneal opacity
and fluorescein staining could be seen in images of the positive control, 0.5 M NaOH, a
severe irritant (Figure 9a). The use of NaOH led to denaturation of the corneal proteins,
resulting in a reduction in corneal transparency and an increase in corneal opacity. The
damaged epithelium layer allowed for greater penetration of the fluorescent dye into the
stroma, which was identified through fluorescent staining and reduced corneal luster.
Acetone had a less strong irritating effect on the cornea, resulting in slight opacity and
weak fluorescein staining (Figure 9b). However, no signs of corneal opacity or fluorescein
staining were observed with either the negative control (where the corneas were treated
with a normal saline solution) or the Cs NP formulation, as depicted in Figure 9c and
Figure 9d, respectively.
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The BCOP scores for corneal opacity and epithelial integrity were plotted (Figure 10)
for severe, moderate, and non-irritant controls, as well as Cs NPs. The cumulative score for
Cs NPs was consistently below 0.5, suggesting that it has a low-to-negligible potential for
causing corneal irritation.
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3.8. Human Lens Epithelial Cell Viability Investigation Using the Neutral Red Uptake Assay

The neutral red uptake assay is commonly used for measuring cytotoxicity; it provides
a quantitative assessment of the number of viable cells present in a culture [63]. It is based
on the ability of cells to incorporate and bind the neutral red dye in lysosomes, which is later
extracted [64]. The dye’s net charge (near zero) at physiological pH allows it to penetrate
cell membranes. Within the lysosomes, there is a proton gradient to keep the pH lower
than in the cytoplasm. The neutral red dye becomes charged and is hence retained in the
lysosomes. However, if the cell dies or the pH gradient decreases, the dye is released [63].
In this study, the cytotoxicity of Cs NPs was assessed by subjecting HLEC cells to different
concentrations of the nanoparticles (ranging from 1 × 10−5 to 1 mg/mL) using the NRU
assay. Cell viability was determined by comparing the obtained results to those of the
negative control (treatment medium), as shown in Figure 11. Hydrogen peroxide was
employed as a positive control, and it yielded a considerably low cell viability of 17%,
reflecting its cytotoxic effects. Hydrogen peroxide is an oxidizing agent that can damage
cells and cause their death. The cells showed great tolerance to low concentrations of Cs
NPs (ranging from 1 × 10−5 to 1 × 10−3 mg/mL), as evidenced by a cell viability of over
94%. However, when the concentration was increased to 1 mg/mL, cell viability decreased
significantly to 75% (p < 0.05). This is in line with previous studies indicating that Cs NPs
exhibit concentration-dependent cytotoxicity, where higher concentrations lead to more
severe cytotoxicity [65].
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Figure 11. Cell viability (%) evaluated by NRU assay after 24 h of exposure of HLEC cells to different
concentrations of Cs NPs. Hydrogen peroxide and treatment medium are used as positive and
negative controls, respectively. Results are expressed as mean values± SD from three independent
experiments. One-way analysis of variance (ANOVA) followed by Bonferroni post hoc test was used
with * p < 0.05, ** p < 0.01, and *** p < 0.001.

4. Conclusions

In conclusion, we observed significant differences in Fasudil permeation between the
cornea and sclera during ex vivo studies. The tendency of the cornea to act as a barrier to the
absorption of Fasudil warranted our move to use chitosan nanoparticles, as they are known
to increase corneal permeability. The size and Fasudil entrapment efficiency of chitosan
nanoparticles were found to be highly influenced by the quantity of chitosan used. Addi-
tionally, our study demonstrated that chitosan nanoparticles enabled a controlled release of
Fasudil, highlighting their potential for sustained drug delivery with less frequent topical
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administration compared to an aqueous solution. Importantly, our study demonstrated
the conjunctival and corneal biocompatible nature of these nanoparticles. Moreover, the
excellent tolerance of lens epithelial cells to low concentrations of chitosan nanoparticles
further demonstrates their ocular biocompatibility. These findings collectively support the
promise of Fasudil–chitosan nanoparticles as a more efficient alternative to conventional
simple solution eye drops for glaucoma therapy.
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