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Abstract: This work is aimed at developing a kappa-carrageenan (kCR) gel with increased methotrex-
ate (MTX) content. β-Cyclodextrin (βCD), which is able to inclusion complex formation with MTX,
has been used to increase the drug concentration in the hydrogel. The rheological behavior of the
designed gels was investigated and the influence of MTX and βCD on the viscoelastic properties of
kCR gel was studied in detail. The effect of βCD and its concentration on the MTX-releasing rate
from the kCR gels was examined. The properties of kappa- and iota-carrageenans loaded with MTX
were compared and the differences observed were explained in terms of different binding affinities
of MTX to these polymers. The obtained gels provided desirable viscoelastic properties useful for
topical application.
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1. Introduction

Pharmacological hydrogels are soft dosage forms which are used to treat a wide variety
of diseases. Hydrogels are considered as three-dimensional polymeric networks insoluble
in water due to the presence of chemical crosslinks (tie-points, junctions), or physical
crosslinks, such as entanglements or crystallites [1]. These crosslinked polymer structures
are capable of imbibing large amounts of water or aqueous solutions of biologically and
pharmacologically active substances. From a pharmaceutical point of view, these hydrogels
must be chemically and biologically safe as well as biocompatible and stable during storage,
have specified rheological characteristics, and ensure drug bioavailability. Additionally, one
of the modern requirements of hydrogels for biomedical and pharmaceutical usage is the
ability to sustain release of the active pharmaceutical ingredient. This property of the gels
gives the opportunity to increase the duration of the therapeutic effect and, consequently,
to reduce the frequency of medicine application.

Among the polymers capable for gelling, carrageenans (CRs) are natural, non-toxic
and biocompatible polysaccharides produced from red seaweeds [2,3]. CRs, being lin-
ear sulphated galactans, exist in several different forms based on their sulfate content
(Figure 1). Among the CR family, only kappa-carrageenan (kCR) and iota-carrageenan
(iCR) possess gelling capability, suitable physicochemical properties, high water-holding
capacity, and good adhesion to the skin and mucosal surfaces [3,4]. Moreover, they exhibit
antiviral (against coronaviruses, dengue virus, herpes simplex virus, vesicular stomatitis
virus, human immunodeficiency virus, influenza virus, human papillomavirus, etc.) and
immunomodulatory activity [5,6]. The US Food and Drug Administration has generally
recognized kCR and iCR as safe for topical application and consumption [6]. For instance,
the efficacy and safety of a CR-based gel to prevent human papillomavirus infection have
been recently demonstrated by Laurie et al. [7]. Nasally administered iCR improved out-
comes in COVID-19 patients [6]. Furthermore, CR gels can be used for transmucosal and
transdermal delivery of biologically active substances, tissue engineering, and regenera-
tive medicine [3–5,8–16]. For instance, triamcinolone acetonide has been loaded in kCR
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gel for ocular delivery [8]. Yermak et al. [9] proposed CR gel beads for ophthalmic and
oral delivery of echinochrome. Moreover, CR hydrogels have been used to administer
acetaminophen orally to patients who have difficulty swallowing conventional formula-
tions such as tablets or capsules [9,10]. There are kCR gels available for the delivery of
β-carotene [11], silver nanoparticles [12], metformin hydrochloride [13], zaltoprofen [14],
lidocaine [15], and brimonidine tartrate [16]. Hydrogels of CRs have been extensively
studied as wound dressing materials because of their high water-holding capacity and
biocompatibility [17]. Curcumin hydrogel film based on CR has been developed and pro-
posed as a functional wound dressing material [18]. CR-based hydrogel film reinforced
with sulfur nanoparticles and grapefruit seed extract has been designed for wound healing
application [19].
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Recently, we proposed iCR gels for methotrexate (MTX) delivery [20]. MTX (Figure 1)
is a therapeutic agent having a wide range of applications, including treatment of oncologi-
cal and autoimmune diseases [21]. The topical use of MTX may help to weaken or eliminate
a number of serious side effects caused by the oral administration of MTX. Topical gels
with MTX have been extensively studied [22–25]. There are some examples. Carbomer gels
bearing MTX have showed improved topical delivery intended for effective management
of psoriasis [22,23]. MTX-loaded chitin [24] and chitosan/hyaluronan [25] nanogels have
been formulated for its topical use in psoriasis.

This work, being a continuation of our previous study [20], focuses on kCR gels,
which for the first time are proposed for MTX delivery. To the best of our knowledge, only
one publication [26] concerning MTX-loaded magnetic kCR/chitosan hydrogels has been
found in the literature. The MTX encapsulation efficiency in this gel has been increased by
increasing its magnetite and chitosan contents [26].

Since MTX is poorly soluble in water [27–29], the employment of solubilizing agents
is necessary to increase the aqueous solubility and, consequently, the content of MTX in
kCR hydrogel. Cyclodextrins (CDs), being native cyclic oligosaccharides, are widely used
as solubilizers due to their ability to include guest molecules into a hydrophobic inner
cavity and form inclusion (or host–guest) complexes [30,31]. Among native CDs, only βCD
exhibits a more pronounced solubilizing effect on MTX [20,32,33]. In this connection, βCD
can be used to increase the MTX concentration in the kCR gel. Thus, the purpose of the
present work was to design and characterize the kCR gels with MTX and βCD content, and
the following aspects were investigated: (i) the influence of MTX (as active pharmaceutical
ingredient) and βCD (as solubilizer) on the rheological behavior of kCR gel; (ii) the possible
interactions of MTX and βCD with the kCR network; (iii) the release of MTX from the gels
and transmembrane permeability in vitro.
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It should be also emphasized that the physicochemical and functional properties of
CR gels are determined by the polymer structure, and, therefore, for iCR and kCR gels,
they can be different. As is known, kCR contains only one sulfate group per disaccharide
(Figure 1) and forms rigid gels with high swelling ability. On the contrary, iCR has two
sulfate groups per disaccharide-repeating unit (Figure 1) and form more soft gels [1,2]. The
carrageenan gels with various rheological characteristics could display different pharmaco-
logical properties. Hence, it was interesting to compare the gels of iCR and kCR with MTX.
The influence of the number of sulfate groups in the CR structure on the binding affinity to
MTX was considered herein.

2. Materials and Methods
2.1. Materials

kCR, MTX, and βCD were purchased from Sigma-Aldrich (Moscow, Russia) and used
without additional purification. The content of cations in kCR was as follows: K+ (2.6 wt.%),
Na+ (6.6 wt.%), and Ca2+ (7.7 wt.%). All other chemicals (Na2HPO4, KH2PO4, NaOH) were
of analytical reagent grade and used without previous purification. Double distilled water
was used for gels and buffer solutions preparation. The pH of the solutions was determined
by means of Five Easy pH-meter (Mettler Toledo, Columbus, OH, USA) standardized using
reference solutions.

2.2. Preparation of Hydrogels

The kCR hydrogel was prepared by dissolving kCR powder in distilled water at 80 ◦C
for 20 min under magnetic stirring until the powder was fully swollen and solubilized.
Then, the solution was slowly cooled to room temperature.

To obtain kCR/MTX gel, the saturated solution of MTX (2 × 10−4 M) was obtained
and then used to prepare the gel as described above. To prepare the kCR/βCD gel, βCD
(1 wt.%) was preliminarily dissolved in distilled water and then kCR powder was added
to this solution. The protocol for kCR/MTX/βCD gel was as follows: βCD solution was
prepared and used to obtain a saturated MTX solution, to which, kCR was added. The kCR
concentration in all hydrogels under study was 1.25 wt.%. The content of the gels under
study is reported in Table S1I. All gels were held for 24 h before tests to let the kCR swell
properly and form a homogeneous solution.

2.3. Rheological Measurements

The rheological properties of the gels were measured by means of HAAKE MARS
60 Rheometer (Thermo Fisher Scientific, Dreieich, Germany) using a cone-plate (CP) mea-
suring cell (CP 20/1◦). All rheological measurements were performed at 25 ◦C and 37 ◦C
in duplicate. Temperature was controlled with accuracy of 0.1 ◦C by the Peltier elements.

The gels were kept in the measuring cell for 15 min before the measurements for the
temperature stabilization.

At each temperature, the samples were measured in the following regimes:

(1) Oscillation to obtain frequency dependences of the storage and loss moduli in the
linear viscoelasticity range. The strain value was 0.5% and the frequency varied from
0.05 to 100 Hz;

(2) Shear rate control mode to obtain flow curves; the shear rate was increased from
0.004 to 5000 s−1 in a step-wise mode, with a duration of deformation of 30 s at every
shear rate step.

2.4. Scanning Electron Microscopy (SEM)

The SEM photos of the freeze-dried gels were made using the Quattro S microscope
(Thermo Fisher Scientific), operating at 5 kV.
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2.5. 1H NMR

A Bruker-AV-500 1H NMR spectrometer was used. The constant temperature of 25 ◦C
was maintained with the help of Bruker BVT-3000 temperature controller. Deuterated water
(isotopic purity is 99.9%) was used as solvent in these experiments.

2.6. FTIR Spectroscopy

FTIR spectra of the freeze-dried gels were acquired using the Fourier transform
infrared spectrometer Vertex 80 v (Munich, Germany). Spectra were recorded in the
range of 400–4000 cm−1. A KBr disc was prepared for each sample.

2.7. Dynamic Light Scattering

Particle size distribution in the samples was determined by the dynamic light scat-
tering (DLS) method using a Zetasizer Nano ZS analyzer (Malvern Instruments, Malvern,
UK). Each sample was filtered through a 0.45 µm filter and analysed after 24 h of sample
preparation. Measurements were performed at 25 ◦C in the 173-degree backscattering
mode. Concentration of the reagents was as follows: 0.01 wt.% for kCR, 2 × 10−4 M for
MTX, and 1 wt.% for βCD. Each sample was measured three times and the average value
was taken.

2.8. Release Study

The in vitro release of MTX from the kCR hydrogels without and with βCD was
determined in phosphate buffer pH 7.4 (0.04 M Na2HPO4·12H2O, 0.03 M NaH2PO4·2H2O,
0.17 M NaCl) as release medium. The samples were stored in a hermetically sealed cuvette
at 37 ◦C. At each time point, the absorbance of the solution was measured using a UV–vis
spectrophotometer (UV-1800, Shimadzu, Tokyo, Japan) at 258 nm. MTX concentration was
calculated using a previously obtained calibration curve (Figure S1I).

2.9. In Vitro Transmembrane Permeation Study

The in vitro permeation study was performed using a vertical Franz diffusion cell
(PermeGear Inc., Hellertown, PA, USA). The receptor compartment was filled with 5 mL of
phosphate buffer and stirred at 500 rpm. Gel (1 g) was placed on the donor compartment.
A polyethersulfone membrane with 0.45 µm pore size was used as model membrane.
An aliquot of 0.5 mL was taken from the receptor compartment at the predetermined
time points and then replaced with the same volume of release medium to maintain sink
conditions. The experiments were performed at constant temperature maintained at 32 ◦C.
All samples were further analyzed spectrophotometrically (UV-1800, Shimadzu) at 258 nm.

3. Results and Discussion

kCR, kCR/MTX, kCR/βCD, and kCR/MTX/βCD were prepared and characterized
with the aim of revealing the effect of the additives (MTX, βCD, and MTX/βCD inclusion
complexes) on the physicochemical and pharmacological properties of the aforementioned
gels designed for topical administration.

The preliminary tests allowed for the establishment of the optimal concentration of
kCR. It was found that gels with a kCR content <1.25 wt.% undergo a gel–sol transition
temperature below 35 ◦C (Figure S2I), thus limiting their topical application. On the other
hand, gels with a kCR content ≥1.25 wt.% were stable at the physiological temperatures
(Figure S2I), but their consequent high rigidity also restricted their topical use. Therefore,
the gel with a kCR content of 1.25 wt.% was selected as the most suitable for the purpose of
this study.

3.1. Linear Viscoelastic Properties

Rheological properties play an important role in the design of topical pharmaceutical
formulations. In this work, the rheological characteristics of the gels were obtained under
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various regimes of shearing for the evaluation of MTX, βCD, and MTX/βCD inclusion
complex regarding the structure of kCR gel.

At first, the viscoelastic properties of the samples were measured in the guaranteed
linear viscoelastic domain. Figure 2a displays the frequency sweep of the storage modulus
(G′) and loss modulus (G′′) for kCR, kCR/MTX, kCR/βCD, and kCR/MTX/βCD gels
at 25 ◦C. The results show that G′ > G′′ for all the systems. Moreover, both modules are
very weakly dependent on the applied frequency. Such viscoelastic behavior is typical
for strong gels [34]. It is believed that kCR is able to form gels with a three-dimensional
network structure. In these systems, junction zones are the helical aggregates, which are
formed via a conformational transition (caused by decrease of temperature) of random
coils of the polymer to the double helices [35]. The junction zones in kCR gel can also be the
aggregates of double helices containing 2–10 polysaccharide strands [36]. This particularity
determines the formation of rigid kCR gels and distinguishes it from softer gels of iCR, for
which the coil-to-double helix transition process shows second-order kinetics, indicating
only dimerization [37].
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As shown in Figure 2a, the additives used (MTX, βCD, or MTX/βCD inclusion com-
plexes) slightly affect the G′ values, without influencing the G′′ values at 25 ◦C. However,
the effect of these additives on G′ and G′′ becomes more pronounced at 37 ◦C (Figure 2b).
This fact points out that the lability of the three-dimensional network of kCR is changed
with the temperature rise and this promotes the interactions of kCR with MTX, βCD, or
MTX/βCD.

It should be noted that the difference between the G′ values obtained for kCR/MTX
gel at 25 ◦C and 37 ◦C is less than for kCR/βCD and kCR/MTX/βCD gels (Figure 2).
This means that the MTX molecules are more capable of stabilizing the structure of kCR
gel, making it less sensitive to the temperature rise. Such a stabilizing effect is apparently
caused by a decrease in the mobility of the polymeric chains due to the interactions between
MTX and kCR. MTX has carboxylic and amino groups in the structure (Figure 1), which are
able to conduct ionization (pKa1 = 3.22, pKa2 = 4.53 and pKa3 = 5.62 [38]). kCR contains –OH
and –SO3

− groups (Figure 1). Thus, binding of MTX with kCR can occur mainly through
the electrostatic interactions, H-bonds formation, van der Waals forces, and hydrophobic
interactions [39]. These multiple interactions were also observed between iCR and MTX [20].
It can be hypothesized that MTX incorporation both in junction zones and interjunction
connections in kCR gel increases the stability of its structure and dramatically decreases
the mobility of the biopolymer macromolecules.

Meanwhile, βCD also has a stabilizing effect on the kCR gel, as in Figure 2, even if it is
less pronounced than with MTX. In a previous work, the authors confirmed the binding
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of CDs to a kCR via hydrogen bonding [40]. A rearrangement of random kCR coils in the
presence of CDs, which lead to a more uniform distribution of kCR molecules in water,
has been postulated according to the rheological data and SEM images [40,41]. It has been
also demonstrated by Wang et al. [42] that hydroxypropyl-β-CD affected the kCR gelation
mainly by facilitating the ordering of kCR coils and preventing the aggregation of kCR
helices. Hydroxypropylated β-CD enabled gel formation as well as gel melting at a slightly
higher temperature, compared with the “empty” kCR gel [42].

Conversely, the kCR/MTX/βCD gel is characterized by lower G′ values than the pure
kCR gel (Figure 2). This effect is pronounced at 37 ◦C. Moreover, the kCR/MTX/βCD gel
demonstrates the smallest gap between G′ and G′′ at 37 ◦C, confirming the gel structure in
the presence of MTX/βCD inclusion complexes. Apparently, the presence of MTX/βCD
complexes results in the formation of a more labile structure of the kCR gel. It is important
to note that the kCR/MTX/βCD gel still has G′ > G′′ at 37 ◦C, retaining the gel at human
body temperature.

3.2. Steady Flow Properties

The possibility of application of the topical gels is determined by their flow behavior.
Therefore, we explored the rheological properties of the gels under steady shear. Figure 3
displays the flow viscosity of the samples versus the shear stress. One can see a similarity in
the behavior of all the gels tested at 25 ◦C, whereas the noticeable difference in the rheolog-
ical behavior of the samples was observed at 37 ◦C. Addition of MTX, βCD, or MTX/βCD
inclusion complexes to kCR gel does not change its non-Newtonian pseudoplastic behavior,
but essentially affects its yield shear stress and apparent viscosity.
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The influence of the additives on the rheological behavior of kCR gels at 37 ◦C
(Figure S3I) was assessed by using several mathematical models:

Herschel–Bulkley model

τ = τ0 + kγn (1)

Bingham model

τ = τ0 + ηpγ (2)

Casson model

τ0.5 = τ0
0.5 + (ηpγ)0.5 (3)

where τ is the shear stress (Pa); τ0 is the yield shear stress (Pa); k is the consistency coefficient
(Pa·sn); γ is the shear rate (s−1); ηp is plastic viscosity (Pa·s); n is the flow coefficient. The
rheological parameters and correlation coefficients (R2) specific to these models are listed
in Table 1.
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Table 1. Estimated rheological model constants and statistical parameters *.

Gel
Herschel-Bulkley Model Bingham Model Casson Model

τ0, Pa k, Pa·sn n R2 τ0, Pa ηp, Pa·s R2 τ0, Pa ηp, Pa·s R2

kCR 2.1 ± 0.5 3.8 ± 0.3 0.37± 0.01 0.99 12 ± 2 0.020 ± 0.001 0.82 2.4 ± 0.2 0.12 ± 0.01 0.84
kCR/MTX 6.4 ± 3.7 13.6 ± 3.7 0.21± 0.03 0.95 24 ± 3 0.019 ± 0.002 0.63 4.1 ± 0.3 0.10 ± 0.01 0.64
kCR/βCD 2.2 ± 1.0 8.9 ± 0.8 0.29± 0.01 0.99 17 ± 3 0.025 ± 0.002 0.77 2.8 ± 0.3 0.14 ± 0.01 0.76

kCR/MTX/βCD 0.7 ± 0.2 2.0 ± 0.1 0.45± 0.01 0.99 7 ± 2 0.026 ± 0.001 0.87 1.8 ± 0.1 0.13 ± 0.01 0.91

*—experimental data for 37 ◦C.

As can be seen from Table 1, the Herschel–Bulkley equation provides the most appro-
priate fit for all the gels (R2 were the highest). The yield shear stress (τ0) of a material is
defined as the minimum stress needed to start the flow. The consistency coefficient (k) is
close to the average viscosity of materials in the entire shear rate range [43]. According to
the obtained results, the addition of MTX or βCD increased the values of τ0 and k, and the
influence of MTX is more significant. On the contrary, minimum values of τ0 and k were
obtained for kCR/MTX/βCD gel. Thus, kCR/MTX/βCD gel is more spreadable than the
other gels under consideration.

The flow index values (n < 1) confirm that all systems are pseudoplastic fluids. The
n values are decreased with the addition of MTX or βCD to kCR gel and they are increased
for the kCR/MTX/βCD system. The obtained data indicate that MTX and βCD strengthen
the gel structure; however, after overcoming the yield stress, the structure breaks more easily
under the action of high-speed shear. Inclusion complexes MTX/βCD, on the contrary,
reduce both the gel strength and sensitivity of the gel structure to shear deformations
imposed on the samples in this experiment. It should be noted that the k value for the
kCR/MTX/βCD gel is lower than that of the kCR/MTX sample, so the former will be
easier to apply on the skin or tissues.

3.3. SEM Analysis

SEM analysis was performed to study the surface morphology of the freeze-dried
gels. The micrographs reported in Figure 4 demonstrate that the gels hold a porous
structure, a denser and more even texture with smaller pore sizes, which could be due
to the interactions between the kCR helixes and MTX. In the case of kCR/βCD gel, the
structure is non-uniform with a lower quantity of pores as compared with the pure kCR
sample. A similar effect of βCD on the kCR gel has been reported by Yuan C. et al. [40].
Larger pores have been observed in kCR/MTX/βCD compared to the pure kCR gel.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

kCR    

 

kCR/MTX 

 

 
 

kCR/βCD 

 

 

 

kCR/MTX/βCD 

 

 

 

Figure 4. SEM images of freeze-dried gels under study. 

3.4.1. H NMR and FTIR Spectroscopy 
To reveal the nature of the interactions between kCR and the additives (MTX and 

βCD) in the gels, the 1H NMR experiments were carried out. 1H NMR spectra of MTX in 
its pure form and incorporated in the kCR gel are shown in Figure 5. As is evident from 

500 μm   100 μm   

500 μm   

500 μm   

500 μm   

100 μm   

100 μm   

100 μm   

Figure 4. Cont.



Pharmaceutics 2023, 15, 2244 8 of 15

Pharmaceutics 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

kCR    

 

kCR/MTX 

 

 
 

kCR/βCD 

 

 

 

kCR/MTX/βCD 

 

 

 

Figure 4. SEM images of freeze-dried gels under study. 

3.4.1. H NMR and FTIR Spectroscopy 
To reveal the nature of the interactions between kCR and the additives (MTX and 

βCD) in the gels, the 1H NMR experiments were carried out. 1H NMR spectra of MTX in 
its pure form and incorporated in the kCR gel are shown in Figure 5. As is evident from 

500 μm   100 μm   

500 μm   

500 μm   

500 μm   

100 μm   

100 μm   

100 μm   

Figure 4. SEM images of freeze-dried gels under study.

3.4. 1H NMR and FTIR Spectroscopy

To reveal the nature of the interactions between kCR and the additives (MTX and
βCD) in the gels, the 1H NMR experiments were carried out. 1H NMR spectra of MTX in
its pure form and incorporated in the kCR gel are shown in Figure 5. As is evident from
the comparative analysis of the 1H NMR spectra, the signals from MTX protons H25, H28,
and H29 located near the polar amino and carboxylic groups of MTX (Figure 1) are upfield
shifted. It seems that the polar fragment of the MTX molecule participates in the binding
with kCR. Unfortunately, the 1H NMR spectra of kCR gels with βCD were not suitable for
analysis due to the overlapping of their main characteristic signals.

Binding of MTX with kCR was additionally studied in solution. Chemical shift changes
of MTX protons induced by interactions with kCR were measured and given in Figure 6.
As one can see, more pronounced changes were observed for protons H25, H28 and H29
located near polar side groups of MTX (Figure 1). More probably, these polar groups are
involved in the binding with kCR via hydrogen bonding.
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Figure 6. Chemical shift changes of MTX protons induced by the presence of kCR (0.4 wt.%) and iCR
(4 wt.%) in solution (D2O, 25 ◦C).

It was interesting to evaluate the role of –SO3
− groups in CR molecule in the binding

with MTX. To this aim, the binding affinity of MTX to kCR and iCR [20] in solution was
compared. As follows from the obtained ∆δ values (Figure 6), more significant chemical
shift changes of MTX protons were observed in the presence of 0.4 wt.% iCR. iCR has two
sulfate groups per disaccharide repeating unit (Figure 1). Consequently, the number of
binding sites with MTX is higher in iCR compared with kCR having only one –SO3

− group
per disaccharide unit.

Interactions of kCR with MTX and βCD in solid state were studied by FTIR spec-
troscopy. To this end, FTIR spectra of freeze-dried gels under study were recorded and
analyzed (Figure S4I). As it was observed, main characteristic bands of pure kCR, MTX
and βCD were remained unchanged in the spectra of the gels. This fact points out the
absence of chemical interaction between kCR network and additives (MTX and βCD) in
the solid state.

3.5. DLS

DLS is the most popular method for determining polymer sizes in solution. DLS
measurements of the dilute kCR solutions without and with the additives under study were
performed with the aim of revealing the influence of MTX, βCD, or MTX/βCD inclusion
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complexes on the aggregation behavior and conformation of kCR macromolecules. The
obtained results are shown in Figure 7. As one can see, pure kCR solution has a bimodal
intensity size distribution with the peaks corresponding to hydrodanamic diameters of
91 nm and 503 nm. A similar size distribution for kCR solution has been previously
reported by Antonov et al. [44]. The authors pointed out that these two peaks probably
originate from kCR macromolecules (coils) and their aggregates.
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As one can see from Figure 7, addition of MTX (3 × 10−4 M) or βCD (0.009 M) to kCR
solution (0.01 wt.%) causes the disappearence of the peak corresponding to the existence of
large aggregates. Upon addition of βCD to kCR solution, the tendency of kCR to aggregate
is reduced, and one broad peak with the mode at 105 nm is observed (Figure 7). A similar
peak corresponding to a hydrodynamic diameter of 136 nm appears for kCR solution
with MTX content. Most likely, the revealed changes in the particle size distribution are
due to the conformational rearrangement of biopolymer macromolecules caused by their
possible interactions with the additives. A broadening of the peak induced by decreasing
temperature of kCR solution has been reported by Abad et al. [45]. This phenomenon
has been assigned to the appearance of particles with higher rigidity due to the coil-to-
helix transition of kCR. Apparently, MTX and βCD can interact with kCR via multiple
noncovalent interactions, promoting the helical conformation of the biopolymer.

The bimodal particle size distribution was detected for kCR solution in the presence
of MTX/βCD inclusion complexes (Figure 7). It seems that MTX/βCD complexes have no
considerable influence on the kCR aggregation. It is more likely that βCD and MTX have
higher affinity to interact with each other than with kCR. Therefore, the behavior of kCR in
the presence of the complexes is similar to the behavior of pure kCR. However, a decrease
in the intensity of the peak corresponding to large particles and an increase in the intensity
of peak representing the individual kCR coils should be noted. This fact can be explained
by the ability of the complexes to prevent aggregation of the kCR coils.

3.6. Release Study

The ability of kCR gels to release the MTX was investigated in vitro in phosphate
buffer at 37 ◦C. Figure 8 shows the release profiles of MTX from hydrogels. The release
rate from kCR/MTX gel is relatively low, −65 wt.% of the drug during 6 h. It can be seen
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for comparison that kCR and iCR gels of the same composition released MTX, reaching
50 wt.% and 35 wt.%, respectively, after 2.5 h. The faster release from kCR gel can be
explained by the revealed weaker binding of MTX with kCR than with iCR.
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βCD incorporation in the kCR gels induces a high release of MTX. For instance, full
MTX release (100 wt.%) is achieved in 4 h in the presence of 1 wt.% βCD. The obtained
results are in accordance with the rheological properties of these gels. Figure 3 and Table 1
show that kCR/MTX/βCD gel is less viscous and more spreadable than kCR/MTX at
37 ◦C. Most likely, it facilitates the diffusion of MTX. Moreover, the additional reason for
the observed phenomenon is the inclusion complex formation occuring between MTX and
βCD in solution [20,32]. The MTX content is larger in kCR/MTX/βCD than in kCR/MTX.
Consequently, the higher concentration gradient determines the faster release of MTX
from kCR/MTX/βCD than kCR/MTX gel. However, the concentration gradient is not a
key factor governing the release rate. To confirm this, we prepared kCR/MTX/βCD and
kCR/MTX gels with the same MTX concentration and found that the release from the first
of the mentioned gels proceeds faster (Figure S5I). Moreover, we believe that the affinity
of MTX is stronger to βCD than to kCR. This assumption is supported by the opposite
rheological behavior of kCR/MTX and kCR/MTX/βCD gels at 37 ◦C (Figure 3). Inclusion
complexes of CDs are water-soluble due to the availability of the external –OH groups
surrounding the macrocyclic cavity. Thus, MTX inserted into βCD displays higher affinity
to an aqueous environment compared with the uncomplexed MTX.

The MTX release rate increases with βCD content in kCR/MTX/βCD gel from 0.2 wt.%
to 1.0 wt.%. However, further increase in βCD concentration up to 1.4 wt.% has no influence
on the MTX release rate. This behavior is in accordance with the increase in the concentra-
tion of the inclusion complexes, which are formed between MTX and βCD in solution. The
dependence of the inclusion complexes concentration on βCD concentration in solution
was obtained considering the previously determined binding constant (K = 736 M−1 [20]),
and given in Figure S6I. The concentration of the inclusion complexes increases with a βCD
amount up to 1 wt.%, and after that, it is not changed. This fact could be taken into account
for prediction of the MTX release rate from the gels with the variable βCD content.

The release of MTX from kCR gels of different composition was mathematically
described using different kinetic models such as:

zero-order model

Qt/Q∞ = K0t (4)

first-order model
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log Qt/Q∞ = −K1·t/2.303 (5)

Higuchi model

Qt/Q∞ = KH·t1/2 (6)

Hixson–Crowell model

Q∞
1/3 − Qt

1/3 = KHC·t (7)

Korsemeyer–Peppas model

Qt/Q∞ = KKP·tn (8)

where Qt/Q∞ represents the fractional drug release; K0, K1, KH, KHC, and KKP are the
kinetic constants of each mathematical model; n is release exponent. The best fitting was
revealed considering the values of the correlation coefficients (R2) summarized in Table 2.
The Korsemeyer–Peppas model was the most appropriate model to predict the MTX release
from the gel, as indicated by the highest R2. In this model, the n value is used to determine
the release mechanism. Generally, the n values below 0.45 correspond to Fickian diffusion,
while values between 0.45 and 0.89 reveal anomalous diffusion (non-Fickian) [46]. Based
on Table 2, n < 0.45 values indicate the release of MTX from all gels under study is Fickian
diffusion. The presence of βCD in the gels does not affect the mode of MTX release.

Table 2. Modeling of MTX release behavior from kCR gels of different composition.

Model
R2

kCR/MTX kCR/MTX/βCD_0.2% kCR/MTX/βCD_0.5% iCR/MTX/βCD_1% iCR/MTX/βCD_1.4%

Zero-order 0.735 0.939 0.619 0.565 0.662
First-order 0.455 0.802 0.473 0.486 0.575

Higuchi 0.832 0.982 0.836 0.803 0.850
Hixson-Crowell 0.549 0.859 0.5242 0.512 0.604

Korsemeyer-Peppas 0.931
(n = 0.44)

0.977
(n = 0.41)

0.910
(n = 0.41)

0.934
(n = 0.08)

0.962
(n = 0.10)

3.7. Permeation Study

Prediction of membrane permeability is necessary in the development of pharmaceu-
tical formulations. MTX permeation through an artificial polyethersulfone microporous
membrane (0.45 µm) that mimics the skin [47,48] was studied. It was found that the
cumulative amount of free MTX released from kCR/MTX gel and passed through the
membrane during 6 h was 16 wt.%. Complexation with βCD increases the MTX release
rate, as is shown in Figure 8, but at the same time, reduces MTX permeation (Figure 9). It
was demonstrated by means of 1H NMR spectroscopy that inclusion complexes of MTX
with βCD are able to pass through the model polyethersulfone membrane. However, in
comparison with the free MTX, the permeation rate of the inclusion complexes is lower
due to their larger size. Permeation is governed by the stability constant of the complexes
of MTX with βCD and decreases with the rise of βCD concentration (Figure 9). Therefore,
gels of the basis of kCR provided the sustained release of MTX.

Significant differences in the permeation profiles of MTX from kCR and iCR were
observed (Figure 9). This is in accordance with the faster release of MTX from kCR gel
(Figure 8) and revealed the weaker binding affinity of MTX to kCR (Figure 6).

The area under the plasma drug concentration–time curve (AUC) obtained from
Figure 9 can be used to predict in vivo AUC. Calculated values of AUC0–6.7h are given in
Table 2SI. This attempt is based on a linear in vivo–in vitro correlation that has been found
by M. Klitgaard et al. [49] when comparing the area under the in vitro drug permeation–
time curve to the AUC of the plasma concentration–time profile obtained from the in vivo
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study. Based on these results, the permeation method was proposed as a promising tool for
estimating the in vivo performance.
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Figure 9. In vitro permeation profiles of MTX from gels on the basis of kCR and iCR (1.25 wt.%)
at 32 ◦C.

4. Conclusions

Gels based on biocompatible kCR have been easily prepared and used for MTX entrap-
ment. MTX concentration in the gel can be increased by means of βCD, which forms stable
inclusion complexes with MTX. Moreover, stabilization of MTX in the gel can be achieved
due to the inclusion complex formation with βCD. It was demonstrated that the addition
of βCD to the gel formulations has no significant effects on the viscoelastic properties of
the gels; meanwhile, it affects the MTX release from the gels. The MTX release profiles
from kCR/MTX and kCR/MTX/βCD gels with variable βCD content were obtained and
mathematically analyzed. It was found that MTX release from all gels follows Fickian
diffusion, which can be controlled by increasing the βCD concentration in the formulation.
Various behaviors of kCR/MTX and iCR/MTX gels were demonstrated and explained by
the different binding affinity of MTX to CRs, having one and two –SO3

− groups.
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gels under study.
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