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Abstract: Polymer–drug conjugates (PDCs) have shown great promise in enhancing the efficacy and
safety of cancer therapy. These conjugates combine the advantageous properties of both polymers
and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to
tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for
cancer therapy. First, various types of polymers used in these conjugates are discussed, including
synthetic polymers, such as poly(
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Abstract: Polymer–drug conjugates (PDCs) have shown great promise in enhancing the efficacy and 
safety of cancer therapy. These conjugates combine the advantageous properties of both polymers 
and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to 
tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for 
cancer therapy. First, various types of polymers used in these conjugates are discussed, including 
synthetic polymers, such as poly (↋ -caprolactone) (PCL), D-α-tocopheryl polyethylene glycol 
(TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). 
The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, 
and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are ex-
plored, including covalent bonding, which enables a stable linkage between the polymer and the 
drug, ensuring controlled release and minimizing premature drug release. The use of polymers can 
extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues 
through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved 
drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands 
in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, 
and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing 
off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a ver-
satile and effective approach to cancer therapy. Their ability to combine the advantages of polymers 
and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby im-
proving the overall efficacy and safety of cancer therapies. Further research and development in this 
field has great potential to advance personalized cancer treatment options. 

Keywords: polymer–drug conjugates; targeted nanoparticles; cancer therapy; EPR effect; passive 
targeting; active targeting 
 

1. Introduction 
Cancer treatment poses a significant challenge to medicinal sciences. Although chem-

otherapy and radiation therapy are primary therapeutic strategies, they often cause severe 
systemic side effects [1]. In addition, the low solubility of many chemotherapeutics causes 
aggregation, triggering an immune response and clearance from the body. This ultimately 
decreases the circulation time in the bloodstream and reduces its effectiveness in deliver-
ing the free drug to tumor sites [2,3]. Polymer–drug conjugates (PDCs) are drug delivery 
technologies that were first initiated by Horst Jatzkewitz in 1955 [4]. Several drug mole-
cules are covalently bound to polymeric carriers through bioresponsive linkers to improve 
stability with the diversity, specificity, and functionality of biomolecules [5]. PDCs offer 
various advantages for cancer therapy. They can improve drug solubility and loading ca-
pacity [6,7], improve pharmacokinetic profiles by controlling and maintaining drug re-
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-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS),
and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice
of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled
drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including
covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring
controlled release and minimizing premature drug release. The use of polymers can extend the
circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the
enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy
and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is
highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA,
can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target
effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and
effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs
offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the
overall efficacy and safety of cancer therapies. Further research and development in this field has
great potential to advance personalized cancer treatment options.

Keywords: polymer–drug conjugates; targeted nanoparticles; cancer therapy; EPR effect; passive
targeting; active targeting

1. Introduction

Cancer treatment poses a significant challenge to medicinal sciences. Although
chemotherapy and radiation therapy are primary therapeutic strategies, they often cause
severe systemic side effects [1]. In addition, the low solubility of many chemotherapeutics
causes aggregation, triggering an immune response and clearance from the body. This
ultimately decreases the circulation time in the bloodstream and reduces its effectiveness
in delivering the free drug to tumor sites [2,3]. Polymer–drug conjugates (PDCs) are drug
delivery technologies that were first initiated by Horst Jatzkewitz in 1955 [4]. Several
drug molecules are covalently bound to polymeric carriers through bioresponsive linkers
to improve stability with the diversity, specificity, and functionality of biomolecules [5].
PDCs offer various advantages for cancer therapy. They can improve drug solubility and
loading capacity [6,7], improve pharmacokinetic profiles by controlling and maintaining
drug release [8,9], and increase drug half-life by decreasing immune system recognition.
In addition, they increase drug accumulation specificity at the target site through passive
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and active transport [10–13]. The design and synthesizing of new PDCs that can interact
effectively with biological systems is a challenge. Drugs must have free functional groups
that can be conjugated directly to polymer backbones through chemical linkers (Figure 1);
otherwise, PDCs are impossible to form. For example, curcumin (CUR) presents the func-
tional group of R-OH and R-C=O-R, as seen in Figure 1. These functional groups can
be linked to R-C=O-OH and R-HN2 of the polymer to form ester and hydrazone linkers,
respectively. PDCs also enable the codelivery of drugs and/or bioactive molecules with
different properties in one nanoparticle, making them multifunctional [14,15]. Due to these
advantages over the free form of a drug, PDCs have been widely applied in medicinal treat-
ments for various diseases such as cancer, osteoporosis, infection, and immunodeficiency.
The focus of this article is to review the rational design of PDCs for cancer therapy. PDCs
of various chemistries and architectures have been discussed, with particular emphasis on
ideas for enhancing PDC systems.
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2. Research Progress on PDCs

The origin of PDCs began in 1955 when Horst Jatzkewitz developed polyvinylpyrroli-
done (PVP) conjugated with the primary amine of glycyl-L-leucyl-mescaline using a dipep-
tide linker to enhance the antianxiety drug [4]. In 1958, Mathé et al. presented the important
phenomenon of PDCs by pioneering the conjugation of drugs to immunoglobulin, thus
setting the stage for traditionally targeted drug delivery systems [16]. Subsequently, a
variety of PDC systems based on PVP of various antibiotic agents have been developed
to provide sustained release of drugs into the bloodstream, selective targeting, and ex-
tended half-life, such as penicillin [17]. In 1974, De Duve et al. discovered that PDCs
can be degraded by many enzymes localized in the lysosomal compartment of cells and
the lysosomotropism of macromolecules [18]. Based on the interpretation of these re-
sults, Helmut Ringsdorf presented the foundation of PDCs for targeted drug carriers in
1975 [19]. Since then, PDCs have become a rapidly growing field, with nearly a dozen
polymeric conjugates progressing to clinical trial studies. The first generation of PDCs
has also found applications in disease treatment, such as the use of PEGylated protein
of bovine-serum-albumin-conjugated polyethylene glycol (PEG) [20,21]. Subsequently,
PDCs gained considerable attention in cancer therapy between 2000 and 2010, with the
aim of selective accumulation in tumor tissues. This approach was fascinating for targeted
drug delivery, reducing systemic side effects. During this period, poly(N-hydroxypropyl
methacrylamide) (HPMA) copolymer-based drug conjugates were evaluated in clinical
trials. Notably, HPMA-doxorubicin (DOX) conjugates exhibited enhanced anticancer ac-
tivity and decreased side effects, progressing to clinical trial stages [22–24]. The first PDC
used for cancer therapy was PEGylated liposomal DOX (Doxil®), which was approved by
the FDA in 1999 and by the European Medicines Agency (EMA) in 2000 as a single agent
for the treatment of patients with advanced ovarian cancer who did not receive platinum-
based first-line treatment [25]. Following the 2010s, targeted therapies made significant
advances in revolutionizing cancer treatment. Some noteworthy therapies are the use of
polyglutamic acid (PGA) conjugated with paclitaxel (PTX), camptothecin (CPT) (CT-2106)
conjugate, and a polystyrene-maleic anhydride-neocarzinostatin conjugate. These con-
jugates have been approved for the treatment of hepatocellular carcinoma in Japan [26].
These approaches were developed to identify specific molecular targets in tumor tissues,
resulting in improved outcomes and reduced side effects compared to traditional therapies.
In addition, the combination of different drugs within polymer conjugates was studied
to achieve synergistic effects or target multiple pathways involved in cancer growth and
progression. This innovative approach enabled more effective treatment strategies and
holds the potential to reduce drug resistance. The history of the progression of the research
on PDCs is shown in Figure 2.
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3. The Principle of PDCs

The principle of PDCs was first revealed by Helmut Ringsdorf, as previously mentioned.
In this model, it was envisioned that the drug-attached polymeric carrier could not only
be modulated, but also that active targeting could be achieved by introducing a homing
moiety into the same polymeric carrier [19]. The compositions of the PDCs are divided
into three different units: i.e., a solubilizing zone, drug–polymer chemical linkers, and
a transport system (Figure 3). The first unit of a polymer is used to solubilize all of the
macromolecules without toxicity. The second unit is the drug linked to the polymer via a
chemical linker. The last unit is the area of the targeting ligand located in the hydrophilic
region of the polymer. It can enhance the ability to carry the entire macromolecule to
biological target sites. Many publications have attempted to develop these three parts, with
the expectation that PDCs may provide some benefits, such as enhanced drug solubility
and activity, modified pharmacokinetic profile, reduced toxicity, polymer-specific effects,
and drug combination along the polymer chain. The task of acquiring successful PDCs
seems complex because various factors affect polymers and nanoparticles. The selection of
polymeric macromolecular carriers, the desired target (intracellular, lymphatic system, etc.),
the type of conjugation (direct or indirect), the chemistry of the linker, and the molecular
weight (MW) are considered key parameters [27]. Moreover, it should be noted that the
design of an appropriate polymeric carrier must be strongly influenced by its proposed
route of administration and frequency of dosing.
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4. PDC Development for Cancer Treatment
4.1. Modified Physicochemical Properties of Polymers

For decades, PDCs have attracted considerable attention as a means of delivering
drugs or bioactive molecules. Polymers play a dominant role in making the whole macro-
molecule of PDCs soluble. Generally, PDC-based polymeric nanoparticles are composed
of a hydrophobic core and a hydrophilic shell that can self-assemble to form nanoparti-
cles [28]. The inner core can be used as a storage site for hydrophobic molecules, which
helps to increase the aqueous solubility of hydrophobic drugs. Meanwhile, the outer shell
can help to improve stability by protecting active molecules (both hydrophobic and hy-
drophilic molecules) from interactions with blood components, reducing recognition by
the reticuloendothelial system (RES) and enzyme degradation, and delivering the drug to
intracellular sites of action [27,29]. This approach is known as “stealth nanocarriers”.

Many degradable polymers for PDC systems have been studied, both natural and
synthetic polymers. In short, the polymers used for PDCs should be biodegradable, biocom-
patible, nontoxic to the human body, and completely eliminated from the body. Moreover,
they should possess functional groups that can be covalently bound with biologically active
molecules through a bioresponsive linker, as exemplified in Figure 4. Several types of
polymers have been employed for PDCs such as PEG, PVP, HPMA, poly(
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(PCL), poly(lactic-co-glycolic acid) (PLGA), D-α-tocopheryl polyethylene glycol (TPGS),
hyaluronic acid (HA), dextran, alginate, pectin, and starch [27,30]. In the first genera-
tion of PDCs, PEG-L-asparaginase (ASP) (Oncaspar®) and HPMA-DOX (PK1, FCE28068)
were evaluated in clinical studies [22,28,30,31]. This peptidyl linker was designed to hy-
drolyze via thiol-dependent proteases after lysosomotropic delivery. The second-generation
PDCs based on combinations of high-molecular-weight HPMA copolymers, a glycyl-
phenylalanyl-leucyl-glycine (Gly-Phe-Leu-Gly) linker, and TNP-470 have been developed
to enhance the selectivity of anticancer agents in tumor vessels, showing considerable
promise in vivo [31].
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The chemical linker of the drug plays an important role in its conjugation with the poly-
mers, which can change the therapeutic potency of linked drugs or active molecules. The
developed PDCs should preferably have a short and simple chemical structure. Bioactive
agents are often conjugated to biocompatible polymer backbones via strongly biodegrad-
able linkages, such as ester bonds, which are easily hydrolyzed in the presence of the
esterase enzyme. However, some acid-labile linkers have been used to synthesize various
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pH-responsive PDCs for cancer therapy, such as disulfide [32], acetal [33], hydrazone [34],
orthoester [35], and amide bonds [36] (Figure 4). These linkers provide stability in blood cir-
culation, a higher drug load, and controlled and sustained release without a burst effect [27].
The obtained prodrugs have the ability to selectively release the active drug within the
acidic conditions of tumor tissues or intracellular endosomes, occurring in a pH range of 4.5
to 6.5. Li et al. [37] developed acetal-linked polymeric micelles for enhanced CUR delivery.
The in vitro result showed that the acetal-linked micelles exhibited a pH-dependent drug
release behavior, which released faster at acidic pH (pH 5.0 and 6.0) but showed retardation
of release at physiological pH. In our study, it was found that the PDCs of Gemcitabine
(GEM)- and CUR-conjugated HA using the hydrazone linker were specific and fast in the
acidic microenvironment (pH 5.0–6.5) while retarded in physiological pH (pH 7.4) [34],
resulting in enhanced antitumor efficacy and improved drug safety.

Some polymers were unable to attain the desired properties because they face lim-
itations such as high hydrophobicity, high crystallinity, and lack of active sites for drug
conjugation. Furthermore, PDCs containing a single bioactive agent often have limitations
in terms of clinical application prospects due to inadequate anticancer efficacies and ac-
quired drug resistance of cancer cells. Many studies have tried to overcome these problems
by modifying and combining two or more polymers, as well as decorating small molecules
or targeting ligands. In this review, we selected four examples of polymers that have
been widely studied in the delivery of anticancer drugs, and discuss strategies for the
improvement of polymer properties from previous reports, including the findings from our
research groups.

4.1.1. PCL

PCL is a saturated aliphatic polyester polymer that was studied as early as the
1930s [38]. It can be synthesized via ring-opening polymerization of
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off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a ver-
satile and effective approach to cancer therapy. Their ability to combine the advantages of polymers 
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field has great potential to advance personalized cancer treatment options. 

Keywords: polymer–drug conjugates; targeted nanoparticles; cancer therapy; EPR effect; passive 
targeting; active targeting 
 

1. Introduction 
Cancer treatment poses a significant challenge to medicinal sciences. Although chem-

otherapy and radiation therapy are primary therapeutic strategies, they often cause severe 
systemic side effects [1]. In addition, the low solubility of many chemotherapeutics causes 
aggregation, triggering an immune response and clearance from the body. This ultimately 
decreases the circulation time in the bloodstream and reduces its effectiveness in deliver-
ing the free drug to tumor sites [2,3]. Polymer–drug conjugates (PDCs) are drug delivery 
technologies that were first initiated by Horst Jatzkewitz in 1955 [4]. Several drug mole-
cules are covalently bound to polymeric carriers through bioresponsive linkers to improve 
stability with the diversity, specificity, and functionality of biomolecules [5]. PDCs offer 
various advantages for cancer therapy. They can improve drug solubility and loading ca-
pacity [6,7], improve pharmacokinetic profiles by controlling and maintaining drug re-
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-caprolactone (CL) us-
ing a variety of anionic, cationic, and coordination catalysts such as stannous octoate, or via
free-radical ring-opening polymerization of 2-methylene-1-3-dioxepane (MDO) (Figure 5).
Each method affects the resulting MW, MW distribution, end-group composition, and
chemical structure of the copolymers [39]. PCL offers several advantages in PDCs, such
as a slower degradation rate in vivo and is biodegradable and biocompatible with the
human body, with a melting temperature of 60 ◦C and a decomposition temperature of
350 ◦C [40,41]. Because the linkage along PCL is an ester bond that can be hydrolyzed
under physiological conditions and eliminated from the body, these properties make PCL
an attractive option for an efficient drug delivery system. However, it still has some limita-
tions for PDCs and medical use due to its high hydrophobicity and crystallinity, leading to
slow elimination from the body [42]. Furthermore, the degradation products resulting from
the breakdown of PCL can potentially cause inflammation or adverse reactions in some
individuals, leading to limitations in FDA approval. The degradation rate of PCL related
to adverse reactions depends on its molecular weight, crystallinity, and other factors [43].
Therefore, thorough biocompatibility studies are essential to assess any potential risks
associated with the use of PCL-based materials in clinical trials. Many reports have been
designed by combining PCL with other hydrophilic molecules or polymers to modulate the
physical and mechanical properties of PCL. For example, PCL-mPEG, PCL-D-α-tocopheryl
polyethylene glycol 1000 succinate (TPGS), PCL-polyethylene oxide (PEO), PCL-polylactic
acid (PLA), and PCL-PVP enhance the attractive properties of PCL, such as the improved
elasticity, higher hydrophilicity, stealth properties, and faster degradation times, allowing
much wider applications of the polymer in pharmaceutical and medical fields [44–48]. Fur-
thermore, diblock copolymers and triblock copolymers such as PCL-PEG and (P(CL)2)-PEG,
respectively, have been synthesized, showing different assembly behaviors, drug loading
properties, and cellular uptake behavior [49,50]. Issarachot et al. reported that the diblock
copolymer of PCL-PEG was more flexible and showed less crystallization compared to the
triblock copolymer of (P(CL)2)-PEG [50]. The design of PCL-based copolymers for medical
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applications is summarized in Table 1. Despite the notable advances in PCL-based drug
delivery systems, there are still challenges to be addressed [51].
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Table 1. The design of polymer–drug conjugates based on PCL backbones.

Polymer Compositions Grafting
Ligand Drug Disease Application Ref.

Folic acid-PCL-PEG Folic acid MTX Breast cancer Enhanced cytotoxicity and specificity [12,50]

Oleic acid-PEG-b-PCL Oleic acid Curcumin (CUR) Brain cancer Enhanced accumulation in the brain [52]

Folic acid-(P(CL)2-PEG Folic acid MTX Breast cancer Enhanced cytotoxicity and specificity [12,50]

PCL-TPGS - Quercetin (QCT) Breast cancer Enhanced drug loading capacity
Sustained drug release [44]

Bi(mPEG-SeSe)-PCL - DOX Skin cancer Enhanced cytotoxicity and specificity [53]

4.1.2. TPGS

TPGS is a water-soluble derivative of natural vitamin E, which is formed via ester-
ification with PEG (MW of 1000). The structure is shown in Figure 6. It is composed of
hydrophobic and hydrophilic segments in its structure, which present amphiphilic proper-
ties. Therefore, it has been widely used in pharmaceutically safe adjuvants as a wetting
agent, emulsifier, stabilizer, and solubilizing agent [54]. Recently, TPGS has become more
attractive in the field of drug delivery systems as a nanocarrier because it can improve the
solubility and bioavailability of poorly water-soluble and poorly absorbed drugs [55–58].
Its safety has been reported, with the oral 50% lethal dose (LD50) being >7 g/kg for young
adult rats of both sexes [59]. In addition, the US FDA has approved TPGS as a safe and
biocompatible adjuvant. Most reports showed that TPGS has been prepared in prodrugs,
in which TPGS is conjugated with drugs to improve the pharmacokinetic profile of drug
molecules. Mi et al. reported the synthesis of the TPGS-cisplatin (CIS) conjugate, which
exhibited pH-dependent drug release, much higher cellular uptake, and higher cellular
cytotoxicity compared to the unconjugated drug [60]. Our previous work also developed
targeted PDCs using folic-acid-conjugated TPGS to deliver methotrexate (MTX). The results
showed that these copolymers potentiated cytotoxicity and cellular uptake efficiency for
breast cancer cells [61]. Some publications conjugated TPGS with other polymers to im-
prove their properties. For example, TPGS-b-PCL copolymers have been utilized for drug
delivery, with the aim of achieving the combined benefits of TPGS and PCL to increase the
hydrophobicity of the copolymer and help with water-insoluble drugs. These copolymers
have shown successful applications in cancer therapy by increasing drug loading and
cytotoxic activity in liver cancer [62]. Another example is chitosan conjugated with TPGS
and further decorated with transferrin, which was used to form targeted nanocarriers to
deliver docetaxel (DTX). It provided a bioadhesive property and cytotoxicity that were
useful for brain cancer therapy [63]. Nowadays, TPGS is widely investigated to overcome
multidrug resistance (MDR) because TPGS has shown inhibitory activity to P-glycoprotein
(P-gp) and potent antitumor activity, resulting in enhanced bioavailability of drugs such
as MTX, DTX, DOX, CIS, and PTX [64–66]. Almawash et al. [67] successfully boosted the
cytotoxicity of MTX by using PLGA-TPGS. The results revealed that the conjugation of
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MTX-PLGA-TPGS provided an improved pharmacokinetic profile and increased drug
stability in the blood circulation as a result of the properties of TPGS. This led to increased
cellular uptake and improved drug efficiency for cancer treatment, such as antibodies [68],
galactosamine [69], and folic acid [61]. In addition, some targeting ligands can be decorated
on TPGS to enhance cellular uptake. Gan et al. [68] investigated novel sorafenib (Sf)-loaded
polymeric nanoparticles for the targeted therapy of hepatocellular carcinoma. Anti-GPC3
antibody (Ab) and Sf were grafted onto a TPGS-PLC block copolymer, which was further
self-assembled from nanoparticles. The result showed that NP-Sf-Ab showed robust stabil-
ity and achieved excellent Sf release in the cell medium. The MTT assay confirmed that
NP-Sf-Ab caused much higher cytotoxicity than non-targeted NP-Sf and free Sf. Finally,
NP-Sf-Ab was shown to greatly inhibit tumor growth in HepG2-xenograft-bearing nude
mice without obvious side effects. Examples of useful TPGS based on PDCs for cancer
drug delivery are listed in Table 2.
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Table 2. The design of PDCs based on TPGS backbones.

Polymer
Compositions Grafting Ligand Drug Application Ref.

TPGS DOX
Increased drug stability

Enhanced cellular uptake and efficacy
Reduced side effects in vivo

[70]

TPGS CIS Enhanced the efficacy
Presented neuroprotective effect [60]

TPGS GEM Improved cytotoxicity [71]

TPGS DTX
Cetuximab (Cmab)

Achieved synergistic effects for multidrug resistance
Enhanced the efficacy [72]

mPEG-
paclitaxel/TPGS PTX

Achieved synergistic effects for multidrug resistance
Enhanced cellular uptake.

Enhanced the efficacy
[73]

TPGS-b-PCL/Pluronic
P123

Anti-GPC3
antibody Sorafenib (Sf) Enhanced cellular uptake and cytotoxicity in

liver cancer [68]

PLA-TPGS Transferrin DTX Improved pharmacokinetic profile
Enhanced cytotoxicity and efficiency in vivo [74]

TPGS/TPGS Folic acid MTX Enhanced the targeted drug delivery [61]

4.1.3. PEG

PEG, a hydrophilic polymer, is a common component widely used in the development
of PDCs and nanoparticles for cancer treatment [75]. PEG is made up of an ethylene glycol
(EG) subunit which is surrounded by two to three water molecules, providing informa-
tion about the shell around the micelles. The structure is shown in Figure 7. PEGylation,
which involves the covalent binding of anticancer drugs or bioactive molecules with PEG
polymers, offers promising carriers for cancer therapy. These carriers can improve the
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pharmacokinetics and biocompatibility of drugs, as well as enhance their circulation time in
the body. PEGylation offers several benefits, including reduced clearance by the reticuloen-
dothelial system (RES), increased tumor accumulation, and decreased toxicity to healthy
tissues. In the case of PDCs, PEGylation of the polymer backbone or the drug molecule
itself can lead to improved stability, solubility, and specificity to cancer cells. For example,
PEGylated liposomal DOX (Doxil®) is the first PDC to show significant efficacy in the
treatment of various cancers [25]. PEGylated nanoparticles have been extensively studied
for cancer treatment, including drug delivery, imaging, and photodynamic therapy. The
hydration sheath of PEG shells creates a steric barrier that prevents biomacromolecules
from penetrating the polymer layer. PEG chains bind to the core through hydrophobic
or electrostatic interactions, resulting in improved stability of the active molecules. Thus,
numerous researchers have utilized these properties to develop stealth drug nanocarriers
with the aim of prolonging the circulation time and reducing recognition and clearance via
the mononuclear phagocyte system (MPS) in biotechnology therapeutics [76]. For exam-
ple, novel dual-sensitive polypeptide-based CPT micelles conjugated with PEG showed
sustainable drug release under physiological conditions and were able to enhance cellular
internalization in human large lung cancer cells [77]. In a separate study, the conjuga-
tion of luteinizing hormone-releasing hormone (LHRH)-conjugated PEG-coated magnetite
nanoparticles enhanced the hydrophilicity and biocompatibility of the nanoparticles. The
conjugation led to the formation of a hydration sheath, resulting in improved stability in
cell culture medium with minimal aggregation [78]. There are certain limitations associ-
ated with PEG. PEGylation can restrict the therapeutic efficacy of the conjugated product
because its functionalization is limited to PEG chain ends, resulting in low drug load-
ing capacities, a lack of amphiphilic properties, and nonspecificity. Some publications
reported on the modification of amphiphilic polymers via PEGylation. For example, PEG-
PLGA nanoparticles loaded with PTX had shown enhanced drug loading and release and
improved tumor growth inhibition in animal models of breast cancer and lung cancer.
In animal models of prostate cancer and lung cancer, the incorporation of miR-532-3p
into vitamin B12-conjugated PLGA-PEG nanoparticles has shown improved efficacy in
chemotherapy [79]. Furthermore, herceptin-conjugated PTX-loaded PCL-PEG worm-like
nanocrystal micelles have shown enhanced drug loading and greater efficacy of chemother-
apy in animal models of prostate cancer and lung cancer [80]. In summary, PEG can be
used in a controlled-release system or as a PDC to improve the pharmacokinetic properties
and efficacy of drugs used in cancer treatment.
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4.1.4. HA

Over the past decade, naturally occurring polymers have overwhelmingly been used
for the development of polymeric nanoparticles. They show much better biodegradability
in the biological system than synthetic polymers, thus preventing the accumulation of
polymers in the body or within cells [81]. Among naturally occurring polymers, HA, a
naturally highly hydrophilic mucopolysaccharide polymer, has gained much attention
in drug delivery due to its biodegradability, biocompatibility, low toxicity, high potential
for drug loading, and ease of chemical modification [82]. HA is composed of repeating
disaccharide units of D-glucuronic acid (GlcUA) and N-acetyl-D-glucosamine (NAG),
which are linear polyanions linked via β-1,3- and β-1,4-glycosidic bonds, respectively
(Figure 8) [83]. The number of repeated disaccharides in a completed HA molecule can reach
10,000 or more. Its molecular mass is ~4 MDa, and each disaccharide is ~400 Da [83,84].
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The average length of a disaccharide (one repeating unit) is about 1 nm. In solution, the HA
chains entangle with each other at low concentrations in the form of an expanded random
coil. In high-concentration solutions, HA forms molecular networks with shear-dependent
viscosity, known as a hydrogel, in which drugs can be loaded either via physical entrapment
or via covalent linkage. When pressure is applied, it easily moves and can be administered
through a small-bore needle. Therefore, it is called a pseudoplastic material, which is an
ideal lubricant [83].
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HA is present in high concentrations in numerous malignant tumors compared to
normal tissues, which is associated with tissue inflammation, angiogenesis, tumor invasion,
and P-gp-mediated MDR [85–87]. It generally interacts with cells in at least two ways.
First, it can bind to receptors on the surface of cancer cells, such as cluster of differentiation
protein 44 (CD44), the receptor for HA-mediated mobility (RHAMM), lymphatic vessel
endothelial receptor 1 (LYVE-1), and IVd4 and LEC receptors. Second, it has the ability to
provide sustained attachment to hyaluronan synthase across the plasma membrane [81].
Among these, CD44 is the most studied HA receptor. CD44 is found to be overexpressed
in various tumors, such as lung [88], breast [89], colon [90], stomach [91], and pancreatic
cancers [92,93], while it is expressed in low levels in normal tissues. Due to the fact that
CD44 and RHAMM are HA-binding receptors that are highly present on the surface of
cancer cells, it is possible that HA may provide an ideal targeting ligand for selective
binding to malignant tissues. Although HA has not been approved by the FDA for can-
cer therapy, it is widely used in PDC research for anticancer drug delivery systems due
to its biocompatibility, biodegradability, nontoxicity, nonimmunogenicity and numerous
modification sites [94]. Taking into account chemical structures, HA can be directly asso-
ciated with drugs or through drug carriers via various linkers due to the high presence
of carboxyl and hydroxyl groups. When hydrophobic molecules are conjugated with HA,
they tend to easily form micelles or nanoaggregates with the drug inside and a hydrophilic
HA shell layer [6,7,95]. Therefore, the formation of HA-drug conjugates provides several
advantages: (i) they act as a hydrophilic carrier for the delivery of insoluble drugs, which
enhances solubility and bioavailability; (ii) they help to protect drugs from deactivation
and preserve their activities during circulation, leading to an improvement in the half-life
of the drug in blood plasma and slowing clearance out from the body; and (iii) they actively
target the drug specifically at the site of action, as mentioned earlier [96]. In general, HA
has the benefit of being used as an active target carrier for active compounds, including
anticancer drugs. Many previous studies reported the use of HA for conjugation with
various anticancer drugs such as PTX, DOX, CPT, CIS, and QCT. The results revealed that
HA–anticancer drug conjugates provide an increase in the solubility, stability, efficacy, and
specificity of anticancer drugs [97–99]. Examples of HA–anticancer drug conjugates are
summarized in Table 3.
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Table 3. Summary of the main conjugates of HA drugs.

MW of HA
(kDa) Drug Administration

Route * Disease Tumor Model Ref.

200 PTX i.p. and i.v.c Ovarian cancer,
bladder cancer

OVCAR-3, SKOV-3,
Phase II clinical trial [97]

40 PTX i.v. Squamous cell carcinoma of the head and neck OSC-19, NH5 [100]

5 PTX i.v. Brain metastasis,
breast cancer 231 Br [101]

35 DOX s.c. Breast cancer MDA-MB-468LN [99]

200 CPT i.p. Peritoneal cancer HT-29, MKN-45, OE-21,
DHD/K21/Trb [102]

35 CIS s.c. Breast cancer MCF-7, MDA-MB-231 [98]

10 QCT i.v. Hepatoma H22 [103]

11 GEM/CUR i.v.
Pancreatic cancer,

colon cancer,
lung cancer

PANC-1
Caco-2, HCT116

A549
[34]

* i.p.: intraperitoneal, i.v.c.: intravesical, i.v.: intravascular, s.c.: subcutaneous.

4.2. Increased Drug Solubility and Loading Capacity

Poorly water-soluble drugs encounter challenges in pharmaceutical delivery, which
impact the therapeutically effective concentration at the target site [104]. Nanotechnology
has been used to overcome this problem because it can enhance drug solubility and loading
capacity. Generally, drugs can be entrapped into nanocarriers via physical entrapment
and chemical conjugation. Physical entrapment means that hydrophobic drugs are in-
corporated into the hydrophobic core via intermolecular forces such as hydrogen bonds,
π-π interactions, and dipole–dipole interactions [105]. Although physical entrapment is
simple and convenient, it is insufficient for drug loading capacity and faces the problem of
burst release [106]. In the case of PDCs, bioactive agents are often linked to biocompatible
polymer backbones using strongly biodegradable linkages, such as ester, amide, hydrazone,
and acetal linkers. This strategy results in enhanced drug solubility, increased drug loading
capacity, and controlled, sustained drug release without a burst effect [50,107,108]. It is
important to select highly hydrophilic polymeric carriers to improve water solubility, such
as PEG and polysaccharides. In the field of anticancer drug delivery, PDCs provide many
benefits: not only increased solubility, but also decreased side effects. The solubility of
PEGylated PTX, a conjugate of PTX and PEG, could be enhanced to about 1800 times
that of the aqueous PTX solution (3665 µg/mL and 2 µg/mL, respectively) [11]. The
conjugation of PEG and adenosine deaminase could enhance drug loading capacity and
efficacy both in vitro and in vivo [109,110]. Henne et al. [111] developed PEGylated CPT
by using a disulfide linker, which is an enzymatically cleavable linker. Folic acid was
used as a targeting ligand in this study. The result revealed that it could self-assemble
to form nanoparticles. Moreover, it showed better solubility than the aqueous solution,
higher stability, and the best selective cleavage during circulation. A hydrophobic polymer
core is separated and stabilized through a hydrophilic corona. In our previous study, we
investigated the effect of the chemical linker and mol% CUR on the physicochemical prop-
erties of CUR nanoparticles for cancer therapy. CUR was conjugated on the HA backbone
using ester and hydrazone linkers to form CeH and ChH, respectively [112]. The result
revealed that HA increased the solubility of CUR in both nanoparticles. An increase in
mol% CUR on the HA backbone resulted in the failure to form nanoparticles because the
hydrophobic property was too high to produce nanoparticles. Subsequently, these ChH
nanoparticles were further conjugated with GEM for codelivery to cancer cells. The result
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showed that GEM did not interrupt the solubility of CUR but improved the nanoparticle
characteristics of the nanoparticles by decreasing the size and distribution [34]. In other
studies, copolymers have been widely developed for improved amphiphilic properties,
as they directly affect the in vivo circulation and biological activity of PDCs [113]. Tang
et al. [114] developed DOX-HPMA conjugates to form self-assembled nanoparticles, and
compared a linear one with a core cross-linked one. In vitro studies revealed that both
showed slower drug release and improved solubility and stability. In contrast, in vivo
pharmacokinetic behavior studies showed that the cross-linked copolymer nanoparticles
resulted in good blood stability and long-lasting circulation time compared to those of the
linear block copolymer nanoparticles and the free drug. Examples of PDCs that improve
drug solubility are shown in Table 4.

Table 4. Enhancement of drug solubility via polymer–drug conjugates.

Polymers Drugs %DL *
(%w/w)

Solubility in Water
Application Ref.

Conventional PDCs

HA CUR 1.3+0.31 0.27 µg/mL 7.5 mg/mL Improved stability [115]

PEG PTX 60.3 <2 µg/mL 3665 µg/mL Human cervical carcinoma [11]

* %DL: drug loading capacity.

4.3. Modified Drug Release and Controlled Delivery

Numerous available research articles report the potential of PDCs to provide unique
polymer properties for the controlled and sustained release of bioactive agents [116]. Modi-
fication of the controlled and sustained release profile provides several benefits, including
enhancing the drug accumulation at target sites, preventing the burst release of the drug in
the bloodstream, and facilitating targeted drug delivery. This leads to increased efficacy
and decreased toxicity of the drug or bioactive molecules. In short, the drug release rate
depends on the covalent bond between the drugs and the polymer/nanocarriers [117]. The
bonding between the drug and polymers should be stable in the blood circulation to protect
the drug and prevent burst drug release. However, they should be hydrolyzed to release
the drug based on physiological needs, following the normal physiological process of the
stage of the disease. Systems have the ability to undergo dramatic chemical or physical
changes in physiological responses to internal stimuli such as pH, redox, ionic strength,
temperature, and lysosome/enzymes and external stimuli that can induce a response via
stimuli-generating devices, such as pulsed drug delivery, such as electric, magnetic, and
ultrasonic [118–120]. In this review, we focus on internal-stimuli-responsive drug delivery.

4.3.1. pH-Responsive Drug Delivery

Many pH-responsive PDCs have been developed for anticancer and noncancer ap-
plications because they can be used as a trigger for drug release related to physiolog-
ical conditions. The pH-sensitive bond is used to covalently link between drugs and
polymeric carriers [117]. These systems have been intensively investigated for the de-
livery of anticancer drugs due to their enormous improvement in specificity and effi-
cacy. It is known that the pH of normal and cancer tissues is different. Compared to
normal tissues, the pH of the tumor tissue environment and intracellularly in the lyso-
somes is slightly acidic (pHnormal cells = 7.20–7.45, pH cancer environments = 6.50–6.90, and
pHlysosomes = 4.5–6.5) [121,122]. Therefore, pH-sensitive linkers should be cleaved under
acidic conditions, such as the pH of tumor tissues and lysosomes, while they are stable at
physiological pH. Many acid-labile linkers have been reported to improve drug release
profiles, such as hydrazone, amide, imine, cis-acotinyl, oxime, ketal, and acetal, which are
shown in Figure 9. The favorite pH-responsive chemical bond, which has been extensively
explored, is the hydrazone bond, because of its acute responsiveness in drug delivery
behavior. Our study showed that the CUR-hydrazone bond (ChH) had better nanoparti-
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cle characteristics, including critical aggregation concentration (CAC), particle size, and
stability, at physiological pH than nanoparticles with an ester bond (CeH), because ChH
had a more flexible and less-bulky structure than CeH. Furthermore, ChH could better
retard the release of CUR than CeH in physiological pH, but there was faster release under
tumor conditions [112]. Jiang et al. [123] developed amphiphilic polycarbonate conjugates
of DOX with hydrazone linkers. The release of DOX in an acidic environment (pH 5.0) was
faster than that at neutral pH (pH 7.4). Our group also developed polymeric nanoparticles
of HA-conjugated CUR and GEM using hydrazone bonds for cancer therapy [34]. The
GEM and CUR release profiles of the nanoparticles were specific and fast in the acidic
microenvironment (pH 5.0 to 6.5) while retarded at physiological pH (pH 7.4), indicating a
dependence on pH. An in vitro cytotoxicity study showed that GEM-HA-CUR nanopar-
ticles had higher toxicity and synergistic effects in PANC-1, A549, Caco-2, and HCT116
cells. Other chemical bonds can also be used to prepare pH-responsive PDCs. Li et al. [37]
developed acetal-linked PDCs using mPEG-PLA to deliver CUR, which showed faster
release at lower pH values (pH 5.0–6.0). The prepared PDCs could enhance the cytotoxicity
of human hepatocellular liver carcinoma. The process of PDCs delivered to the target site
is shown in Figure 10.
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4.3.2. Enzyme-Responsive Drug Delivery

The high expression of specific enzymes in certain diseases provides an advantage in
using PDCs as triggers for drug release at the target site. Drugs are chemically linked to
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polymer carriers through enzyme-responsive bonding that can be cleaved by specific en-
zymes at the target site [124]. Recently, significant attention has been focused on designing
and developing enzyme-responsive drug delivery systems, especially anticancer drug de-
livery systems. Legumain is highly overexpressed in most solid human tumors, making it a
potential trigger. Shi et al. [125] developed an octapeptide, glycine-cysteine-glycine-alanine-
alanine-asparagine-leucine-glutamic acid (Gly-Cys-Gly-Ala-Ala-Asn-Leu-Glu), attached
to PEG-based PDCs, which was specific for legumain. The synthesized polymer-CIS
conjugates with such peptide linkers exhibited great potential for increased stability in
plasma and enhanced gastric cancer therapy. Zhang et al. [126] developed PEGylated GEM
dendrimers with glycyl-phenylalanyl-leucyl-glycine (Gly-Phe-Leu-Gly) tetrapeptide as a
spacer. This spacer can be cleaved by cathepsin B, which is much lower in normal cells than
in tumor cells [127]. The results suggested that more than 80% of GEM was released from
dendrimers under lysosomal cysteine protease cathepsin B conditions but showed lower re-
lease in the absence of cathepsin B, indicating that dendrimer-GEM could maintain stability
in blood circulation. In vitro and in vivo studies confirmed its improved antitumor efficacy
and reduced side effects in normal tissue compared to the GEM solution. Another study
on non-anticancer drugs reported by Shivhare et al. indicated that ornidazole-conjugated
inulin-based peptides could be cleaved by specific inulinases [128]. The resulting core–shell
nanostructures could encapsulate ornidazole in the hydrophobic core and rapidly release it
in the presence of an inulinase enzyme. Other triggers, matrix metalloproteinase 2 (MMP-2)
and MMP-9, are widely known as tumor-associated enzymes. They are involved in many
physiological and pathological processes, including tissue development, wound healing,
and cancer progression. Chau et al. developed dextran−peptide−MTX conjugates using
proline-valine-glycine-leucine-isoleucine-glycine (Pro-Val-Gly-Leu-Ile-Gly) as the peptide
linker for tumor targeting via MMP-2 and MMP-9. The peptide linker was stable in the
systemic circulation, but cleaved to release peptidyl MTX due to the presence of MMP-2
and MMP-9 [129]. Examples and therapeutic applications of smart enzyme-responsive
polymers and their applications are presented in Table 5.
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Table 5. The development of PDCs to enhance controlled and sustained release through enzyme-
sensitive linkers.

Polymer Compositions Drugs Specific
Enzymes Stage Application Ref.

HPMA-Gly-Phe-Leu-Gly - Cathepsin B In vitro Increased stability in plasma [130]

Brentuximab
vedotin-Val-Cit-PABC

Monomethyl
auristatin E Cathepsin B FDA

approval Used for Hodkin lymphoma [131]

PEG-Gly-Cys-Gly-Ala-Ala-
Asn-Leu-Glu CIS Legumain In vitro Increased drug stability in plasma;

enhanced gastric cancer therapy [125]

PEG-Gly-Phe-Leu-Gly GEM Cathepsin B In vitro and
in vivo

Increased drug stability in plasma;
increased antitumor activity in
breast cancer, but reduced side

effects to normal tissues

[126]

NTD-Gly-Phe-Leu-Gly DOX Cathepsin B In vitro
Increased stability in plasma;

enhanced drug accumulation in
liver cancer cells

[132]

Dextran-Pro-Val-Gly-Leu-
Ile-Gly MTX MMP-

2/MMP-9 In vitro

Increased stability in plasma;
enhanced drug accumulation in
fibrosarcoma cell line and liver

cancer cells

[129]

HPMA-morpholinocarbonyl-
Ser-Ser-Lys-Tyr-Gln-Leu

12-aminododeca-
noyl thapsigargin Cathepsin B In vitro and

in vivo
Enhanced drug accumulation in

prostate cancer cells [133]

4.3.3. Temperature-Responsive Drug Delivery

Temperature-responsive polymer drug conjugates have been extensively studied
for cancer drug delivery. These polymers undergo a reversible phase transition from a
hydrophilic to hydrophobic state in response to an external temperature stimulus, allowing
the controlled release of drugs at elevated temperatures associated with cancer tissues
as a trigger to cleave the linker between the polymer and the drug [134]. Because of
its temperature sensitivity, poly(N-isopropylacrylamide) (PNIPAM) is a commonly used
temperature-responsive polymer for drug conjugation in cancer therapy. The lower critical
solution temperature (LCST) of PNIPAM is approximately 32 ◦C. One study developed
PNIPAM-based copolymer conjugates with DOX for targeted delivery to breast cancer cells.
The copolymers were designed to have LCSTs lower than the physiological temperature,
allowing drug release within cancer cells upon endocytosis. In vitro studies showed that
PNIPAM-DOX conjugates were more effective in killing cancer cells than free DOX, while
showing reduced toxicity to normal cells [135]. Another study reported the development
of a poly(vinyl caprolactam) (PVCL)-based drug delivery system for DOX, a chemotherapy
drug commonly used in the treatment of cancer. The researchers synthesized a PVCL-DOX
conjugate by covalently linking doxorubicin to PVCL through a pH-sensitive linker. The
resulting conjugate showed a temperature-triggered release of doxorubicin at the tumor site
in vitro and in vivo, indicating its potential as a targeted drug delivery system for cancer
treatment [136,137]. Other polymers that have been studied for this application include
poly(N,N-diethylacrylamide) (PDEAA), PVP, and poly(N-vinylacetamide) (PNVA).

4.4. Improved Drug Stability under Physiological Conditions

Improvement in drug stability under physiological conditions using PDCs is one
approach to overcome the problem of drug instability. CPT is a potent antitumor agent for
colon and gastric cancer, but has limitations due to its low aqueous solubility and poor sta-
bility both in vitro and in vivo [138]. The active form of CPT, CPT-lactone, is present at pH
4.5, but is unstable under physiological conditions, where its lactone ring readily opens and
converts to CPT-carboxylate (Figure 11) [138]. Various PDCs for CPT have been developed
via conjugation with polymer backbones to increase solubility and stability through the
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OH group of the lactone ring. Several polymers, including PEG [139], PEG-methyl ether
methacrylate (MA) [140], cyclodextrin [141], peptide [142], and starch [138], have been
reported, and some have undergone clinical investigation. Li et al. [138] prepared CPT-
conjugated hydroxyethyl starch using glycine with two different average MWs and degrees
of substitution, 130 kDa/0.4 and 200 kDa/0.5, as the spacer between the drug and poly-
mer via ester and amide bonds. The pharmacokinetic results indicated that the biological
half-life of the CPT conjugates increased from 10 minutes to 2.94 and 3.76 h, respectively.
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4.5. Increased Specificity through Targeted Drug Delivery of PDCs

PDCs can be engineered to enhance the specificity of drug delivery to target cells or
tissues through various targeting moieties. These targeting moieties can be incorporated
into the PDC structure, enabling selective binding to specific receptors or markers on target
cells. This targeted drug delivery approach can increase the specificity of drug delivery,
minimize exposure to healthy cells, and reduce unwanted side effects. Active and passive
targeting are two different strategies used in drug delivery to target specific tissues or cells
in the body. Passive targeting refers to the accumulation of the drug in the target tissue or
organ based on the physiological characteristics of the tissues. Cancer cells are known to
often exhibit leaky vasculature and impaired lymphatic drainage, leading to a buildup of
the drug in the interstitial space. This phenomenon is known as the enhanced permeability
and retention (EPR) effect, and it can be exploited for passive targeting of anticancer drugs
to tumor tissues. The effect of EPR is particularly advantageous for PDCs as they have
a high MW and can exploit the leaky vasculature and poor lymphatic drainage of tumor
tissues to accumulate in the interstitial space, resulting in increased drug accumulation
and improved therapeutic efficacy [143]. Many publications have reported that PDCs can
deliver a high concentration of the drug to the target site. PDCs are also effective at the
cellular level. They can penetrate cells through various types of endocytosis mechanisms:
phagocytosis, pinocytosis, or receptor-mediated endocytosis [144]. Active targeting, on the
other hand, involves the use of ligands or targeting moieties that specifically recognize and
bind to a receptor or antigen expressed on the surface of the target cells. This can improve
drug accumulation in target tissues and reduce off-target effects. For example, antibodies
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or peptides that specifically bind to tumor cells can be conjugated to the surface of drug
carriers to enhance their uptake by tumor cells [145,146]. In general, the drug-targeting
efficiency of nanoparticles is achieved primarily through passive targeting, which is further
increased through active targeting.

4.5.1. Passive Targeting

Publications on PDCs focus mainly on passive targeting, where the size plays a crucial
role in determining the accumulation and penetration. According to reports, particle
sizes within the range of 50 to 200 nm have the potential to improve the penetration
of tumor tissue and increase drug accumulation in different types of cancer, including
pancreatic, breast, and colon cancers. [147]. Initially, studies on anticancer drugs showed
the successful development of a conjugation between neocarzinostatin and poly(styrene-
co-maleic acid) (SMANCS) that could deliver to the tumor sites at a concentration higher
than that of the neocarzinostatin solution. This increased accumulation of particles in the
tumor sites was attributed to the EPR effect. As a result, it was approved in Japan for the
treatment of hepatocellular carcinoma, and is called “StimalmerTM” [148]. Laing et al. [10]
conducted a study on colon cancer therapy using the conjugation of GEM and mPEG-
PLA that produced small-particle-size nanoparticles (112 nm). The results of scanning
electron microscopy (SEM) showed a higher accumulation of GEM in HT29 cancer cells
compared to the free form of GEM. In another study, CPT was chemically linked to a
biocompatible polymer, PEG [139]. The substitution of CPT was 27% w/w with a particle
size of 200 nm. The biological evaluation of the PEG-CPT conjugate against HeLa cells
showed improved cellular uptake and enhanced cytotoxicity compared to free CPT. Apart
from particle size, surface charge plays a crucial role in influencing the EPR effect [149,150].
Within the tumor site, the surface charge affects the cellular association and the penetration
effect. Cationic conjugates tend to have better interactions with negatively charged cell
membranes due to electrostatic attraction, leading to increased cellular uptake [151]. Maeda
et al. reported that the presence of sulfate groups and carboxylate sugars, on the luminal
surface, offered a negative charge [151]. Xiao et al. reported that cationic lysines (positive
charge) nanoparticles exhibited dose-dependent hemolytic activities and cytotoxicities
against RAW 264.7 murine cells proportional to positive surface charge densities, while
anionic aspartic acid (Asp) (negative charge) nanoparticles did not show obvious hemolytic
and cytotoxic properties [152]. On the other hand, cationic conjugates can interact with
negatively charged blood components, leading to aggregation or rapid clearance via the
mononuclear phagocyte system (MPS) [152]. Therefore, anionic or neutral conjugates may
have longer circulation times due to reduced interactions with blood components but may
face some hindrance in cellular uptake due to repulsive forces between negatively charged
conjugates and the cell membrane [153]. The selection of the appropriate surface charge
for PDCs depends on the characteristics of the tumor microenvironment and the desired
pharmacokinetics and biodistribution. Currently, numerous researchers have published
work on innovative PDCs based on passive transport strategies, which are exemplified in
Table 6. It should be noted that while passive targeting has shown promise in preclinical
studies and some clinical trials, it may not be effective for all types of cancer or in all
patients. Active targeting research continues to optimize and personalize targeted drug
delivery strategies for cancer treatment.

4.5.2. Active Targeting

Active targeting involves using targeting molecules as homing devices to direct the
binding of conjugates to receptor structures that are differentially expressed between
normal and tumor tissues [75]. In cancer cells, several biomarkers including receptors
and enzymes (e.g., folate receptor, transferrin receptor, growth factors, CD44) are overex-
pressed on the surface of cancer cells compared to normal cells [154–157]. Various bioactive
molecules, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, have
high affinity to selectively bind these receptors to cancer cells. These molecules are then
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conjugated to the surface of nanocarriers to act as targeting ligands. For example, Issara-
chot et al. [12] investigated PEG-PCL- and MTX-conjugated nanoparticles decorated with
folic acid, compared with undecorated folic acid nanoparticles. The result of an in vitro
uptake study showed that PDC nanoparticles decorated with 10 mol% folic acid were
taken up by MCF-7 cells significantly more than undecorated folic acid nanoparticles. In
another study, HA served as a natural ligand for tumor-targeted drug delivery systems,
as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer
cells [94]. HA-based drug nanocarriers have been used in various anticancer therapies,
such as GEM-HA-DOX [158], GEM-HA-CUR [34], HA-PTX [97], HA-CPT [159], and HA-
CIS [160]. Vogus et al. [158] synthesized an acid-sensitive DOX-GEM-gly-HA prodrug with
different drug ratios using amide and hydrazone as chemical linkers. In vitro and in vivo
studies revealed that the dual drug conjugate was more effective in inhibiting 4T1 tumor
growth by 60% less than those treated with free drugs. In our previous study, GEM and
CUR were successfully conjugated on HA using a hydrazone linker as a pH-sensitive linker.
The results showed that HA could promote the uptake of GEM and CUR nanoparticles
and provided greater cytotoxicity in HCT116 and A549 cells compared to free drugs [34].
Furthermore, one of the extensive studies in clinical research and preclinical trials focuses
on the targeted drug delivery of monoclonal antibodies conjugated with drugs achieving
high-potent cytotoxic effects and reducing side effects. Reynolds et al. [161] revealed that
HER2-targeted liposomal doxorubicin offers a clinical advantage by enhancing the ther-
apeutic potential of HER2-based treatments and reducing the cardiotoxicity associated
with anthracyclines for HER2-overexpressing cancers. Another alternative targeting lig-
and, a MMP-2-sensitive copolymer, is attractive cancer biomarkers that is overexpressed
in tumor tissues. Several MMP-2-sensitive copolymers have been developed for tumor
targeting [162]. Yao et al. [163,164] developed MMP-2-sensitive polymeric nanoparticles of
PEG-phosphoethanolamine-based copolymers (PEG-pp-PE) that showed tumor targeting
and could inhibit P-gp-mediated drug efflux. The results also indicated that the P-gp
inhibition capability of the PEG-pp-PE copolymers was highly associated with P-gp down-
regulation, an increase in plasma membrane fluidity, and inhibition of P-gp ATPase activity.
Examples of PDCs based on targeted drug delivery are also shown in Table 6.

Table 6. PDCs based on passive and active targeted drug delivery.

Polymer Compositions Drugs Ligand Linkers Particle Size
(nm) Application Ref.

Passive targeting

mPEG-PLA GEM - Amide 112.2 ± 1.86
Enhanced the efficacy and the stability

of blood circulation in the
animal model

[10]

PEGMA-PLA CPT - Ester 37.54 Improved drug stability [140]

PEG CPT Ester 171.9 ± 7.5 Improved cellular uptake
Enhanced cytotoxicity [139]

MPEG-b-norbornene functional
PLA-b-P(α-BrCL)

PTX
DOX - Ester and

amide 67.8 ± 4.50 Enhanced the efficacy and
synergistic effect [165]

Galactosylated pullulan CUR - Ester 355 ± 9 Enhanced cytotoxicity in
hepatocellular carcinoma [166]

Acetylated carboxymethylcellulose
(Ac-CMC)

Cabazitaxel (CBZ)
Docetaxel (DTX) - Ester 96 ± 5.3 Enhanced cytotoxicity in resistant

prostate cancer [167]

Active targeting

PEG-PCL MTX Folic acid Ester 200–300 Enhanced cellular uptake [12]

Generation 5 polyamidoamine MTX Folic acid Amide -
Increased specificity

Enhanced cytotoxicity in HeLa cells
from cervical carcinoma

[168]

HA DOX
GEM HA Amide

Hydrazone 20–100
Increased specificity

Enhanced cytotoxicity in a 4T1
orthotopic mouse breast cancer model

[158]
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Table 6. Cont.

Polymer Compositions Drugs Ligand Linkers Particle Size
(nm) Application Ref.

HA GEM
CUR HA Hydrazone 221.2 ± 7.7

Increased specificity
Enhanced cytotoxicity in HCT116 and

A549 cells
[34]

HA PTX HA Ester - Enhanced efficacy in mice with
bladder cancer [97]

HA CPT HA Amide - Improved stability
Enhanced cellular uptake [159]

HA CIS HA Ester - Enhanced cytotoxicity [160]

PEG DOX TTP - Increased specificity
Enhanced cellular uptake and efficacy [161]

PLGA-PEG Trastuzumab
(TTP) TTP Amide 81.2 ± 0.9 to

102.5 ± 0.7

Reduced phagocytic uptake
and immunogenicity

Increased cellular uptake
[169]

PEG-PE DOX

PEG-pp-PE
(MMP-2
sensitive
polymer)

Peptide 33.0 ± 1.2 Improved multidrug resistance and
enhanced efficacy

[163,
164]

PEG-PLA Irinotecan
(CPT-11)

PEG-pp-PLA
(MMP-2
sensitive
polymer)

Peptide 172 ± 30 Improved multidrug resistance and
enhanced efficacy [162]

5. Conclusions

The use of PDCs in pharmaceutical delivery systems enables the proper delivery of
drugs and their release at the target site in prodrug form. In this review, we discuss how
to modify PDCs to address pharmaceutical challenges. To achieve therapeutic efficiency,
polymer structures, small molecules, targeting ligands, linkers, and drug properties should
be taken into consideration, along with an understanding of the biological conditions
of diseases. Various strategies can be employed to modify polymer structures, such as
combining them with other polymers and/or decorating them with small molecules, to
attain desired properties such as self-assembled formation, hydrophobic and hydrophilic
balance, and reduced recognition by immune systems. Moreover, the choice of linkers
between the drug and polymer is crucial, as they determine the timing and location
of drug release under physiological conditions such as pH, temperature, enzymes, and
disease-specific overexpressed receptors. These linkers, known as stimuli-responsive
linkers, depend on the functional groups available in the structure of the drug and polymer,
which also affect the physiochemical properties of PDCs. Furthermore, targeted drug
delivery for cancer enhances both passive and active approaches, representing a significant
advance in improving the specificity and efficacy of chemotherapy. All strategies should be
optimized to make PDCs useful in clinical applications, offering hope for more effective
and personalized cancer therapies. It is important that PDC preparation does not require
complex multistep processes, is sufficiently stable during storage, and is easy to use in
clinical settings. The PDC approach is fascinating and appears to have a bright future
in therapeutics.
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Abstract: Polymer–drug conjugates (PDCs) have shown great promise in enhancing the efficacy and 
safety of cancer therapy. These conjugates combine the advantageous properties of both polymers 
and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to 
tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for 
cancer therapy. First, various types of polymers used in these conjugates are discussed, including 
synthetic polymers, such as poly (↋ -caprolactone) (PCL), D-α-tocopheryl polyethylene glycol 
(TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). 
The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, 
and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are ex-
plored, including covalent bonding, which enables a stable linkage between the polymer and the 
drug, ensuring controlled release and minimizing premature drug release. The use of polymers can 
extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues 
through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved 
drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands 
in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, 
and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing 
off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a ver-
satile and effective approach to cancer therapy. Their ability to combine the advantages of polymers 
and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby im-
proving the overall efficacy and safety of cancer therapies. Further research and development in this 
field has great potential to advance personalized cancer treatment options. 
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1. Introduction 
Cancer treatment poses a significant challenge to medicinal sciences. Although chem-

otherapy and radiation therapy are primary therapeutic strategies, they often cause severe 
systemic side effects [1]. In addition, the low solubility of many chemotherapeutics causes 
aggregation, triggering an immune response and clearance from the body. This ultimately 
decreases the circulation time in the bloodstream and reduces its effectiveness in deliver-
ing the free drug to tumor sites [2,3]. Polymer–drug conjugates (PDCs) are drug delivery 
technologies that were first initiated by Horst Jatzkewitz in 1955 [4]. Several drug mole-
cules are covalently bound to polymeric carriers through bioresponsive linkers to improve 
stability with the diversity, specificity, and functionality of biomolecules [5]. PDCs offer 
various advantages for cancer therapy. They can improve drug solubility and loading ca-
pacity [6,7], improve pharmacokinetic profiles by controlling and maintaining drug re-
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28. Yang, J.; Kopeček, J. Design of smart HPMA copolymer-based nanomedicines. J. Control. Release 2016, 240, 9–23. [CrossRef]
29. Maeda, H.; Takeshita, J.; Kanamaru, R. A lipophilic derivative of neocarzinostatin. A polymer conjugation of an antitumor protein

antibiotic. Int. J. Pept. Protein Res. 1979, 14, 81–87. [CrossRef] [PubMed]
30. Ettinger, A.R. Pegaspargase (oncaspar). J. Pediatr. Oncol. Nurs. 1995, 12, 46–48. [CrossRef]
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1. Introduction 
Cancer treatment poses a significant challenge to medicinal sciences. Although chem-

otherapy and radiation therapy are primary therapeutic strategies, they often cause severe 
systemic side effects [1]. In addition, the low solubility of many chemotherapeutics causes 
aggregation, triggering an immune response and clearance from the body. This ultimately 
decreases the circulation time in the bloodstream and reduces its effectiveness in deliver-
ing the free drug to tumor sites [2,3]. Polymer–drug conjugates (PDCs) are drug delivery 
technologies that were first initiated by Horst Jatzkewitz in 1955 [4]. Several drug mole-
cules are covalently bound to polymeric carriers through bioresponsive linkers to improve 
stability with the diversity, specificity, and functionality of biomolecules [5]. PDCs offer 
various advantages for cancer therapy. They can improve drug solubility and loading ca-
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