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Abstract: Hyaluronic acid (HA), also known as hyaluronan, is an anionic glycosaminoglycan widely
distributed throughout various tissues of the human body. It stands out from other glycosaminogly-
cans as it lacks sulfation and can attain considerable size: the average human synovial HA molecule
weighs about 7 million Dalton (Da), equivalent to roughly 20,000 disaccharide monomers; although
some sources report a lower range of 3–4 million Da. In recent years, HA has garnered significant
attention in the field of rheumatology due to its involvement in joint lubrication, cartilage mainte-
nance, and modulation of inflammatory and/or immune responses. This review aims to provide
a comprehensive overview of HA’s involvement in rheumatology, covering its physiology, phar-
macology, therapeutic applications, and potential future directions for enhancing patient outcomes.
Nevertheless, the use of HA therapy in rheumatology remains controversial with conflicting evidence
regarding its efficacy and safety. In conclusion, HA represents a promising therapeutic option to
improve joint function and alleviate inflammation and pain.

Keywords: hyaluronic acid; rheumatology; osteoarthritis; rheumatoid arthritis; joint lubrication;
cartilage; inflammation; therapeutic applications; combination therapies; patient outcomes

1. Introduction

Hyaluronic acid (HA) plays an important role in a wide range of medical physiological
and pathological conditions: Notably, it finds application in dermatology, ophthalmology,
cosmetic medicine, and rheumatology [1–3]. Its significance extends to wound healing,
granulation, and cell migration [4]. However, the efficacy of HA in rheumatology remains
a subject of controversy at times [5,6].

HA is as naturally occurring glycosaminoglycan composed of repeating disaccha-
ride units consisting of glucuronic acids and N-acetylglucosamine (Figure 1), resulting in
different molecular weights [7–9]. This structural variability imparts diverse functional
implications in both physiological and pathological contexts [10]. HA is commercially pro-
duced through extraction from animal tissues, such as chicken combs, and from Streptococci
bacteria [11].
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Figure 1. Skeletal formula of hyaluronan—a polymer consisting of D-glucuronic acid and N-acetyl-
D-glucosamine linked via alternating β-(1→4) and β-(1→3) glycosidic bonds [7].

Functionally, HA demonstrates remarkable water-binding capacity, rendering it an
essential constituent of the extracellular matrix (ECM) [12]. Its elongated, unbranched
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chains create a gel-like network, imparting hydration and lubrication to crucial tissues like
the skin, cartilage, and synovial fluid [13–15].

In the field of rheumatology, HA has garnered substantial attention, owing to its
pivotal involvement in joint health and its relevance to diseases like osteoarthritis (OA) and
rheumatoid arthritis (RA) [16,17].

OA is a degenerative joint disorder characterized by the gradual deterioration of
articular cartilage, resulting in pain, stiffness, and diminished joint function [18]. There is
no cure for OA, so doctors usually treat OA symptoms with a combination of therapies [18].
HA serves as a lubricant and shock absorber within the synovial fluid, facilitating smooth
joint movements [19]. However, in OA, the concentration and quality of HA decrease,
compromising its protective and viscoelastic properties due to heightened degradation
and decreased synthesis. Consequently, this leads to impaired cartilage function and joint
degeneration [20]. As a therapeutic approach, supplementation with exogenous HA has
emerged to alleviate symptoms and enhance joint function in OA patients [21]. By restoring
synovial fluid viscosity and promoting cartilage repair, HA aids in improving joint mobility
and reducing pain [16].

On the other hand, RA is an autoimmune and inflammatory disease characterized
by the immune system mistakenly attacking healthy cells, resulting in inflammation, par-
ticularly in the joints, leading to painful swelling [22]. RA can be effectively treated and
managed with medication(s) and self-management strategies [22]. In RA, the level of HA
in the synovial fluid is significantly diminished, causing reduced lubrication and increased
inflammation and pain [23].

Numerous studies have explored the potential therapeutic benefits of exogenous HA
supplementation in rheumatic diseases. Through intra-articular injections, HA has shown
promise in improving joint mobility, reducing pain, and promoting cartilage repair by
restoring synovial fluid viscosity [24].

Furthermore, HA has demonstrated immunomodulatory effects, including the sup-
pression of pro-inflammatory cytokines and the promotion of anti-inflammatory cytokine
production [25]. This suggests that HA may also hold promise in the treatment of immune-
mediated rheumatic diseases [26].

Moreover, researchers have explored HA’s potential applications in drug delivery
systems and tissue engineering due to its biocompatibility and biodegradability [27].

However, the use of HA therapy in rheumatology remains a topic of controversy, with
conflicting evidence regarding its efficacy and safety [5,28].

In summary, HA represents a promising therapeutic option in the field of rheumatol-
ogy due to its potential to enhance joint function and alleviate inflammation and pain [29].
Nevertheless, further investigation is required to fully elucidate its therapeutic potential in
rheumatic diseases.

This review aims to provide a comprehensive overview of the structure, function, and
rheumatological significance of HA. Additionally, it will discuss recent advancements in
understanding HA’s role in joint health and the therapeutic potential of HA-based inter-
ventions. Furthermore, a critical analysis of the existing literature on HA in rheumatology
will be presented.

2. Hyaluronic Acid: Structure, Function, and Biochemistry

HA plays a crucial role in diverse cellular and tissue processes, encompassing hy-
dration, lubrication, tissue repair, regulation of inflammation, and cell signaling [14]. It is
naturally synthesized by various cell types, predominantly fibroblasts, chondrocytes, and
synoviocytes [30]. The biosynthesis of HA takes place in the plasma membrane through
the coordinated activity of specific enzymes, including hyaluronan synthases [30].

2.1. Molecular Structure of Hyaluronic Acid

Hyaluronan synthases catalyze the addition of glucuronic acid and N-acetylglucosamine,
leading to the formation of the repeating disaccharide units that constitute HA [31]. The
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molecular weight of HA displays highly variability, ranging from several hundred kilo Da
to millions of kilo Da, exerting a direct impact on its functional properties [32]: Notably,
higher-molecular-weight HA exhibits increased viscosity [33], thereby affecting its flow and
lubrication capability, i.e., in joints [34]. As a result, high-molecular-weight HA provides
superior lubrication and cushioning effects [35].

2.2. Biosynthesis and Degradation of Hyaluronic Acid

HA turnover in tissues is intricately regulated by a delicate balance between biosyn-
thesis and degradation processes [36]. The degradation of HA primarily involves the
action of enzymes known as hyaluronidases, which cleave HA into smaller fragments [37].
Hyaluronidase enzymes are categorized into several families, including HYAL1, HYAL2,
and PH-20 [38], and they play a pivotal role in maintaining the appropriate concentration
and size distribution of HA within tissues [39]. Furthermore, the degradation of HA can
be modulated by reactive oxygen species, matrix metalloproteinases (MMPs), and other
factors present in the extracellular environment [40].

2.3. Physiological Functions and Distribution in Tissues of Hyaluronic Acid

HA plays a critical role in tissue repair and remodeling processes within the human
body [41]. It participates in various stages of wound healing, encompassing inflammation,
cell migration, proliferation, and ECM remodeling [42]. As a scaffolding molecule, HA
provides essential structural support and aids in cell migration during tissue repair [43]
(Table 1).

Table 1. Physiological functions of hyaluronic acid (HA) in rheumatology.

Function Mechanisms References

Lubrication of joints HA provides lubrication and viscoelastic properties to synovial fluid,
reducing friction between joint surfaces and enhancing joint mobility. [44]

Chondroprotection
HA exhibits chondroprotective effects by promoting cartilage matrix
synthesis, reducing matrix degradation, and inhibiting the activity of

proteolytic enzymes
[45,46]

Anti-inflammatory activity
HA can modulate inflammation by reducing the expression of

pro-inflammatory cytokines and enzymes, inhibiting leukocyte migration,
and suppressing immune responses.

[47,48]

Tissue repair and remodeling HA plays a role in tissue repair and remodeling processes by promoting
cell migration, angiogenesis, and extracellular matrix remodeling [44,49]

Viscoelasticity HA contributes to the viscoelastic properties of connective tissues,
maintaining tissue integrity, elasticity, and shock-absorbing capabilities. [48,50]

Selected studies on the physiological role of HA in rheumatology. This is not an exhaustive list, and further
research and clinical trials have been conducted in this field. For more detailed information, it is recommended to
refer to the referenced papers.

During the inflammatory phase of wound healing, HA is involved in the recruitment
and activation of immune cells, such as macrophages and neutrophils [51]. HA fragments
generated during tissue injury can function as damage-associated molecular patterns and
trigger immune responses [51]. Moreover, HA promotes the infiltration of immune cells
into the wound site, facilitating the removal of debris and pathogens [52]. In the subsequent
proliferative phase, HA contributes to cell migration and proliferation [53]. It forms a provi-
sional matrix that guides cell movement and stimulates cell proliferation [53]. HA receptors,
such as CD44 and RHAMM, mediate cell adhesion, migration, and signal transduction,
enabling cells to migrate into the wound area and contribute to tissue repair [54]. Further-
more, HA plays a regulatory role in ECM remodeling during tissue repair [55]. It interacts
with other components, such as fibronectin and collagen, promoting their assembly and
organization [56]. HA also influences the activity of enzymes involved in ECM remodeling,
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such as MMPs and tissue inhibitors of MMPs, which are essential for matrix turnover and
remodeling [57].

Beyond its involvement in tissue repair, HA also plays a role in tissue remodeling
processes, such as embryonic development, organ morphogenesis, and angiogenesis [58].
HA provides a structural framework for cell migration and tissue organization during
these processes [59]. It regulates cell behavior, including cell differentiation, proliferation,
and survival, through interactions with specific receptors and signaling pathways [60].

Overall, HA exhibits a multifaceted role in tissue repair and remodeling, contributing
to inflammation resolution, cell migration, proliferation, and ECM (re)organization [61].
Its involvement in these processes highlights its significance in wound healing, tissue
regeneration, and developmental biology [62].

Regarding tissue distribution, HA is widely distributed throughout the body, with
particularly high concentrations found in connective tissues, such as the skin, synovial
fluid, and cartilage [63]. In the skin, HA resides in the ECM and contributes to tissue
hydration, elasticity, and wound healing [64]. In the synovial fluid of joints, HA forms a
viscous, gel-like substance that provides lubrication, shock absorption, and nutrient supply
to the articular cartilage [65]. Additionally, HA is present in the vitreous humor of the
eye, where it helps maintain the transparency and shape of the eyeball [66]. Moreover, HA
is found in other tissues, including the umbilical cord, umbilical vessels, and embryonic
tissues, where it plays crucial roles in development and tissue morphogenesis [67].

3. Pathophysiological Role of Hyaluronic Acid in Rheumatic Diseases

HA plays a crucial pathophysiological role in rheumatic diseases, especially concerning
joint health and function [68]. In a healthy joint, HA’s viscoelastic properties facilitate
smooth movement of the joint surfaces and shield the cartilage from excessive mechanical
stress [69]. HA serves as a shock absorber, mitigating the impact on the joint and thereby
reducing the risk of damage. However, in rheumatic conditions such as OA and RA,
significant alterations occur in the HA metabolism and distribution within the joint [70].

3.1. Osteoarthritis
3.1.1. Role of Hyaluronic Acid in Joint Lubrication

In OA, there is a notable reduction in the concentration of HA within the synovial
fluid, leading to diminished joint lubrication and compromised cartilage protection [69].
This decline in HA levels can be attributed to an imbalance between HA synthesis and
degradation, with increased activity of hyaluronidases, the enzymes responsible for HA
breakdown [71]. Consequently, the cartilage becomes vulnerable to wear and tear, resulting
in pain, stiffness, and functional impairment [72]. Dysregulated HA metabolism, including
increased synthesis and degradation, contributes to cartilage degradation, synovitis, and
pain in OA [73]. The altered biomechanical properties of HA affect joint lubrication,
chondrocyte activity, and inflammation, further exacerbating disease progression [74].

3.1.2. Protective Effects on Chondrocytes and Cartilage Matrix

HA serves as a fundamental component of the cartilage matrix, playing a crucial role
in maintaining joint integrity. However, in OA, changes occur in the quantity, molecular
weight, and distribution of HA, which can impact its functional properties [75]. The
molecular weight of HA influences its retention time within the tissues [76]. Generally,
higher-molecular-weight HA exhibits a longer half-life, meaning it remains in the joint or
tissue for a more extended period before being broken down and cleared by the body [8].
This prolonged presence may result in longer-lasting effects [8]. On the other hand, lower-
molecular-weight HA can more easily penetrate the ECM and reach target cells, while
higher-molecular-weight HA may have more limited diffusion [8].
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3.1.3. Modulation of Inflammation and Synovial Fluid Changes

Inflammation is a hallmark of rheumatic diseases [77], and HA plays a multifaceted
role in this process [78]. Pathological conditions often lead to changes in the quantity
and molecular weight of HA in synovial fluid, with implications for disease severity
and progression [79]. During the inflammatory phase, HA actively participates in the
recruitment and activation of immune cells, such as macrophages and neutrophils [79]. HA
engages with specific cell surface receptors, such as CD44 [80], and the binding affinity of
HA to these receptors can vary depending on its molecular weight [81]. Distinct fractions of
HA, characterized by different molecular weights, can have specific effects on cell signaling,
inflammation, and tissue repair processes [82].

3.2. Rheumatoid Arthritis

In RA, the inflammatory process significantly disrupts HA homeostasis [83]. Synovial
inflammation induces the release of pro-inflammatory cytokines and enzymes that promote
the degradation of HA, leading to a decrease in its concentration and alterations in its
molecular weight distribution [84]. These changes in HA metabolism have profound
effects on joint lubrication, exacerbate cartilage damage, and perpetuate the inflammatory
cycle [85].

3.2.1. Altered Hyaluronic Acid Synthesis and Breakdown

In RA, alterations in HA synthesis and breakdown contribute to the pathogenesis
of the disease [70]. Synovial fibroblasts, key players in RA pathophysiology, exhibit dys-
regulated HA synthesis, leading to increased production and accumulation of HA in the
synovial fluid and tissues [86]. This abnormal HA synthesis is influenced by various factors,
including pro-inflammatory cytokines and growth factors, which stimulate the expression
of HA synthases [87]. Concurrently, increased HA degradation occurs due to upregulated
expression and activity of hyaluronidases [88]. The imbalance between HA synthesis and
degradation results in the accumulation of fragmented HA in the synovial fluid, exacer-
bating inflammation and joint damage [89]. Moreover, the presence of HA fragments in
the synovium further amplifies the inflammatory response by activating immune cells
and promoting the production of pro-inflammatory mediators [90]. The presence of HA
fragments and their interaction with CD44 receptors contribute to the perpetuation of
chronic inflammation and joint damage in RA [91].

3.2.2. Inflammatory Mediator Modulation

Moreover, the anti-inflammatory properties of HA, which typically involve the mod-
ulation of the inflammatory responses within the joints, are disturbed in RA [83]. The
inhibitory action of HA on the production of pro-inflammatory cytokines, such as tumor
necrosis factor-alpha and interleukin-1 beta, and the suppression of inflammatory enzymes,
such as cyclooxygenase-2 and MMPs, become dysregulated [92]. During the subsequent
proliferative phase, HA continues to play a role in cell migration and proliferation, forming
a provisional matrix that guides cell movement and stimulates cell proliferation [93].

3.2.3. Effects on Synovial Hyperplasia and Pannus Formation

HA exerts significant effects on synovial hyperplasia and pannus formation in RA [93].
It plays a pivotal role in promoting synovial hyperplasia by stimulating the proliferation
and migration of synovial fibroblasts [94]. Furthermore, it interacts with CD44 receptors
on the surface of these fibroblasts, triggering intracellular signaling cascades that promote
cell survival, proliferation, and ECM production [95]. Additionally, HA enhances the
expression of various pro-inflammatory mediators, such as cytokines and chemokines,
further driving synovial hyperplasia and inflammation [96]. Additionally, HA fragments,
generated due to the increased breakdown of HA in RA, can stimulate the production of
matrix-degrading enzymes, leading to cartilage and bone destruction [97].
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4. Mechanisms of Action and Delivery Systems

HA has undergone extensive study to unravel its mechanisms of action and explore
various delivery systems to enhance its therapeutic applications [29]. HA exerts its effects
through multiple mechanisms, including its ability to bind to cell surface receptors, regu-
late cell signaling pathways, modulate inflammation, and provide structural support to
tissues [98]. Moreover, HA serves as a viscoelastic agent, offering lubrication and shock
absorption in joints, and contributing to tissue hydration and elasticity [99]. Overall, HA
exhibits diverse mechanisms of action, and its therapeutic efficacy has been supported by
clinical trials in various medical fields [100,101]. HA-based delivery systems have been
developed to improve its delivery and enhance therapeutic outcomes [102]. As a relatively
new polymer for constructing drug delivery systems, HA offers a promising platform for
physically encapsulating or chemically conjugating various drugs [103]. With a favorable
safety profile, HA-based therapies have shown promise as effective treatments for condi-
tions such as OA, among others [104]. It is essential to note that the specific effects of HA,
based on its molecular weight, can vary depending on the context, such as the route of
administration (e.g., intra-articular injection, topical application) and the specific medical
condition being targeted [105]. The selection of HA with a specific molecular weight for
therapeutic use is often based on the desired therapeutic outcomes and the specific needs
of the patient [106].

4.1. Safety Profile and Adverse Events

In terms of safety, HA-based therapies are generally well-tolerated [107]. It is crucial
for healthcare professionals to conduct a thorough evaluation of patients for contraindi-
cations, carefully select suitable candidates for HA-based therapies, and adhere to proper
injection techniques to minimize the risk of adverse events. Furthermore, patients should
be informed about potential risks and benefits, and their consent should be obtained before
initiating treatment.

While HA is considered safe, it is essential to be aware of potential local and systemic
reactions, the risk of infection, hypersensitivity reactions, and long-term safety when using
HA-based therapies [108]. HA derived from different sources and with varying molecular
weights may differ in immunogenic potential [109]. Some studies have indicated that lower-
molecular-weight HA might have a higher likelihood of inducing immune responses [110],
although the clinical significance of this is still under investigation. Adherence to appropri-
ate guidelines, proper patient selection, and adequate follow-up(s) are essential aspects to
ensure the safe and effective use of HA in clinical practice.

4.1.1. Local and Systemic Reactions

Adverse events related to HA-based therapies are generally rare and mostly mild, often
limited to local reactions at the injection site, such as pain or swelling [111]. Severe allergic
reactions or systemic adverse events are extremely uncommon but can occur, underscoring
the importance of proper patient selection and administration technique [112]. Overall, the
safety profile of HA is considered favorable (Table 2).

4.1.2. Infections Risks

In terms of infection risk, the incidence of HA-related infections is low [108]. Ad-
herence to proper aseptic techniques during the procedure and following guidelines can
effectively minimize the risk of infection [113]. However, in rare cases, infection can occur,
particularly when HA injections are performed in areas with compromised skin integrity
or in the presence of preexisting infections [108].

4.1.3. Hypersensitivity Reactions

Hypersensitivity reactions to HA have been reported, albeit rarely [1]. These reactions
can vary from mild local allergic reactions to more severe systemic manifestations [114].
Individuals with a history of known hypersensitivity to HA or other components of the
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formulation should be carefully evaluated and, if necessary, alternative treatment options
should be considered.

4.1.4. Long-Term Safety

Long-term safety and follow-up studies play a crucial role in assessing the safety
profile of HA-based therapies. Although HA has been utilized for several decades, ongoing
research aims to evaluate its long-term effects and ensure its continued safety. Follow-
up studies have consistently demonstrated the safety and efficacy of HA injections over
extended periods, with low rates of serious adverse events reported [24] (Table 2).

Table 2. Safety and adverse events of hyaluronic acid (HA) in rheumatology.

Study Design Participants Findings References

Petrella et al. (2008) Systematic review 24 randomized
controlled trials

HA injections had a low
incidence of adverse events,
with most being mild and

transient in nature.

[111]

Shen et al. (2018) Meta-analysis 84 randomized
controlled trials

HA injections were generally
well tolerated, with low rates

of serious adverse events.
[115]

Najm et al. (2021) Systematic review and
meta-analysis

15 randomized
controlled trials

HA injections demonstrated a
favourable safety profile, with
rare reports of hypersensitivity

reactions and infections.

[116]

Conrozier et al. (2021) Review (Delphi
method) 24 statements

HA injections were associated
with a low risk of adverse
events, with most being

localized and self-limiting.

[117]

Chevalier et al. (2020) Systematic review and
meta-analysis

162 randomized
controlled trials

HA injections were well
tolerated, with a low incidence
of serious adverse events and

local reactions.

[118]

Summary of selected studies that have examined the safety profile and adverse events associated with the use
of HA in rheumatology. It is important to note that the incidence and nature of adverse events may vary across
studies and patient populations. For a comprehensive understanding, it is recommended to refer to the full-text
articles cited in the references.

4.2. Systemic Administration of Hyaluronic Acid

To optimize the delivery of HA-based therapeutics, various delivery systems have
been developed. These systems encompass injectable gels, nanoparticles, liposomes, and
hydrogels, which enable the controlled release and targeted delivery of HA to specific
tissues or cells [119]. By utilizing these delivery systems, the bioavailability and retention
of HA at the desired site can be enhanced, thereby improving its therapeutic efficacy [120].

4.2.1. Oral, Intravenous, and Intraarticular Routes

HA has been extensively studied for its potential therapeutic applications via different
routes of administration, including oral, intra-articular, and intravenous routes [121]. Each
route presents its own set of challenges and limitations.

The oral administration of HA aims to provide systemic benefits, targeting various
tissues throughout the body [122]. However, the oral bioavailability of HA is generally
low, due to its large molecular size and susceptibility to enzymatic degradation in the
gastrointestinal tract [123]. Furthermore, the absorption of HA through the intestinal
epithelium is limited [124]. These challenges have hindered the development of effective
oral formulations of HA, and alternative routes of administration have been explored to
overcome these limitations.
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Intra-articular administration of HA has been widely used for the treatment of joint
disorders such as OA [16]. This route allows for the direct delivery of HA into the affected
joint, providing local therapeutic effects. Intra-articular injections of HA have shown clinical
efficacy in reducing pain, improving joint function, and delaying disease progression [125]
(Table 3). However, the limitations of this route include the need for repeated injections,
potential injection-related complications, and the possibility of adverse reactions, although
these are rare [16].

Table 3. Intra-articular application of hyaluronic acid (HA) in osteoarthritis (OA) and its findings.

Study Design Participants Intervention Findings References

Altman et al.
(2004)

Randomized,
double-blind,

placebo-controlled
trial

495 patients with
knee OA

HA injections
(3 weekly injections)

vs. placebo

HA group showed
significant improvement

in pain and function
compared to placebo

[126]

Bannuru et al.
(2009) Meta-analysis 29 randomized

controlled trials

HA injections vs.
control interventions
(placebo, saline, or

NSAIDs)

HA injections were
superior to control

interventions in
reducing pain and

improving function in
knee OA

[127]

Rutjes et al.
(2012)

Systematic review
and meta-analysis

76 randomized
controlled trials

HA injections vs.
control interventions

(placebo or no
treatment)

HA injections provided
significant pain relief

and functional
improvement compared
to control interventions

in knee OA

[128]

Filardo et al.
(2015)

Randomized
controlled trial

160 patients with
knee OA

HA injections vs.
platelet-rich plasma

(PRP) injections

HA and PRP injections
showed similar efficacy

in reducing pain and
improving function in

knee osteoarthritis

[45]

Bannuru et al.
(2015)

Systematic review
and meta-analysis

137 randomized
controlled trials

Various HA
preparations vs.

control interventions
(placebo, saline, or

corticosteroids)

HA injections were
effective in reducing
pain and improving
function in knee OA

with a favourable safety
profile

[129]

Selected clinical studies on the use of intraarticular HA injections in OA. This is not an exhaustive list, and further
research and clinical trials have been conducted in this field. For more detailed information, it is recommended to
refer to the referenced papers.

Intravenous administration of HA has been investigated for its potential systemic
effects and applications. This route allows the rapid distribution of HA throughout the
body, potentially targeting various tissues and organs. However, the challenges lie in
achieving optimal bioavailability and targeting specific tissues, as HA may undergo rapid
clearance from the bloodstream and may not reach the desired site of action in sufficient
concentrations [130].

4.2.2. Delivery Systems

In summary, due to its unique physicochemical properties and therapeutic poten-
tial, HA has garnered considerable attention in terms of therapeutical use. However, the
clinical utility of HA is hindered by its short half-life and poor bioavailability [131]. To
overcome these limitations, various delivery systems have been developed to enhance
the stability, sustained release, and targeted delivery of HA [29,104]. Different types of
HA delivery systems have been explored, such as injectable hydrogels, including micro-
and nanoparticles, liposomes, as well as coatings and scaffolds [132–135]. Furthermore,
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various formulation strategies and modes of action, such as crosslinking techniques, sur-
face modification, encapsulation methods, or sustained release mechanisms, have been
employed [136–139]. Moreover, hybrid delivery systems have been introduced, allowing
for optimized HA delivery, and contributing to personalized treatment options [140,141].

4.3. Disease-Modifying Effects and Immunomodulation

HA appears to have the ability to modify the disease course and modulate the immune
response in rheumatological conditions [142,143]. This is attributed to its interactions with
receptors, impact on inflammatory mediators, and modulation of cellular responses [144]
(see also Sections 2 and 3 above: Physiological and pathophysiological role of HA). Under-
standing of HA’s therapeutic potential in rheumatologic disorders paves the way for the
development of novel treatment strategies.

4.4. Challenges and Limitations

Despite the therapeutic potential of HA, its clinical application via different routes
still faces certain limitations. These include the high cost of production and purification,
potential immunogenicity, and allergic reactions, as well as the need for further optimiza-
tion of delivery systems to enhance bioavailability, targeting, and sustained release [145].
Additionally, there is a need for standardized dosing regimens, well-designed clinical trials,
and long-term safety data to establish the efficacy and safety profile of HA-based therapies.

In conclusion, while HA holds promise for therapeutic applications via oral, intra-
articular, and intravenous routes, each route presents specific challenges and limitations.
Further research is needed to overcome these limitations, optimize delivery systems, and
establish the efficacy, safety, and long-term benefits of HA-based therapies.

5. Therapeutic Approaches

Understanding the pathophysiological role of HA in rheumatic diseases offers poten-
tial avenues for therapeutic interventions. Clinical trials have been conducted to evaluate
the efficacy of HA-based therapies in various medical conditions. In the field of rheuma-
tology, intra-articular injections of HA have shown beneficial effects in reducing pain,
improving joint function, and delaying the progression of OA [46]. Clinical evidence sup-
ports the use of HA injections as a safe and effective treatment option for knee OA, with
long-term benefits and a favorable safety profile [146].

Targeting HA-mediated pathways, including HA synthesis, degradation, and inter-
actions with specific receptors, holds promise for developing disease-modifying thera-
pies [147]. Additionally, emerging techniques like tissue engineering and nanotechnology
present exciting opportunities for HA-based interventions [148].

5.1. Combination Therapies

HA has demonstrated potential for use in combination therapies and novel approaches
to enhance its therapeutic effects in various medical conditions [149]. These approaches
involve combinations of HA with corticosteroids, non-steroidal anti-inflammatory drugs
(NSAIDs), or platelet-rich plasma (PRP), which can provide synergistic benefits in managing
inflammatory and degenerative conditions.

5.1.1. Hyaluronic Acid and Corticosteroids

The combination of HA and corticosteroids has been investigated in joint disorders
such as OA, demonstrating improved pain relief and functional outcomes compared to
individual treatments [150,151].

5.1.2. Hyaluronic Acid and Nonsteroidal Anti-Inflammatory Drugs

Another combination strategy involves the use of HA in conjunction with NSAIDs.
This approach aims to address both the inflammatory component and symptomatic relief
in conditions such as OA [152]. Studies have shown that combining HA with NSAIDs
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can result in enhanced pain reduction and improved joint function compared to NSAIDs
alone [153].

5.1.3. Hyaluronic Acid and Platelet-Rich Plasma

Furthermore, HA has been explored in combination with PRP, which contains growth
factors and cytokines that promote tissue healing and regeneration [154]. The combination
of HA and PRP has shown promising results in accelerating tissue repair, reducing pain,
and improving functional outcomes in conditions such as tendinopathies and OA [155].

5.2. Novel Approaches, Emerging Strategies, and Future Directions

HA plays a key role in the pathophysiology of rheumatic diseases, exerting diverse
effects on inflammation, joint destruction, and tissue homeostasis [156]. Advances in under-
standing HA metabolism and its interaction with immune and non-immune components
have illuminated the complex mechanisms underlying rheumatic diseases. Leveraging this
knowledge may lead to the development of innovative therapeutic strategies to improve
patient outcomes and alleviate the burden associated with rheumatic diseases.

Novel approaches are also being explored to enhance the therapeutic potential of
HA. These include the development of modified forms of HA with improved properties,
such as crosslinked HA derivatives, which exhibit the prolonged residence time and
sustained release of HA [157]. Additionally, nanotechnology-based delivery systems and
combinations with other biomaterials are being investigated to improve HA’s bioavailability,
targeting, and regenerative potential [158].

Emerging strategies for HA-based therapies involve tissue engineering approaches
where HA is combined with cells and scaffolds to promote tissue regeneration [159]. This
approach holds promise for the repair and regeneration of various tissues, including
cartilage, skin, and bone [160].

By harnessing the synergistic effects of HA with other therapeutic agents, it is possible
to enhance its regenerative, anti-inflammatory, and analgesic properties, opening up new
avenues for personalized medicine and tissue engineering approaches [161–163]. Further
research is warranted to elucidate the precise molecular mechanisms and evaluate the
efficacy of targeted interventions in clinical settings with respect to long-term safety and
cost-effectiveness of combination therapies involving HA.

6. Conclusions and Future Perspectives

In conclusion, HA has emerged as a valuable therapeutic agent in rheumatology due
to its unique properties, including its lubricating, anti-inflammatory, and chondropro-
tective effects, making it an attractive option for the management of various rheumatic
diseases, particularly OA. Intra-articular injections of HA have shown efficacy in reducing
pain, improving joint function, and delaying disease progression. Moreover, HA’s role
in tissue repair and remodeling, as well as its potential to modulate inflammation and
protect chondrocytes and cartilage matrices, further highlight its therapeutic potential in
rheumatology.

In clinical practice, intra-articular injections of exogenous HA have been widely used
as a therapeutic approach for managing rheumatic diseases. These injections aim to restore
depleted levels of HA in the joint, improve lubrication, reduce inflammation, and provide
symptomatic relief. Numerous clinical studies have demonstrated the efficacy of HA
injections in alleviating pain, enhancing joint function, and delaying the need for surgical
interventions in patients with OA and RA.

Insurance coverage for medical procedures, including intra-articular HA injections,
can vary widely depending on the country, specific insurance plan, and local regulations.
This may be due to a lack of sufficient evidence. Health insurance systems often consider
the effectiveness and cost-effectiveness of treatments before providing coverage. If there
is limited scientific evidence or conflicting studies regarding the effectiveness of intra-
articular HA injections for a specific condition, insurers may be hesitant to cover it. Intra-
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articular HA injections can be relatively expensive, especially considering the number
of injections required for a full treatment course. If insurers deem the cost to outweigh
the potential benefits, they may choose not to cover it. Additionally, in some cases, there
may be alternative treatments available for the same condition that might have been
proven to be more effective or cost-effective. Then, insurers may prioritize coverage for
those alternatives, such as physical therapy, medications, or other interventions, over
intra-articular HA injections.

Future perspectives on the use of HA in rheumatology are promising. Advancements
in the development of delivery systems and formulations may improve the bioavailability
and sustained release of HA, thereby optimizing its therapeutic effects. Combination
therapies involving HA, such as its combination with corticosteroids, NSAIDs, or PRP,
hold potential for enhanced therapeutic outcomes and improved patient management.
Furthermore, the exploration of novel approaches, including tissue engineering and regen-
erative medicine strategies, may lead to the development of more targeted and personalized
treatment options in rheumatic diseases.

Despite the progress made in understanding the role of HA in rheumatology, further
research is needed to elucidate its mechanisms of action, optimize treatment protocols, and
establish long-term safety and efficacy. Well-designed clinical trials, standardized dosing
regimens, and comprehensive follow-up studies are necessary to gather robust evidence
and guide clinical practice. Additionally, cost-effectiveness analyses and health–economic
evaluations will contribute to the broader adoption and accessibility of HA-based therapies
in rheumatology.

Overall, HA holds great promise as a therapeutic agent in rheumatology. With ongoing
research and technological advancements, it is expected that HA-based treatments will
continue to evolve, providing improved outcomes and enhancing the quality of life for
patients with rheumatic diseases.
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