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Abstract: Despite the recent advances in this field, there are limited methods for translating organoid-
based study results to clinical response. The goal of this study was to develop a pharmacoki-
netic/pharmacodynamic (PK/PD) model to facilitate the translation, using oxaliplatin and irinotecan
treatments with colorectal cancer (CRC) as examples. The PK models were developed using qualified
oxaliplatin and irinotecan PK data from the literature. The PD models were developed based on
antitumor efficacy data of SN-38 and oxaliplatin evaluated in vitro using tumor organoids. To predict
the clinical response, translational scaling of the models was established by incorporating predicted
ultrafiltration platinum in plasma or SN-38 in tumors to PD models as the driver of efficacy. The
final PK/PD model can predict PK profiles and responses following treatments with oxaliplatin or
irinotecan. After generation of virtual patient cohorts, this model simulated their tumor shrinkages
following treatments, which were used in analyzing the efficacies of the two treatments. Consistent
with the published clinical trials, the model simulation suggested similar patient responses following
the treatments of oxaliplatin and irinotecan with regards to the probabilities of progression-free
survival (HR = 1.05, 95%CI [0.97;1.15]) and the objective response rate (OR = 1.15, 95%CI [1.00;1.32]).
This proposed translational PK/PD modeling approach provides a significant tool for predicting
clinical responses of different agents, which may help decision-making in drug development and
guide clinical trial design.

Keywords: translational pharmacokinetic/pharmacodynamic (PK/PD) modeling; oxaliplatin;
irinotecan; colorectal cancer

1. Introduction

Cancer drug development continues to have a high fail rate, at 95%, in clinical trials,
with a lack of efficacy being the leading cause of 60% of all unsuccessful outcomes [1].
The development of reliable preclinical models has been considered the foundation for
screening effective drug candidates [2]. In addition, a successful translational approach is
essential in applying these models to predict clinical efficacy for candidate screening and
dosing schedule optimization [2,3].

Tumor organoids (PDTOs) are complex 3D tissues that are cultured from tumor
fragments. PDTOs contain multiple cell types and can reproduce some key anatomical and
functional characteristics of human tumors [4,5]. Unlike traditional cell culture technologies,
PDTOs can recapitulate the tumor microenvironment and mimic a variety of cell–cell and
cell–extracellular matrix interactions. In addition, they are capable of preserving the
histopathological and main clinical genetic features of parental tumors [6,7]. Thus, PDTOs
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have been considered a more human-relevant in vitro model for evaluating the efficacy of
antitumor agents. By now, PDTO-based in vitro studies have been widely verified and used
in antitumor drug screening and precision medicine. Helen Yan et al. established a living
biobank with 46 gastric cancer organoid lines representing different molecular subtypes.
Through drug testing, two PDTOs exhibited a favorable response to both cisplatin and
5-flurouracil, consistent with the patients’ responses after treatment with cisplatin and
5-flurouracil. Conversely, another PDTO, obtained from a patient with progressive disease
following 5-flurouracial-based treatment demonstrated a negative response to 5-flurouracil.
These results suggested the effectiveness of PDTO in predicting drug sensitivity. This
living biobank was further utilized to assess the sensitivity of gastric cancer organoids to
marketed drugs or drug candidates, identifying abemaciclib as a potential drug [8].

In addition, PDTOs have also been applied to identify responders to specific drugs [9–11].
In the case of oxaliplatin and irinotecan, first-line treatments for metastatic colorectal cancer
(CRC), these drugs were co-cultured with tumor organoids derived from CRC patients.
The growth of tumor organoids derived from responders was significantly inhibited by
oxaliplatin and SN-38 (the active metabolite of irinotecan), suggesting a good in vitro–
in vivo correlation between PDTO response and clinical response. Therefore, PDTOs have
been considered a promising tool for classifying the responders to oxaliplatin and irinotecan
in CRC patients [6,9,12].

Beyond their qualitative applications in drug screening and responder identification,
a particularly attractive application of a PDTO-based in vitro study is the quantitative
prediction of the clinical responses of antitumor drugs. This approach has the potential
to optimize the drug combination and dosing schedule in drug development. Compared
to static culture conditions in vitro, the time-dependent nature of drug exposure in vivo
poses a challenge in in vitro to in vivo translation (IVIVT). However, drug exposure in
tumor tissue is a time-dependent variable in vivo, which is a major barrier in in vitro to
in vivo translation (IVIVT). The pharmacokinetic/pharmacodynamic (PK/PD) model is
a valuable approach to establishing the relationship between drug dose, exposure, and
response [13,14]. Through the integration of knowledge of physiology, disease processes,
and pharmacology, various mathematical models have been established to optimize doses,
design clinical trials, and provide efficacy evidence [13,15].

Given the association between PDTO results and the clinical responses of patients [16],
an in vitro PD model based on PDTO efficacy data can be used to predict clinical response.
Model-based virtual clinical trials, also known as in silico clinical simulations, leverage a
virtual patient cohort and mathematical models to predict the potential clinical benefits
of drugs and drug candidates [17,18]. It also can identify responder groups for treatment,
explore drug combinations, predict real clinical trials, and more [19].

The key aspect of conducting a model-based virtual clinical trial is to generate a
virtual patient population that can replicate the characteristics and variability of clinical
patients [20]. For example, Aman Singh et al. developed a PK/PD model using clinical
information from multiple myeloma patients to generate virtual patients and perform
a model-based virtual clinical trial simulation to support dose selection for clinical trial
design [21]. Similarly, a quantitative system pharmacology (QSP) platform for immune
oncology has also been implemented in multiple virtual clinical trial simulations where
a subset of parameters was selected to generate a virtual patient cohort resembling the
clinical patients. Tumor shrinkages and biomarker changes of these virtual patient cohorts
were simulated in order to provide prospective information for clinical trials [22,23]. As
a promising tool for drug development, model-based virtual clinical trial simulation can
further explore treatment benefits based on PDTO experiments.

In the current research, PK/PD models have been developed with in vitro PDTO
data, and model-based virtual clinical trials have been simulated to assess the benefits
of oxaliplatin and/or irinotecan treatment in CRC patients. Model-based virtual clinical
trials successfully predicted the antitumor efficacy of these two drugs, demonstrating good
consistency with previous clinical practice. This study provided a translational approach
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to assessing the clinical response of new drug candidates or therapies based on PDTO
efficacy data.

2. Materials and Methods
2.1. Data Collection of Pharmacokinetics and Pharmacodynamics

PK data came from previous studies. PubMed was used to collect oxaliplatin and
irinotecan PK data from mice and humans. The keywords used in the search were (‘oxali-
platin’ OR ‘irinotecan’) AND (‘pharmacokinetic’) AND (‘mice’ OR ‘human’). The inclusion
and exclusion criteria were as follows: (1) the administration approach was either intra-
venous bolus or infusion of antitumor drug solution; (2) no other drug was simultaneously
administered in the preclinical study; (3) studies that focused on specific populations were
excluded, such as those with hepatic or renal impairment; and (4) considering that the
blood concentration varies from plasma concentration, studies that only reported blood
concentrations were excluded. The plasma and/or tumor concentration time profiles were
converted to numerical data using the GetData Graph Digitizer (GetData Pty Ltd., Kog-
arah, Australia). PD data of the drug-sensitivity test in tumor organoids was gifted by
Accurate International Biotechnology (Guangzhou, China) to establish the PK/PD model.
The experimental conditions were described in a previous study [24]. In brief, organoids
underwent treatment with a range of drug concentrations. After a 96-h incubation period,
tumor organoids were mixed with 100 µL of CellTiter-Glo 3D reagent for a 5-min interval,
followed by an additional 25-min incubation. Subsequently, cell viability was determined
by luminescence measurements, which were normalized to those of vehicle controls.

2.2. Modeling of In Vitro Pharmacodynamic and In Vivo Plasma Pharmacokinetics in Mice
and Humans

The natural growth of PDTOs in the current study was described using an exponential
growth model. Hill’s function was employed to describe the inhibitory effect of drugs on
PDTO growth. The differential Equations (1)–(3) of the PD model are as follows:

dVt_c

dt
= kg ∗ Vt_c (1)

dVt_t

dt
= kg ∗ Vt_t −

(
Emax ∗ Chill

EChill
50 + Chill

)
∗ Vt_t (2)

Cell viability =
Vt_t

Vt_c
(3)

where kg is the natural growth rate of organoids and Vt_c and Vt_t are PDTO volumes.
E_max, EC50, and hill are used to describe the killing effects of antitumor drugs.

Generally, the PK studies for oxaliplatin were based on ultrafiltration platinum in
plasma instead of oxaliplatin molecules, which were considered to be perfused into tumors
as active forms. Therefore, a two-compartment model was used to describe the behavior of
ultrafiltration platinum in plasma. The differential Equations (4) and (5) used are as follows:

VC_OXA ∗ dCC_OXA
dt

= −(CLOXA + QOXA) ∗ CC_OXA + QOXA ∗ CP_OXA (4)

VP_OXA ∗ dCP_OXA
dt

= QOXA ∗ (CC_OXA − CP_OXA) (5)

where the CC_OXA and CP_OXA represent the concentrations of ultrafiltration platinum in
the central compartment and peripheral compartment. QOXA is the plasma flow rate in the
peripheral compartment. VC_OXA and VP_OXA are the central and peripheral compartment
volumes, respectively. CLOXA is the clearance of ultrafiltration platinum.

For irinotecan and its active metabolite SN-38, a minimal PBPK (mPBPK) model was
developed. Tissues other than tumor were collectively grouped as “other” compartments.
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The tumor compartment was divided into two sub-compartments, vascular and tissue,
while other organs and tissues were grouped as the “other” compartment. The differential
Equations (6)–(12) are as follows:

VC_IRI ∗
dCC_IRI

dt
= −(CLIRI + QIRI + Qt) ∗ CC_IRI + QIRI ∗ CO_IRI + Qt ∗ CTIS_IRI (6)

VO_IRI ∗
dCO_IRI

dt
= QIRI ∗ (CC_IRI − CO_IRI) (7)

VTIS_IRI ∗
dCTIS_IRI

dt
= Qt ∗ (CC_IRI ∗ f uIRI − CTIS_IRI)− PSIRI ∗ (CTIS_IRI −

CTC_IRI
KP_IRI

) (8)

VTC_IRI ∗
dCTC_IRI

dt
= PSIRI ∗ (CTIS_IRI −

CTC_IRI
KP_IRI

) (9)

VC_SN ∗ dCC_SN
dt = CLM_SN ∗ CC_IRI ∗

VC_IRI
VC_SN

+ QSN ∗ CO_SN + Qt ∗ CT_SN
KP_SN

−(CLSN + QSN + Qt) ∗ CC_SN

(10)

VO_SN ∗ dCO_SN
dt

= QSN ∗ (CC_SN − CO_SN) (11)

VT ∗ dCT_SN
dt

= Qt ∗
(

CC_SN ∗ f uSN − CT_SN
KP_SN

)
(12)

Here, CC_IRI, CO_IRI, and CT_IRI represent the concentration of irinotecan in the central
compartment, “other” compartment, and tumor compartment. CTIS_IRI and CTC_IRI are the
concentrations of irinotecan in the tumor interstitial space and tumor cells, respectively.
CC_SN, CO_SN, and CT_SN are the concentrations of SN-38 in the central compartment,
“other” compartment, and tumor compartment. QIRI and QSN are the plasma flow rates in
the “other” compartment. VC_IRI, VC_SN, VO_IRI, and VO_SN are the central compartment
and other compartment volumes. CLIRI and CLSN are the clearance of irinotecan and SN-38.
CLM_SN is the metabolic rate of irinotecan in SN-38. KP_IRI and KP_SN are tumor/plasma
partition coefficients. PSIRI is the permeation rate of irinotecan entering into the tumor cells
in interstitial space.

The mPBPK model for irinotecan was first developed based on the PK data of tumor-
bearing mice. To further develop the mPBPK model for humans, some tumor-related
parameters from the mouse model were scaled up and integrated with other parameters
based on human PK data. The mimicked ultrafiltration platinum in plasma and SN-38 in
tumor tissue was considered a driver of efficacy. To describe tumor growth in vivo, the
Gompertz model replaced the exponential growth model because of its growth limitation.
Figure 1 shows the global structures of the final PK/PD model. All models were built
using Monolix 2019R2 (Simulations Plus, Orsay, France) with the stochastic approximation
expectation-maximization (SAEM) method.
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peripheral compartment; VTIS, VTC: tumor volume; QOXA, QIRI, QSN: clearance between central and
peripheral compartments; Qt: blood flow rate between central and tumor compartments; CLOXA,
CLIRI, CLSN: systematic clearance; KP_SN: tumor/plasma partition coefficient; CTV_IRI, CTIS_IRI,
CTC_IRI, CTV_SN, CT_SN: drug concentration in tumor compartments; Kg: tumor growth rate; Emax:
the maximum killing effect; EC50: drug concentration of half maximum effect; hill: Hill efficient.

2.3. Simulation of Tumor Shrinkage in Humans

Simulations were conducted using Berkeley Madonna (version 10.2.6; UC Berkeley,
Berkeley, CA, USA). Different dosing regimens were employed to simulate the tumor
growth profiles of various patients based on the final PK/PD models. To make the simula-
tion more clinically relevant, the two most common dosages of oxaliplatin and irinotecan
were simulated and are listed in Table 1. The efficacy of the treatments was assessed
according to the Response Evaluation Criteria In Solid Tumors (RECIST 1.1) [25].

Table 1. Designed dosing regimens of oxaliplatin and irinotecan.

Drug Title 2 Title 3

Irinotecan
350 mg/m2 Once every 3 weeks
125 mg/m2 Once a week for 4 consecutive weeks, followed by a two-week rest period

Oxaliplatin 130 mg/m2 Once every 3 weeks
85 mg/m2 Once every 2 weeks

2.4. Model-Based Virtual Clinical Trial

In the model-based virtual clinical trial, a virtual patient cohort was generated ac-
cording to the pathological baseline of CRC patients with 30% variation by Monte Carlo
sampling. Specific parameters related to the drug effect were selected to represent the
interindividual variabilities of the drug effect. The mean value was the geometric mean of
the in vitro PD model parameters. Monte Carlo sampling was used to allocated values for
these selected parameters. The overall predicted response rate of virtual patients based on
RECIST 1.1 was divided into three situations: progressive disease, stable disease, and par-
tial or complete response. To assess the two treatments, the probabilities of progression-free
survival (PFS) and objective response rate (ORR) were analyzed and plotted.

2.5. Statistical Analysis

All statistical analyses were based on R (version 4.0.2; R Foundation for Statistical
Computing, Vienna, Austria) and RStudio (version 1.3.1037; R Foundation for Statistical
Computing, Vienna, Austria), and the Kaplan-Meier plotter was performed using survival
packages. Hazard ratios (HRs) and 95% confidence intervals were calculated and used to
compare the PFS of the two treatment groups. ORR was compared by odds ratios (ORs).

3. Results
3.1. Development of an In Vitro PD Model

The PD data from the in vitro PDTO provided by Accurate International Biotechnology
(Guangzhou, China) was used to develop the PD model. The Hill model was developed
to describe the concentration–effect relationship of PDTOs in response to oxaliplatin and
SN-38. The estimated patient-specific parameters of the PD model are exhibited in Table 2.
The growth rate of PDTO was fixed at 0.03, according to the natural growth of the PDTOs.
For oxaliplatin, the estimate values of EC50 ranged from 246 µmol/L to 622 µmol/L
across the patients. This indicates that different PDTOs showed varying sensitivities to
oxaliplatin. Similarly, the estimated values of EC50 for SN-38 ranged from 4.17 µmol/L
to 15.5 µmol/L. Hill coefficients in the oxaliplatin PD model ranged from 0.384–0.977 and
showed a less steep profile, with a narrower range (0.2–0.435) in the SN-38 PD model.
As shown in Figure 2, these estimated individual parameters effectively captured the
relationship between drug concentration and cell viability.
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Table 2. The individual parameters of pharmacodynamic model.

Patient No.
Oxaliplatin SN-38

kg Emax EC50 Hill Emax EC50 Hill

1

0.03

0.095 308 0.614 0.076 15.50 0.349
2 0.095 246 0.977 0.040 12.40 0.396
3 0.105 352 0.891 0.047 10.70 0.324
4 0.056 622 0.397 0.049 7.04 0.266
5 0.038 354 0.384 0.103 15.50 0.325
6 - - - 0.023 6.10 0.435
7 - - - 0.027 4.17 0.200
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Figure 2. Individual fitting plot of the in vitro PD model for 96 h treatment with oxaliplatin (A) or
SN-38 (B). 1–7 are the numbers of samples provided drug test data.

3.2. Development of the Oxaliplatin and Irinotecan PK Model

Two different PK models were developed to describe the PK behavior of oxaliplatin and
irinotecan. For oxaliplatin, the unbound plasma drug concentration was considered the PD
driver to describe the antitumor effect. A two-compartmental PK model was developed to
describe the disposition of ultrafiltration platinum in the body, in which the parameters were
estimated using the plasma PK data from human studies. For irinotecan, the antitumor effect
of irinotecan was determined by the disposition of SN-38 in the tumor interstitial fluid, which
was described using an mPBPK model. In this model, a two-compartmental PK model was
introduced to describe the disposition of irinotecan. SN-38 was generated from irinotecan
metabolism, and its disposition was also described using a two-compartmental PK model. In
addition, a tumor compartment with blood vessel, interstitial fluid, and cell sub-compartments
was incorporated to describe exposure to irinotecan and SN-38. Plasma PK data from humans
were used to estimate a portion of the PK parameters for irinotecan and SN-38. Due to the
absence of drug concentrations in human tumors, plasma and tumor concentration profiles of
both irinotecan and SN-38 from tumor-bearing mice were collected and fitted to obtain the
drug disposition parameters in tumors. Besides PSIRI, most parameters were estimated with
good precision. In preclinical to clinical translation, physiological parameters, such as tumor
volumes and blood flow rate in tumors, were fixed with species-dependent values, while
drug-related parameters, such as tumor/plasma partition coefficients and permeation rate,
were scaled according to tumor volumes. The PK parameters of oxaliplatin and irinotecan are
summarized in Table 3, and the visual predictive check (VPC) with 1000 simulations is shown
in Figure 3. The VPC results suggested that these PK models had the ability to reproduce
drug profiles and simulate their distribution in tumors (Figure 3). The plots of normalized
prediction distribution errors (NPDE) versus time and population predictions are shown in
Appendix Figure A1. Most NPDE were evenly distributed around zero against PRED and
time (or time since last dose).
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Table 3. Parameter estimates of the PK models for oxaliplatin and irinotecan.

Parameters Definition Unit
Mouse

IIV (RSE%)
Human

IIV (RSE%) SourcesEstimates (RSE%) Estimates (RSE%)

VC_OXA
Apparent volumes of distribution in the central

compartment of oxaliplatin L - - 49.9 (46.3) 1.05 (30.9) Estimated

VP_OXA
Apparent volumes of distribution in the
peripheral compartment of oxaliplatin L - - 538 (29.3) - Estimated

CLOXA Systematic clearance of oxaliplatin L/h - - 5.96 (42.5) 0.597 (63.6) Estimated

QOXA
Clearance between central and peripheral

compartments of oxaliplatin L/h - - 49.3 (29.7) - Estimated

VC_IRI
Apparent volumes of distribution in the central

compartment of irinotecan L 0.0349 (32) 0.873 (20.4) 72.1 (6.78) 1.62 (39.3) Estimated

VP_IRI
Apparent volumes of distribution in the
peripheral compartment of irinotecan L 0.0493 (25.8) - 93.4 (15.2) - Estimated

VTIS Volumes of tumor interstitial space mL 0.1 (fixed) - 2 (fixed) - Assumed
VTC Volumes of tumor cells mL 0.4 (fixed) - 8 (fixed) - Assumed
VT Volumes of tumor mL 0.5 (fixed) - 10 (fixed) - [26]

VC_SN
Apparent volumes of distribution in the central

compartment of SN-38 L 0.00122 (15.9) 0.494 (59.3) 11.2 (34.5) 0.139 (71.9) Estimated

VP_SN
Apparent volumes of distribution in the

peripheral compartment of SN-38 L 0.108 (33.1) - 706 (52.7) - Estimated

CLIRI Systematic clearance of irinotecan L/h 0.0527 (19.7) 0.627 (20.4) 22.8 (5.69) 0.149 (27.4) Estimated
CLM_SN Metabolic rate from irinotecan to SN-38 L/h 1.65 × 10−4 (93.8) 0.851 (35.7) 0.216 (51.9) 0.666 (29) Estimated

CLSN Systematic clearance of SN-38 L/h 0.0402 (19.8) 0.234 (78.9) 42.8 (32.5) 0.5 (50.6) Estimated

QIRI
Clearance between central and peripheral

compartments of irinotecan L/h 0.0156 (40.8) 0.732 (26) 24.6 (28.8) 0.681 (35.8) Estimated

QSN
Clearance between central and peripheral

compartments of SN-38 L/h 0.0369 (38.2) 0.606 (34.3) 43.5 (30.7) 0.478 (32.4) Estimated

QT
Clearance between central and tumor

compartments L/h 3.38 × 10−3 (fixed) - 0.06 (fixed) - [26,27]

PSIRI Permeation rate of irinotecan in tumor cells cm3/h 0.448 (>100) 1.9 (36.5) 52 (fixed) - Estimated in mice/scaled
in human

KP_IRI Tumor/plasma partition coefficient of irinotecan - 3.43 (74.4) 1.33 (37.1) 3.43 (fixed) - Estimated/constant in spieces
KP_SN Tumor/plasma partition coefficient of SN-38 - 7.32 (71.6) 1.64 (30) 7.32 (fixed) - Estimated/constant in spieces
fuIRI Fraction unbound of irinotecan in plasma - 0.35 (fixed) - 0.35 (fixed) - [28]
fuSN Fraction unbound of SN-38 in plasma - 0.05 (fixed) - 0.05 (fixed) - [28]

IIV: Interindividual variability.
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Figure 3. Visual predictive check (VPC) plots of PK models for oxaliplatin and irinotecan. (A) VPC
plot of a PK model for oxaliplatin in human. (B) VPC plots of a minimal PBPK model for irinotecan
in a tumor-bearing mouse. (C) VPC plots of a PK model for irinotecan in humans. (D) Simulated
irinotecan and SN-38 profiles in human tumor tissue.
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3.3. The Combination of the PK/PD Model and the Simulation of Tumor Shrinkage

To develop the PK/PD model of the antitumor effects of oxaliplatin and irinotecan,
the simulated unbound platinum and tumor interstitial SN-38 concentrations were incor-
porated into the PD model. The final PK/PD model could simulate the tumor size changes
following the treatments with oxaliplatin or irinotecan. As shown in Figure 4, tumor
shrinkage profiles were predicted successfully for different drugs. These clinical outcomes
were categorized according to RECIST 1.1, which defines partial response (30% decrease),
progressive disease (20% increase), and stable disease. These categories are marked in
Figure 4 to help identify the potential response. Compared with irinotecan, oxaliplatin
might be more effective for Patient 1, as the predicted result showed that this patient might
achieve a stable disease state with oxaliplatin treatment but a progression disease state
with irinotecan treatment. Patient 2 could not benefit from either oxaliplatin or irinotecan
therapies, and Patient 3 preferred irinotecan over oxaliplatin. Patients 4 and 5 could benefit
from both treatments, with oxaliplatin being slightly more effective than irinotecan. Patient
6 had progressive disease regardless of the treatment. Patient 7 had a partial response after
irinotecan treatment.
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Figure 4. Individual predictions of tumor shrinkage with oxaliplatin (A) and irinotecan (B) treatment.
The solid line represents the diameter change with the maximum tolerated dose and the dash line is
the diameter change with a low dose and high dosage-frequency treatment. 1–7 are the numbers of
samples provided drug test data.

3.4. Model-Based Virtual Clinical Trial

Based on the value and distribution of parameters in in vitro PD models, a Monte
Carlo simulation was conducted to compare the clinical antitumor benefits of oxaliplatin
and irinotecan. The parameters used in sampling are listed in Supporting Information
Table 4. The percentage change in tumor diameter (n = 200) at 12 weeks was evaluated using
waterfall plots (Figure 5A). With oxaliplatin treatment, 46.5%of the virtual patients had a
progressive disease state, 35% had a stable disease state, and 18.5% had a partial/complete
response. Irinotecan therapy demonstrated similar benefits to oxaliplatin following 12-week
treatment. The ratio of virtual patients with partial responses decreased from 18.5% to 16%,
and the ratio of progression diseases increased from 46.5% to 49%.
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Table 4. Parameter range used to generate the Monte Carlo sampling in virtual clinical trial simulation.

Parameter Description Unit Mean Value Variable
Range (%)

Kg Tumor growth rate h−1 0.367 × 10−3 30
Emax_SN The maximum killing effect of SN-38 - 0.046 30
EC50_SN SN-38 concentration of half maximum effect µmol/L 9.2 30
hill_SN Hill efficient of SN-38 - 0.32 30

Emax_OXA The maximum killing effect of oxaliplatin - 0.073 30

EC50_OXA
Oxaliplatin concentration of half

maximum effect µmol/L 358 30

hill_OXA Hill efficient of oxaliplatin - 0.61 30
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Figure 5. Virtual clinical trial simulation results. (A) The percentage change in tumor diameter after
12-week treatments. (B) Tumor growth profiles of 2000 virtual patients with different treatments.
(C) The probability of PFS of oxaliplatin and irinotecan treatment (left) and hazard ratio from
prediction and clinical practice (right). (D) The probability of ORR of oxaliplatin and irinotecan
treatment and odds ratio from prediction and clinical practice (right). PFS progression free survival,
ORR objective response rate.
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Further model-based virtual clinical trials were set up to simulate the tumor shrinkage
of 2000 virtual patients with different treatments (Figure 5B). As shown in Figure 5C,D,
the probabilities of PFS and ORR of the two drugs were statistically analyzed. The results
did not show significant differences between the two agents. The HR for PFS suggested
that oxaliplatin treatment might improve PFS compared with irinotecan, but there was
no significant difference (HR = 1.05, 95%CI [0.97;1.15], p = 0.25). The OR for ORR also
indicated that oxaliplatin had a slight benefit in terms of ORR, but the difference was not
significant (OR = 1.15, 95%CI [1.00;1.32], p = 0.055).These results were consistent with
previous clinical trials, which reported similar clinical benefits between oxaliplatin-based
and irinotecan-based regimens [29].The irinotecan-based regimen slightly improved PFS
(HR = 0.98, 95%CI [0.91;1.04], p = 0.49), while the oxaliplatin-based regimen showed better
ORR (OR = 1.13, 95%CI [1.00;1.27], p = 0.06).

4. Discussion

Considering the significant correlations between PDTO response and clinical outcomes,
tumor organoids can be a potential in vitro tool for drug candidate screening [9,16]. Gen-
erally, the in vitro concentration–effect relationship of antitumor agents can be estimated
using PDTOs, with IC50 commonly utilized as the metric for candidate screening [30].
However, this study emphasizes that tumor exposure of the candidates is also a critical
factor in determining in vivo efficacy. The achievement of the expected antitumor effi-
cacy relies on the desired drug exposure in tumors. The PK/PD model is an ideal tool
that integrates information on exposure and effects to predict the clinical efficacy of drug
candidates [31–34].

In the current study, a PK/PD model-based IVIVT approach was employed to pre-
dict the clinical benefits of oxaliplatin and irinotecan based on in vitro PDTO data. The
antitumor effect was first determined using PDTOs and then used to develop a PD model.
Patient-specific parameters were estimated due to variations in PDTO response and data
limitations. The range of EC50 values also represents the significantly different efficacy of
the drugs, with oxaliplatin requiring higher concentrations for a similar inhibition effect
compared to SN-38.

In vitro, the medium drug concentration is commonly considered the driver of efficacy
to quantify the exposure–response relationship. In IVIVT, tumor interstitial drug exposure
is considered a surrogate to drive efficacy in vivo. Therefore, the prediction of interstitial
drug exposure is a crucial process for translating the in vitro effect to in vivo efficacy. For
irinotecan, it is first metabolized to the active metabolite SN-38, which is then distributed
to tumor tissue. An mPBPK model with a tumor compartment was developed to describe
the distribution of irinotecan and SN-38 in tumors. Due to the absence of tumor exposure
data in irinotecan and SN-38, preclinical data from mice were utilized to estimate tumor
distribution-related parameters, which were then translated into the human mPBPK model
to predict drug exposure in human tumor interstitial fluid [35]. For oxaliplatin, there is no
tumor distribution data available, so ultrafiltration platinum exposure is commonly consid-
ered identical in plasma and interstitial fluids. In the current study, PK models described
plasma ultrafiltration platinum and tumor interstitial SN-38 concentrations separately,
which were utilized as the drivers in the PD models to predict their antitumor efficacy.

Model-based virtual clinical trials have been applied to predict clinical efficacy, to
identify predictive biomarkers, to facilitate patient selection, and to improve clinical trial
design in antitumor drug development [21–23,36]. Generally, virtual patients are generated
to simulate the characteristics and variability of real clinical patients, forming the basis
for model-based virtual clinical trials. PK/PD models were implemented to simulate
the responses of patients, such as tumor shrinkage. All the simulation data could be
used for statistical analysis of drug efficacy, for identifying predictive biomarkers, and
for determining suitable patient populations. For instance, a model-based virtual clinical
trial simulation based on patients with hepatocellular carcinoma was conducted to explore
the clinical benefits of nivolumab and ipilimumab combined treatments and to determine
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predictive biomarkers that could facilitate patient selection [36]. In the current study,
virtual patients were generated using Monte Carlo sampling based on the value and
distribution of the model parameters. To avoid being influenced by extremes, the geometric
means of individual parameters were calculated as the median of sampling [37]. Based
on these virtual patients, model-based virtual clinical trials were applied to evaluate the
clinical benefits of oxaliplatin or irinotecan. The dosing regimens in the simulations were
designed according to drug specifications and classic regimens [38,39]. The predicted
clinical response was then compared to the real-world data from clinical trials to validate
the developed IVIVT approach.

According to the results of the model-based virtual clinical trial, oxaliplatin slightly
improved ORR (p = 0.055), with an OR of 1.15 (95% CI, 1.00–1.32). Similarly, the HR for
PFS was 1.05 (95% CI, 0.97–1.15), indicating no significant difference (p = 0.025) between
oxaliplatin and irinotecan treatments. These trends align with a previous meta-analysis [29].
This mentioned research integrated 19 clinical trials involving 4571 patients to compare
irinotecan and oxaliplatin as first-line therapies for metastatic CRC. According to real
clinical practice, there was no significant difference in ORR (OR = 1.13, 95%CI [1.00;1.27],
p = 0.06) or PFS (HR = 0.98, 95%CI [0.91;1.04], p = 0.49) between oxaliplatin and irinotecan
treatments. The consistency between real clinical trials and model-based virtual clinical
trials demonstrates the utility of PDTO-based translational approaches in predicting the
clinical responses of drug candidates or therapies compared to currently used treatments.

Notably, this approach aims to evaluate the potential clinical responses of drug candi-
dates and therapies in virtual patients through comparison with marketed drugs, rather
than providing precise predictions of PFS or ORR. In addition, this current study only
attempted monotherapy simulations, and more research on combination therapies should
be conducted to better align with clinical reality. While the overall analysis did not reveal a
significant difference in the efficacy of irinotecan-based and oxaliplatin-based regimens,
there were discernible variations when oxaliplatin and irinotecan were employed in combi-
nation [29]. For instance, when coupled with 5-flurouracil, irinotecan and oxaliplatin have
shown comparable clinical benefits. However, the combination of anti-VEGF antibody
and irinotecan demonstrated enhanced PFS. To increase the applicability of this approach,
models for combination treatment will be the primary objective of forthcoming studies.
Considering the possible interactions of combined drugs, more in vitro studies are required
to support these analyses [40,41]. Moreover, this study lacks individual validation. The
reliability of individual simulations of tumor shrinkage may require more validation.

In summary, this study, based on PDTO data, developed PD models for oxaliplatin
and irinotecan and integrated them with PK models to establish a PK/PD model that
described their dose–exposure–response relationship. By generating virtual patient cohorts
and conducting a set of model-based virtual clinical trials, this study predicted the clinical
efficacy of oxaliplatin and irinotecan treatments accurately. This approach shows the
promise in predicting the clinical efficacy of antitumor drugs and has the strong potential
to be applied in antitumor drug candidates or therapies, which can help decision-making
in drug development.

5. Conclusions

This study successfully developed a PDTO-based translational PK/PD model incorpo-
rating in vitro PDTO data, animal PK data, and clinical PK data to predict tumor shrinkage
following oxaliplatin and irinotecan treatments accurately. The further model-based virtual
clinical trial demonstrated comparable clinical efficacy between the two drugs, aligning
with previous clinical practice. These findings manifest the strong potential of this trans-
lational approach to assess the clinical efficacy of antitumor agents or other candidates.
Overall, this study provides an IVIVT approach to successfully predict the potential clinical
responses of antitumor agents or candidates.
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oxaliplatin PK model. (B). NPDE versus time and PRED for irinotecan concentration in mice plasma.
(C). NPDE versus time and PRED for irinotecan concentration in mice tumors. (D). NPDE versus
time and PRED for SN-38 concentration in mice plasma. (E). NPDE versus time and PRED for SN-38
concentration in mice tumors. (F). NPDE versus time and PRED for irinotecan concentration in
human plasma. (G). NPDE versus time and PRED for SN-38 concentration in human plasma.
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