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Abstract: Multicomponent solid forms of low molecular weight drugs, such as co-crystals, salts, and
co-amorphous systems, are a result of the combination of an active pharmaceutical ingredient (API)
with a pharmaceutically acceptable co-former. These solid forms can enhance the physicochemical
and pharmacokinetic properties of APIs, making them increasingly interesting and important in
recent decades. Nevertheless, predicting the formation of API multicomponent solid forms in the
early stages of formulation development can be challenging, as it often requires significant time and
resources. To address this, empirical and computational methods have been developed to help screen
for potential co-formers more efficiently and accurately, thus reducing the number of laboratory
experiments needed. This review provides a comprehensive overview of current screening and
prediction methods for the formation of API multicomponent solid forms, covering both crystalline
states (co-crystals and salts) and amorphous forms (co-amorphous). Furthermore, it discusses recent
advances and emerging trends in prediction methods, with a particular focus on artificial intelligence.

Keywords: co-amorphous; co-crystal; co-former screening; formation prediction of multi-component
solid forms

1. Introduction

Drug absorption after oral administration of active pharmaceutical ingredients (APIs)
inter alia depends on their physicochemical properties (e.g., polymorphic form, drug solu-
bility), their dose, and the local environment within the gastrointestinal tract. It has been
reported that up to 90% of the currently developed APIs and about 40% of the approved
drugs have poor biopharmaceutical properties as a consequence of their insufficient sol-
ubility in water [1,2]. The pharmaceutical industry is thus investing considerable efforts
in searching for strategies to improve the solubility and bioavailability of APIs, without
compromising their effectiveness. Several strategies [3], including nano- and micro-based
drug delivery systems (e.g., extracellular vesicles [4], nanospheres and micelles [5], and
nano- and microemulsions [6]), modified release solid dosage forms (e.g., in tablets and
capsules [7]), and crystal engineering [8] (e.g., co-crystals [9] and co-amorphous forms)
have been successfully investigated and partly implemented to improve the solubility and
dissolution rate of APIs belonging to the biopharmaceutics classification system classes II
and IV [10].

In 1989, Desiraju defined the term crystal engineering as “the comprehension of inter-
molecular interactions within crystal packing, and the use of this knowledge to engineer
novel solid materials possessing specific physical and chemical characteristics” [11]. Crystal
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engineering is a powerful tool in the design of crystalline structures presenting different
packing and intermolecular interactions. These crystalline structures are composed of one
or more types of molecules (multicomponent solid forms). [12] Among these solid forms,
co-crystals, salts, and co-amorphous systems (Figure 1) have been considered important in
improving the physicochemical properties of APIs [13–15].
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Figure 1. Representation of the different API solid-state forms.

In 2018, the U.S. Food and Drug Administration (FDA) defined pharmaceutical co-
crystals as crystalline materials composed of a neutral API and a second neutral molecule
generally defined as a co-former (Figure 1). Co-crystals are formed in a stoichiometric ratio
where the molecules interact via non-covalent interactions, such as hydrogen bonds, van
der Waals interactions, π···π stacking, and halogen bonds, to form crystalline structures [13].
According to the FDA, this is the only difference between a co-crystal and a salt, as, in a
pharmaceutical salt, a proton transfer occurs between an ionizable API and the co-former
and both molecules interact in a stoichiometric way via charge-assisted hydrogen bond
interactions (Figure 1) [16]. Solvates and hydrates are crystalline materials in which solvent
molecules are present in the crystal lattice. Solvent molecules can thus be present in
the crystalline lattice of co-crystals and salts, forming solvated/hydrated co-crystals and
solvated/hydrated salts [16].

Amorphous solid dispersion technology has evolved since the 1960s, with polymers
used as carriers. However, polymers have limitations, such as hygroscopicity and low
drug loading. In 2009, Chieng et al. [17] introduced a term called “co-amorphous”, for
amorphous solid dispersions that replace polymers with low molecular weight compounds.
Co-amorphous refers to a homogenous, single-phase amorphous system containing two
or more low molecular weight components interacting with each other in a non-periodic
way, via, e.g., charge or non-charge assisted hydrogen bond interactions [18]. Based on
the type of co-former used, co-amorphous systems can be divided into API–excipient and
API–API co-amorphous systems [19]. In API–excipient co-amorphous systems, saccharin,
nicotinamide, amino acids, dipeptides and carboxylic acids can be used as excipients. [20]
On the other hand, in API–API co-amorphous systems, APIs can be selected according to
their similar or complementary pharmacological properties [21].

Suitable co-formers are crucial to designing stable co-crystal, salts, and co-amorphous
systems with desirable properties, such as high solubility, fast dissolution rate, good
diffusion permeability, high physicochemical stability and a possible synergistic pharma-
cological effect [22]. Over the last few decades, high-throughput screening experiments
have been used to predict the formation of API multicomponent solid forms. This trial and
error approach is time consuming and requires a considerable consumption of materials
and resources [23].

In recent years, advanced prediction methods, especially computer-assisted methods,
have been developed to improve the specificity, sensitivity and accuracy of co-former
screening and the formation prediction of API multicomponent solid forms. Figure 2
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shows the timeline of the development of computer-assisted methods. Prediction methods
for crystalline states were developed earlier (in 1997), some of which were explored for
amorphous forms later (in 2011). Herein, methods are divided into two categories: hydro-
gen bond based methods and non-hydrogen bond based methods. The former category
includes ∆pKa based models [24–28]; supramolecular synthon engineering [29–33]; virtual
co-crystal screening based on molecular electrostatic potential surfaces (MEPs) [34–38];
and hydrogen bond propensity (HBP) [39–42]. The latter category includes lattice energy
calculation [43,44]; molecular complementarity (MC) by using the Cambridge Structural
Database (CSD) [45–47]; the Hansen solubility parameter (HSP) [23,48–50]; conductor-like
screening model for real solvents (COSMO-RS) [51–55]; artificial intelligence (AI) strate-
gies [56–60]; and other novel methods [23,61,62]. Even though none of the methods can
unfailingly predict the formation of API multicomponent solid forms, they can provide
guidance for co-former screening to reduce the number of laboratory tests. The combination
of two or more methods can greatly improve the effectiveness and accuracy of co-former
screening [63–65]. Tables 1 and 2 summarize cases in the recent literature using hydrogen
bond based methods and non-hydrogen bond based methods, respectively.
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Table 1. Hydrogen bond based methods for co-former screening and formation prediction of multicomponent solid forms.

Prediction
Method System API Co-Former Preparation Method Key Findings Ref.

MEPs
(only for
multicomponent
crystal forms)

multicomponent
crystal forms

5,5′-di(pyridin-3-yl)-2,2′-
bithiophene,
5,5′-di(pyridin-4-yl)-2,2′-
bithiophene (T2)

7 aromatic and one aliphatic acid liquid-assisted grinding

• Among the 16 combinations, 8 single-crystal
structures were obtained.

• MEPS calculations predicted synthon outcomes,
matching experimental co-crystallization results
except for T2:4-hydroxybenzoic acid.

[34]

multicomponent
crystal forms

kaempferol, quercetin,
myricetin praziquantel suspension-stirring

• Different conformations were analyzed to predict the
possible interactions between API and co-formers,
which were consistent with the interactions in 4
co-crystals obtained.

• Calculating the difference in interaction site pairing
energies is more efficient for virtual screening of
co-crystals.

[38]

multicomponent
crystal forms spironolactone, griseofulvin 4-tert-butylpheno, phenol, 2,5-xylenol liquid-assisted grinding

• 310 potential co-formers were screened based on the
difference in the solid-state interaction site pairing
energies (∆E), 35 of these which showed the highest
values of ∆E and were selected for experimental
screening.

• 1 griseofulvin co-crystal and 2 spironolactone
co-crystals were obtained.

[35]

multicomponent
crystal forms resveratrol

4,4′-bipyridine, piperazine, phenazine,
1,10-phenanthroline, 1,4-diazabicyclo
[2.2.2]octane, methenamine, acridine,
succinimide,
N,N-dimethyl-4-aminopyridine

solvent evaporation
• 10 new co-crystals of resveratrol with 9 co-formers

were developed by analyzing interaction site pairing
energy differences.

[36]

multicomponent
crystal forms

1,2,4-thiadiazole derivative
(TDZH)

6 acids: oxalic, maleic, fumaric, adipic,
vanillic and gallic

liquid-assisted grinding,
solvent evaporation

• 5 new multi-component crystals of TDZH were
discovered.

• Quantitative analysis of MEPs and periodic density
functional theory calculations were used to examine
the relationship between the donor/acceptor groups
in TDZH/co-former molecules and the hydrogen
bond pattern in multicomponent crystal forms.

[37]
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Table 1. Cont.

Prediction
Method System API Co-Former Preparation Method Key Findings Ref.

supramolecular
synthon
(only for
multicomponent
crystal forms)

multicomponent
crystal forms 5-fluorocytosine sarcosine, dimethylglycine liquid-assisted grinding

• Co-crystal screening was guided using the relatively
unexplored amine-carboxylate supramolecular
synthon.

• 2 new co-crystals were discovered among 11 potential
co-formers.

[29]

multicomponent
crystal forms sulfadimethoxine

isonicotinamide, 4,4′-bipyridine,
piperazine,
4,4′-trimethylenedipiperidine,
1,4-diazabicyclo [2.2.2]octane

liquid-assisted grinding,
solvent evaporation

• Co-formers containing cyclic amines, amides,
carboxylic acids, and sulfonamide-based moieties
were used to screen for sulfadimethoxine co-crystal
formation.

• 8 new multicomponent crystal forms were obtained
favoring amine derivatives.

[30]

multicomponent
crystal forms regorafenib malonic acid, glutaric acid, pimelic

acid liquid-assisted grinding

• Regorafenib can form hydrogen bond supramolecular
synthons with carboxylic groups.

• Dicarboxylic acids were chosen as candidates and 3
co-crystals were successfully formed.

[31]

multicomponent
crystal forms

nicotinamide,
isonicotinamide

3,5-pyrazole dicarboxylic acid,
dipicolinic acid, quinolinic acid solvent evaporation

• 3 nitrogen heterocycle-containing aromatic
dicarboxylic acids were chosen as successful
co-formers based on carboxylic acid–aromatic
N-hetero-synthons.

[32]

multicomponent
crystal forms diclofenac

4,4′-bipyridine;
1,2-bis(4-pyridyl)ethane;
1,2-bis(4-pyridyl)propane;
2-aminopyridine, 3-aminopyridine,
4-aminopyridine, ethylenediamine

liquid-assisted grinding,
solvent evaporation

• Based on a robust acid···pyridine supramolecular
synthon.

• Diclofenac acid formed 9 multicomponent crystal
forms with pyridines and amine-based co-formers.

[33]
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Table 1. Cont.

Prediction
Method System API Co-Former Preparation Method Key Findings Ref.

HBP
(only for
multicomponent
crystal forms)

multicomponent
crystal forms pyrimethamine

carbamazepine, theophylline, aspirin,
α-ketoglutaric acid, saccharin,
p-coumaric acid

solvent evaporation

• Hydrogen bond propensity calculations were
conducted to predict co-crystallization results for
pyrimethamine and 8 co-formers, resulting in the
formation of 2 co-crystals and 4 salts of
pyrimethamine.

[39]

multicomponent
crystal forms pyrimethamine

oxalic acid, malonic acid,
acetylenedicarboxylic acid, adipic acid,
pimelic acid, suberic acid, azelaic acid

solvent evaporation

• Hydrogen bond propensity calculations were carried
out to predict the development of salts/co-crystals for
pyrimethamine and 10 co-formers, accurately
predicting 7 successful salts and 3 unsuccessful cases.

[40]

multicomponent
crystal forms indomethacin nicotinamide milling

• The hydrogen bond propensity demonstrates that the
hydrogen bond motifs in indomethacin-nicotinamide
co-crystal structures are one of the most likely
donor-acceptor combinations.

[41]

multicomponent
crystal forms lenalidomide nicotinamide solid-state/liquid-assisted

grinding

• Co-crystals were successfully synthesized based on
the dominance of heteromeric interactions suggested
by ∆propensity (0.1) > 0.

[42]

∆pKa rule
(only for
multi-component
crystal forms)

multicomponent
crystal forms paracetamol

trans-1,4-diaminocyclohexane,
1,2-bis(4-pyridyl)ethane,
1,2-di(4-pyridyl)ethylene

liquid-assisted grinding,
solvent evaporation

• ∆pKa < 0 were consistent with the co-crystal
formation.

• Predicting proton transfer in solid-state based on
∆pKa is not precise and can vary with the solvent
used for crystallization.

[24]

multi-component
crystal forms 2-chloro-4-nitrobenzoic acid

2-bromopyridine,
3-amino-2-bromopyridine,
3-amino-2-chloropyridine,
2-amino-5-nitropyridine,
2-amino-3-bromopyridine,
2-chloro-3-hydroxypyridine,
2-amino-5-bromopyridine,
2-amino-5-chloropyridine,
2,6-dimethylpyridine

solvent evaporation
• The results met well with the ∆pKa rule: below 0,

co-crystals are formed; above 3, salts are formed; and
in the middle range, the formation of both is favored.

[25]
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Table 1. Cont.

Prediction
Method System API Co-Former Preparation Method Key Findings Ref.

multicomponent
crystal forms baicalein dicotinamide

solvent evaporation, rotary
evaporation, and
cogrinding.

• Co-crystal formation (∆pKa (−1.98)) between
baicalein (pKa 5.4) and nicotinamide (pKa 3.4) was
consistent with ∆pKa rule.

[26]

multicomponent
crystal forms AMG 517

10 acids: benzoic, trans-cinnamic,
2,5-dihydroxybenzoic, glutaric,
glycolic, trans-2-hexanoic,
2-hydroxycaproic, L(+)-lactic, sorbic
acid, L(+)-tartaric

slow cooling and solvent
evaporation

• Based on the ∆pKa range (−2.33 to −4.12),
10 co-crystals of AMG 517 were formed.

[27]

multicomponent
crystal forms

3-hydroxybenzoic acid,
4-hydroxybenzoic acid,
6-hydroxy-2-naphthoic acid,
3-hydroxypyridine

pyrazine, 4-phenylpyridine,
1.2-bis(4-pyridyl)ethane,
4.4-bipyridine, quinoxaline,
tetramethylpyrazine,
trans-1,2-bis(4pyridyl)ethane, benzoic
acid, isophthalic acid,

grinding, solvent-drop
grinding, solvent-drop
grinding

• 3 co-crystals (∆pKa < 0), 2 salts (∆pKa > 3),
8 co-crystals, 1 co-crystal of a salt and 1 solvated
co-crystal (∆pKa 0.86 to 2.05) were successfully
prepared, which were fully consistent with the
∆pKa rule.

[28]

Table 2. Non-hydrogen bondbased methods for co-former screening and formation prediction of multicomponent solid forms.

Prediction Method System API Co-former Preparation Method Key Findings Ref.

HSP
(for both multicomponent
crystal forms and
co-amorphous systems)

multicomponent
crystal forms indomethacin

nicotinamide, saccharin,
4,4′-bipyridine cinnamic
acid

liquid-assisted grinding,
reaction crystallization

• Indomethacin was miscible with 21 out of 33 co-formers
according to HSP results.

• Indomethacin formed co-crystals with 4 different co-formers,
2 of which were newly developed.

[48]

multicomponent
crystal forms paliperidone benzamide, nicotinamide,

para hydroxy benzoic acid solvent evaporation
• Paliperidone formed co-crystals with benzamide, nicotinamide,

and para hydroxy benzoic acid, as HSP predicted using three
group contribution methods.

[49]

co-amorphous tadalafil repaglinide solvent evaporation

• HSP difference between tadalafil (26.01 MPa0.5) and repaglinide
(26.01 MPa0.5) is less than 7 MPa0.5, confirming their good
miscibility.

• There were no molecular interactions in the system.

[50]

co-amorphous florfenicol oxymatrine solvent evaporation • The ∆δt value of florfenicol and oxymatrine is 3.87 MPa0.5,
indicating miscibility.

[66]
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Table 2. Cont.

Prediction Method System API Co-former Preparation Method Key Findings Ref.

co-amorphous norfloxacin

saccharin, naproxen,
indomethacin,
L-phenylalanine, L-arginine,
L-tryptophan

dry ball mill

• ∆δ and ∆δt criteria were used to predict the molecular
miscibility between norfloxacin and 17 co-former candidates

• Norfloxacin can form co-amorphous with 6 co-formers.
• Van Krevelen criterion is more suitable for assessing molecular

miscibility in the formation of norfloxacin co-amorphous.

[67]

COSMO-RS
(only for multicomponent
crystal forms)

multicomponent
crystal forms carbamazepine

DL-mandelic acid,
DL-tartaric acid,
indomethacin

liquid-assisted grinding

• 21 out of 75 co-former candidates were investigated, where
3 new systems and 9 already known systems were obtained.

• Only using ∆Hex as a criterion for selecting co-formers is not
sufficient

• Considering both the fusion entropy ∆Sm and the excess
enthalpy ∆Hex, the results have a better prediction.

[51]

multicomponent
crystal forms

caffeine,
theophylline 8 phenolic acids liquid-assisted grinding

• 8 new co-crystals were discovered on caffeine and theophylline.
• Caffeine and theophylline showed a linear correlation in the

mixing enthalpies and co-crystal forming abilities.
[52]

multicomponent
crystal forms posaconazole

4-aminobenzoic acid,
L-malic acid, succinic acid,
fumaric acid, ferulic acid,
maleic acid, citric acid,
L-hydroxy-2-naphthoic acid,
gentisic acid, salicylic acid,
L-lactic acid, adipic acid,
3,4-dihydroxybenzoic acid

high-throughput slurry,
liquid-assisted grinding,
reaction crystallization

• COSMOquick was used to reduce a list of about 140 potential
co-formers to 28 candidates.

• 13 new posaconazole co-crystals (7 anhydrous, 5 hydrates, and
1 solvate) were successfully prepared.

[53]

multicomponent
crystal forms clotrimazole

3,5-dinitrosalicylic acid,
3,5-dinitrobenzoic acid
indole-6-carboxylic acid,
syringic acid, 3-
nitrobenzoic acid,
1,4-naphthalenedicarboxylic
acid, pyromellitic acid,
2,3-dihydroxybenzoic acid,
1,2,4-benzenetricarboxylic
acid

liquid-assisted grinding,
slurry suspension, solvent
evaporation

• 14 out of 21 potential co-formers formed multi-component
crystal forms with clotrimazole, including 5 reported cases,
3 new co-crystals and 6 new salts.

[54]
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Table 2. Cont.

Prediction Method System API Co-former Preparation Method Key Findings Ref.

multicomponent
crystal forms

2-hydroxyben
zylamine

succinic acid,
p-aminobenzoic acid,
p-nitrobenzoic acid,
o-nitrobenzoic acid, p-toluic
acid, 2,3-dihydroxybenzoic
acid, 3,4-dihydroxybenzoic
acid, p-nitrophenol,
5-hydroxyisophthalic acid

liquid-assisted grinding

• 21 out of 40 potential co-formers were characterized as new
solid phases.

• 9 multicomponent single crystals were obtained and
characterized.

[55]

MC
(only for multi-component
crystal forms)

multicomponent
crystal forms artemisinin resorcinol, orcinol liquid-assisted grinding

• Only 2 out of 75 co-formers (3%) led to the formation of a
co-crystal.

• Low success rate was due to artemisinin lacking strong
hydrogen bond donors or acceptors.

[45]

multicomponent
crystal forms leflunomide

pyrogallol,
3-hydroxybenzoic acid,
2-picolinic acid,
2-aminopyrimidine

liquid-assisted grinding

• Structure and intermolecular interactions of leflunomide were
analyzed using Isostar and Mercury to identify favorable
functional groups for co-crystallization, resulting in 5 new
co-crystals.

[46]

co-amorphous
and
multi-component
crystal forms

sulfamethoxazole

acetamide, propionamide,
isonicotinamide,
2-hydroxypyridine,
pyrazine, imidazole, oxalic
acid dihydrate,
N-hydroxysuccinimide,
1,2-di(4-pyridyl)ethylene,
1,2-di(4-pyridyl)ethylene,
1,3-di(4-pyridyl)propane,
4,4′-bipyridine,
4-phenylpyridine,
benzamidine,
carbamazepine,
deoxycholic acid,
hexamethylenetetramine,
sodium deoxycholate

neat grinding, solvent
evaporation

• CSD motif search offered 39 potential candidates and MC was
used to screen the compatibility.

• 13 new co-crystals, 1 salt and 4 co-amorphous systems were
identified experimentally.

[47]
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Table 2. Cont.

Prediction Method System API Co-former Preparation Method Key Findings Ref.

lattice energy
(only for multicomponent
crystal forms)

multicomponent
crystal forms carbamazepine isonicotinamide cooling crystallization,

slurry

• Carbamazepine-isonicotinamide formed co-crystals due to
lower or comparable lattice energy of pure components.

• Carbamazepine-picolinamide could not form co-crystal due to
less stable lattice energies than pure components.

[43]

multi-component
crystals pentoxifylline aspirin, salicylic acid,

benzoic acid

neat and liquid-assisted
grinding, solvent
evaporation

• The experimental and in silico screening of co-crystals yielded
consistent results.

• FlexCryst software (www.flexcryst.com (accessed on 23 July
2023)) suggests that the prediction of co-crystal formation must
satisfy ∆G ≥ −3 kJ/mol for feasibility, instead of
∆G ≥ 0 kJ/mol.

[44]

Artificial intelligence
(for both multicomponent
crystal forms and
co-amorphous systems)

multicomponent
crystal forms diclofenac

iIsonicotinamide,
2-pyrrolidinone,
4,4′-Bipyridine.

neat grinding
• An extreme gradient boosting model was developed using

1000 co-crystallization cases and 2083 chemical descriptors.
• 3 new co-crystals of diclofenac were discovered.

[56]

multicomponent
crystal forms captopril l-proline, sarcosine liquid-assisted grinding

• A random forest-based co-crystal prediction model was created
using a dataset of positive samples from CSD and negative
samples from randomly paired molecules.

• 2 captopril co-crystals verified the effectiveness of the model.

[57]

multicomponent
crystal forms norfloxacin nicotinamide,

4,4′-vinylenedipyridine neat grinding
• COSMO-SVM and 3D-CNN machine learning models were

established.
• 2 new norfloxacin co-crystals were predicted and fabricated.

[58]

co-amorphous folic acid
nicotinamide, l-isoleucine,
anthranilic acid, citric acid,
theophylline, theobromine.

neat grinding

• The gradient boost model achieved a predictive accuracy of
over 73%.

• 6 novel co-amorphous forms of folic acid were predicted
and discovered.

[59]

www.flexcryst.com
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Table 2. Cont.

Prediction Method System API Co-former Preparation Method Key Findings Ref.

co-amorphous glycopyrronium
bromide budesonide, ethambutol neat grinding

• A molecular descriptor-based ML model was built with an
accuracy of 79%.

• 2 successful co-amorphous and one failed case were confirmed
by the model.

[60]

multicomponent
crystal forms nimesulide

4,4′-bipyridine, trans-1,2-
bis(4-pyridyl)ethylene,
1,2-bis(4-pyridyl)ethyne,
1,2-bis(4-pyridyl)ethane

liquid-assisted grinding,
slurry

• Co-crystal formation between nimesulide and pyridine
analogues depends on various molecular descriptors of
co-formers, with MEP having the greatest impact, followed by
h_ema (sum of hydrogen bond acceptor strengths), Kier flex
(molecular flexibility), and horizontal distance between two N
atom projections.

[61]

co-amorphous

carvedilol,
mebendazole,
carbamazepine,
furosemide,
indomethacin,
simvastatin

20 natural amino acids neat grinding

• The PLS-DA model effectively separated co-amorphous and
non-co-amorphous samples.

• Non-polar side chain amino acids were the most effective
co-formers for the formation of co-amorphous systems, while
polar amino acids were the least successful.

[62]
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2. Hydrogen Bond Based Methods
2.1. ∆pKa Rule

The ∆pKa Rule is a simple approach to predict the formation of co-crystals or salts [63,68].
The difference in pKa (∆pKa) between acidic/basic APIs and basic/acidic co-formers is
calculated as follows:

∆pKa = pKa (base) − pKa (acid) (1)

∆pKa can be used to estimate the tendency for proton transfer between a given API
and co-former. When ∆pKa is higher than 3, a significant difference in the acidity or basicity
of the API and co-former is obtained, indicating a preferable formation of a salt. When
∆pKa is lower than 0, the acidity or basicity of the API and co-former are similar and
thus the formation of a co-crystal is expected where non-charge-assisted hydrogen bond
interactions occur between the API and co-former. However, when ∆pKa is between 0 and 3,
the difference in acidity or basicity is not large enough to clearly favor the formation of salt
over a co-crystal or vice versa. In such cases, the ∆pKa rule is not the most reliable approach
to predict the formation of a salt or co-crystal [9,69]. A combination of experimental and
computational methods is thus necessary to determine the proton location. These methods
include nuclear magnetic resonance spectroscopy, X-ray crystallography, and computational
modeling using density functional theory or molecular dynamics simulations [70]. The
∆pKa rule was validated by Cruz-Cabeza using 6465 crystalline structures from the CSD [71].
Multicomponent crystalline solid forms with ionized or non-ionized acid-base pairs are only
observed when ∆pKa is greater than 4 or less than -1, respectively. When ∆pKa is between -1
and 4, ∆pKa and the likelihood of proton transfer showed a linear relationship (Figure 3). A
“salt–co-crystal continuum” exists when the proton position is ambiguous (∆pKa between 0
and 3), which is between the two extremes of salt and co-crystal [63]. In such cases, the ∆pKa
rule is not applicable for predicting the formation of salts or co-crystals. Childs et al. [63],
investigated the propensity for forming co-crystals or salts with multicomponent pairs with
∆pKa lower than 3. They prepared a total of 20 multicomponent solid forms of theophylline
and guest molecules, which included 13 co-crystals, five salts, and two within the salt–co-
crystal continuum. It is important to note that the formation of salts or co-crystals is influenced
by several factors, including the solvent used (and its polarity), temperature, API or co-
former concentration, and crystal packing interactions. Therefore, the values of ∆pKa alone
cannot predict with certainty the formation of salts or co-crystals, but they can provide useful
information about the likelihood of their formation.
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2.2. Supramolecular Synthons

Recognizing supramolecular interactions is crucial for designing crystals. After
introducing the term “crystal engineering” in 1989, Desiraju [72] introduced the term
“supramolecular synthons” and defined them as structural entities within supermolecules
(i.e., complexes of two or more molecules that are non-covalently bonded) that can be
created and/or arranged through intermolecular interactions using existing or feasible
synthetic methods. Supramolecular synthons can serve as a design strategy for control-
ling the self-assembly of molecules through non-covalent interactions in the solid state.
These synthons play a fundamental role in the formation of co-crystals because they act as
building blocks in supramolecular chemistry, guiding the arrangement and organization of
molecules in the solid state. Supramolecular synthons can be divided into two categories:
homosynthons and heterosynthons (Figure 4). Supramolecular homosynthons consist of
the same complementary functional groups that can form self-association motifs, such as
dimers or chains, including acid-acid [73] and amide-amide [74] interactions. Supramolec-
ular heterosynthons consist of diverse but complementary functional groups, including
acid-amide [75], acid-hydroxyl [76], hydroxyl-pyridine [77], acid-pyridine [28], acid-N-
oxide [70], amide-N-oxide [78], sulfonamide-N-oxide [79], and sulfonamide-amide [80]
interactions. In a study conducted by the CSD, the hierarchy of supramolecular heterosyn-
thons, involving carboxylic acids and alcohols, was evaluated in competitive environments,
i.e., considering that both carboxylic acid and hydroxyl groups compete to form hydro-
gen bond motifs [28]. It was found that supramolecular heterosynthons (COOH···Narom
and OH···Narom) are preferred over the corresponding supramolecular homosynthons
(COOH···COOH and OH···OH). Supramolecular synthons enable the prediction of the
possible interactions between different molecules and the assessment of their propensity to
form stable co-crystals. Through the analysis of complementary synthons in the molecular
components, it becomes possible to narrow down the potential co-formers for a given
target molecule.
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The use of supramolecular synthons has been explored only in multicomponent crys-
tal forms [31,32,70]. Since the supramolecular synthon principle is simple and does not
require any calculations, it has been most frequently used as a tool to guide co-former
selection. For example, when screening co-crystals of regorafenib (REG), it was found that
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REG has several hydrogen bond sites including hydrogen bond donors (amino groups),
and hydrogen bond acceptors (carbonyl and pyridine groups) [31]. Dicarboxylic acids
were chosen as co-former candidates because hydroxyl and carbonyl groups of carboxylic
acids can act as hydrogen bond donor and acceptor, respectively. Three dicarboxylic acids
including malonic acid, glutaric acid and pimelic acid were found to form co-crystals
with REG. Based on the knowledge that nicotinamide and isonicotinamide commonly
form heterosynthons with carboxylic acids, Das et al. [32] used nitrogen-containing car-
boxylic acids, including 3,5-pyrazole dicaboxylic acid, dipicolinic acid, or quinolinic acid
as co-formers and successfully prepared new multicomponent crystal forms. Four dif-
ferent supramolecular heterosynthons were found in nicotinamide and isonicotinamide
co-crystals with 3,5-pyrazole dicarboxylic acid (Figure 5). In co-former screening for minox-
idil, Deng et al. [70] found that robust O-H···N or N-H···O hydrogen bonds were observed
between pyrimidine N-oxide and carboxylic acids. Therefore, 17 co-former candidates
with carboxylic acid groups were chosen and eight aromatic carboxylic acids successfully
formed multicomponent crystal forms with minoxidil.
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2.3. Molecular Electrostatic Potential Surfaces (MEPs)

The calculated MEPs generated using the density functional theory in the gas phase
are used to identify surface site interaction points and predict electrostatic interactions at
the surface of the molecules [81]. The strength of hydrogen bond donors and acceptors
can be ranked according to the MEPs [82], which have also been further used in the
design of ternary multicomponent crystal forms [83]. The hydrogen bond donor (α) and
acceptor (β) are generated from the maxima and minima of the MEP and calculated using
Equations (2) and (3), respectively.

α = 0.0000162MEPmax
2 + 0.00962MEPmax (2)

β = 0.000146MEPmin
2 − 0.00930MEPmin (3)
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where MEPmin and MEPmax are the local minima and maxima on the MEPs (unit: kJ·mol−1).
The prediction of multicomponent crystal forms based on MEPs considers that all hydrogen
bond sites on the surface of a molecule are not restricted by the internal molecular structure
and are free to interact with other molecules in the solid-state environment. The molecular
arrangement, steric constraints and packing effects are not taken into account [81]. The
interaction site pairing energy E is the sum of all contacts across the surface of every
molecule in the crystal, which can be calculated using Equation (4) [84].

E = −∑ij αiβj (4)

where αi are hydrogen bond donor sites, and βj are hydrogen bond acceptor sites. Positive
or negative unpaired sites locate low electrostatic potential gaps or regions, making no
contribution to the overall electrostatic interaction energy [81].

According to Etter, the first most positive αi interacts with the first most negative βj,
the second most positive αi with the second most negative βj, and so forth until all of the
interaction sites are covered [85]. Based on this theory, Musumeci et al. [81] proposed that
the probability of forming a multicomponent crystal form can be predicted by the difference
in the interaction site pairing energy (∆E) between the total E of pure components and the
E of the multicomponent crystal forms, using the following Equation (5).

∆E = −(Ecrys − nE1 −mE2) (5)

where Ecrys, E1 and E2 are the interaction site pairing energies of a multicomponent crystal
of stoichiometry 1n2m, and the pure component solids, 1 and 2, respectively. The interaction
site pairing energy of a multicomponent crystal is calculated in the same way as for a pure
component solid. A high value of ∆E indicates a stronger interaction between two different
components and a higher probability of forming a multicomponent crystal form. The
minimum value of ∆E is 0 kJ·mol−1, indicating that the formation of multicomponent
crystal forms must increase the interaction energy [81]. The specific cut-off value depends
on the system involved.

The prediction reliability of MEPs has until now only been demonstrated for multicom-
ponent crystal forms. For example, Pagliari et al. [86] applied MEP plots to illustrate the
complementarity between amide sites and aromatic rings, which clarified how co-crystals
are formed. Musumeci et al. [81] used caffeine and carbamazepine as model APIs and about
1000 co-former candidates to examine the reliability of the prediction method. The results
demonstrated that when ∆E was over 11 kJ·mol−1, the possibility of co-crystal formation is
larger than 50%. Grecu et al. [84] successfully validated MEPs as a virtual co-crystal screen-
ing tool using reported cases of 18 APIs. The co-former candidates were ranked according
to their ∆E values and the ones presenting a larger value of ∆E were consistent with the
experimental results in most cases. Furthermore, the MEPs method showed little difference
when compared to the COSMO-based methods (see below). The MEPs method can also be
an effective tool to (i) investigate the driving force of co-crystals/salts formation and explain
the ratio of APIs and co-formers in multicomponent crystal forms [65,70], and (ii) elucidate
the topology of hydrogen bonds and identify the factors contributing to any observed
disorder in a crystal lattice [37]. Apart from hydrogen bond interaction, the MEPs method
was also explored to give insight into halogen bond [87] and chalcogen bond [88] formation,
which belongs to σ hole interactions and is coming into more focus recently. For in-
stance, in co-crystals of 1,4-diiodotetrafluorobenzene and the isomeric n-pyridinealdazines
(n = 2, 3 and 4), the I···N halogen bond interaction is the primary interaction [87]. The σ- and
π-holes of the MEPs in 1,4-diiodotetrafluorobenzene showed high potential and were used
as halogen bond donors. The halogen bond strength order for n-pyridinealdazines was
4 > 3 > 2 according to the Vs,min (minimum potentials) values located near the pyridine-N
atom for n = 2, 3 and 4 (Figure 6). Wzgarda-Raj et al. [88] synthesized four new multicom-
ponent crystals of trithiocyanuric acid with pyridine N-oxide derivatives, where N–H···S
hydrogen bonds were observed to form R2

2(8) synthons. Overall, the validated approach
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provides a promising framework for virtual multicomponent crystal forms screening and
could potentially be applied in drug discovery.
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2.4. Hydrogen Bond Propensity (HBP)

HBP was first developed by Galek et al. [89] as a logit (i.e., probabilistic) hydrogen
bond propensity method to quantify the probability of hydrogen bond formation and used
in the experimental polymorphic screening of ritonavir. This method was further used to
successfully screen for multicomponent crystal forms of lamotrigine [90]. Based on the
HBP model, it is important to recognize every potential hydrogen bond by identifying
the donors and acceptors, which are responsible for the formation of multicomponent
crystal forms.

HBP was developed by the Cambridge Crystallographic Data Centre and has been
integrated into the Mercury program [91] to identify donors and acceptors forming usual
or unusual hydrogen bonds. Molecules from the CSD with certain functional groups were
used to prepare a dataset to train statistical models [41]. When predicting co-crystallization
between an API and a co-former, both homomeric and heteromeric interactions are taken
into account. If HBPAPI-co-former is larger than HBPAPI-API and HBPco-former-co-former, co-
crystallization is likely to occur [92]. In Figure 7, A and B are two different molecules. A-A
and B-B are homomeric interactions within A and B molecules, respectively. A-B and B-A
are two different heteromeric interactions between A and B molecules. The ∆propensity value
is calculated as the difference of largest heteromeric interactions and largest homomeric
interactions as shown in Equation (6).

∆propensity = (A-B)best − (A-A)best (6)
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Figure 7. HBP approach for screening of multicomponent crystal forms.

The HBP method gives information about the possibility of forming a specific hydro-
gen bond, and it depends on how frequently the interaction occurs with respect to other
interactions in a given fitting data set. In the HBP calculation for the system lenalidomide–
nicotinamide [42], the -NH2 of nicotinamide group and the carbonyl group of lenalidomide
were found to have a high propensity for heteromeric interactions (0.94), while homo-
meric interactions between lenalidomide–lenalidomide have a propensity of 0.84 for -NH-
with carbonyl group, and 0.82 between nicotinamide–nicotinamide for -NH2 with carbonyl
group (Figure 8). Heteromeric interactions were preferred as indicated by a ∆propensity value
of 0.1 and the co-crystal was successfully prepared experimentally. Majumde et al. [41]
applied HBP in predicting indomethacin–nicotinamide (1:1) co-crystals, finding that their
hydrogen bond motifs (N3-H···O5, N3-H···O4 and O3-H···N2), are the most likely donor–
acceptor combinations predicted by HBP. Sarkar et al. [92] used HBP to predict the co-crystal
formation between six model APIs and 25 possible co-formers. A success rate of 92–95%
was obtained, indicating an excellent hydrogen bond affinity between APIs and co-formers.
In another study, Sarkar et al. [93] used HBP, molecular complementarity, and hydrogen
bond energy to predict co-crystal formation between six APIs and 42 potential co-formers.
The combination of HBP and molecular complementarity allowed the achievement of
an overall accuracy of 81%. Since HBP is a hydrogen bond-based method, its applica-
tion is limited to multicomponent solid forms where hydrogen bonds are the dominant
interaction [94].
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3. Non-Hydrogen-Bond Based Methods
3.1. Lattice Energy

Lattice energy is another tool to predict multicomponent crystal forms. The energy
difference between multicomponent crystal forms and pure individual components can be
used as an indication of whether co-crystallization is expected to occur spontaneously, i.e.,
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if it is thermodynamically favored compared to the crystallization of each starting material
separately [95]. Considering that co-crystallization is commonly found to be a thermody-
namically favorable process, its lattice energy is higher compared to the corresponding
individual components [69,95,96]. The difference in lattice energies ∆Elatt can be calculated
as follows:

∆Elatt = Elatt(AmBn)−mElatt(A)− nElatt(B) (7)

where Elatt(AmBn) is the lattice energy of multicomponent crystal forms AmBn consisting
of molecules A and B in a stoichiometric ratio m:n, and Elatt(A) and Elatt(B) are the lattice
energies of the pure components A and B, respectively. The probability of forming a
multicomponent crystal form is higher when the ∆Elatt is more negative. It is unlikely that
multicomponent crystal forms are formed if ∆Elatt has a positive value. Distinct from other
methods, this prediction technique does not make any assumptions about hydrogen bonds
and relies solely on the lattice energy. Factors such as temperature, pressure, solvent effects,
and kinetics are not considered in the calculations [96].

The Elatt of the crystal can be calculated by three methods [97]: the first one is using
a set of programs for crystallography, FlexCryst [98], to calculate free energy G. The
second approach is using cohesive energy [99], and the last one is using total energy
resulting from noncovalent, pairwise interactions between the molecule and its surrounding
molecules [100]. Chan et al. [96] performed lattice energy calculations and investigated the
thermodynamic stability of 102 multicomponent crystal forms containing nicotinamide,
isonicotinamide, and picolinamide, 99 of which (more than 97%) were consistent with the
observed tendency of the compound to crystallize. Kuleshova and co-workers [101] used
the FlexCryst program suite to calculate the free energy and determine the relative stability
of co-crystals of flavonoids and their pure crystal forms taken from the CSD. It was found
that the lattice energy calculation was a valuable tool for in silico screening of co-crystal
formation and stability, which can further be used to estimate their relative solubility. Sun
and co-workers [102] proposed virtual co-former screening approaches, taking into account
the lattice packing contributions of crystals to screen co-formers for indomethacin and
paracetamol. If the lattice energy difference is ranked from smallest to largest, successful
co-crystal formation can be found in the first six values of the lists (Figure 9). Lattice
energy can also be used to determine the stable form of co-crystals. Surov et al. [103]
compared the theoretical lattice energies and found that in multicomponent crystal forms
of fluconazole with 4-hydroxybenzoic acid, hydrated crystal forms are more energetically
favorable than the anhydrous co-crystals. Moreover, based on energy calculations, Vener
and co-workers [97] found that the range of supramolecular synthons is approximately ~80
to ~30 kJ/mol, with a decreasing order of strength as follows: acid–amide > acid–pyridine
> hydroxyl–acid > amide–amide > hydroxyl–pyridine.

3.2. Molecular Complementarity (MC, Fábián’s Method)

Molecular complementarity (MC) was first introduced by Fábián in 2009 [104] to
investigate the molecular characteristics that affect the formation of multicomponent crys-
tal forms. In his study, a statistical analysis was carried out using 131 descriptors of
1949 molecules. It was pointed out that molecules with similar properties, especially in
molecular shape and polarity, tend to have a higher propensity to form stable multicompo-
nent crystal forms. Five numerical descriptors including three shape descriptors (S-axis,
S/L axis, and M/L axis) and two polarity descriptors (fraction of nitrogen and oxygen
atoms, and dipole moment) were considered to be important in the formation of multi-
component crystal forms. S-axis is the length of the short axis, S/L axis is the short/long
axis ratio, and M/L axis is the medium/long axis ratio, while L, M and S refer to the
three unequal dimensions of a rectangular crystal cell, as shown in Figure 10 [93]. The
MC method has been developed by the Cambridge Crystallographic Data Centre and
incorporated into the Mercury software (version 3.7) [94]. Every descriptor has a criterion
to indicate “PASS” or “FAIL”. A “PASS” indicates that a multicomponent crystal form was
successfully formed, while a “FAIL” indicates that no multicomponent crystal forms were
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formed [104,105]. A multicomponent crystal form is likely to be formed only when all five
descriptors demonstrate a “PASS.”
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MC is mostly used as a preliminary screening tool instead of being used solely to
determine the formation of multicomponent crystal forms. For example, Li et al. [106]
used both COSMO-RS and MC in screening the formation of new multicomponent crystal
forms of 2,4-dichlorophenoxyacetic acid. In total, 25 out of the 53 co-former candidates
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were identified to be potential co-formers, among which 20 co-formers were experimentally
successful in forming new multicomponent crystal forms with 2,4-dichlorophenoxyacetic
acid (Figure 11). Wu et al. [65] evaluated COSMO-RS, MC, HSP and their combinations
in screening multicomponent crystal forms of 2-amino-4,6-dimethoxypyrimidine with
63 components. The overall successful rate of MC was 69.8%, and the best outcomes were
obtained when using MC and COSMO-RS, with an overall success rate of 85.7%. Wu
et al. [64] also used a combined method (COSMO-RS and MC) to screen multicomponent
crystal forms for a pesticide, pymetrozine, with 39 co-former candidates. The calculation
resulted in 13 promising co-formers, and it was discovered that nine of them produced
novel solid phases.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 20 of 34 
 

 

success rate of 85.7%. Wu et al. [64] also used a combined method (COSMO-RS and MC) 
to screen multicomponent crystal forms for a pesticide, pymetrozine, with 39 co-former 
candidates. The calculation resulted in 13 promising co-formers, and it was discovered 
that nine of them produced novel solid phases. 

 
Figure 10. Three unequal dimensions of a model box. 

 
Figure 11. Multicomponent crystal forms screening of 2,4-dichlorophenoxyacetic acid based on 
COSMO-RS and MC methods. Reprinted with permission from ref. [106]. Copyright 2022 Royal 
Society of Chemistry. 

3.3. Hansen Solubility Parameter (HSP) 
The solubility parameter theory was proposed by Hildebrand and Scott in 1950 [107]. 

According to this theory, the cohesive energy indicates the total interactions in a material, 
including hydrogen bonds, van der Waals forces, covalent bonds and ionic bonds. 
Cohesive energy per unit volume, i.e., the cohesive energy density (CED), is an essential 

M
ed

iu
m

 a
xi

s (
M

)

Short axis (S)

Figure 11. Multicomponent crystal forms screening of 2,4-dichlorophenoxyacetic acid based on
COSMO-RS and MC methods. Reprinted with permission from ref. [106]. Copyright 2022 Royal
Society of Chemistry.

3.3. Hansen Solubility Parameter (HSP)

The solubility parameter theory was proposed by Hildebrand and Scott in 1950 [107].
According to this theory, the cohesive energy indicates the total interactions in a material,
including hydrogen bonds, van der Waals forces, covalent bonds and ionic bonds. Cohesive
energy per unit volume, i.e., the cohesive energy density (CED), is an essential parameter
used in pharmaceutical research to predict the physical and chemical properties of drugs,
excipients and carriers (e.g., miscibility of a drug with excipients and carriers in solid
dispersions). The relationship between the CED and the solubility parameter (δ, unit:
MPa0.5) is shown in the following equation:

δ = (CED)0.5 =

(
∆Ev

Vm

)0.5
(8)

where ∆Ev is the energy of vaporization, and Vm is the molar volume. The mutual solubility
of two components is determined by their closeness in δ values. Desai and Patravale [108]
applied the Hildebrand solubility parameter as one of the useful molecular descriptors to
select co-formers for the formation of co-crystals with curcumin.

The Hildebrand and Scott approach is based on regular solution theory and works best
for non-polar molecules interacting via weak dispersion forces [109]. In order to extend the
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application of this theory to more polar and strongly interacting systems, such as APIs, the
HSP approach was developed by Hansen and divides the total solubility parameter (δt), or
Hildebrand solubility parameter, into three partial solubility parameters, as follows [110]:

δ2
t = δ2

d + δ2
p + δ2

h (9)

where δd are dispersion forces (atomic dispersion), δp are ‘polar’ interactions, and δh are
hydrogen bonds. These partial solubility parameters are most commonly calculated based
on the Hoftyzer–Van Krevelen and Fedors group contribution methods, as follows: [111]

δd = ∑i Fdi/∑i Vi, δp =
(
∑i Fpi

2
)0.5/∑i Vi, δh = (∑i Fhi/∑i Vi)

0.5 (10)

where i is the structural group within the molecule, Fdi, Fpi, Fhi and Vi are the group
contributions to the dispersion forces, polar forces, hydrogen bonding energy and molar
volume, respectively.

In 1999, Greenhalgh et al. [112] proposed employing the difference of the total solubil-
ity parameter (∆δt) (Equation (11)) to predict the miscibility between the drug and carriers,
and Mohammad et al. [48] proposed a cut-off value of ∆δt < 7 MPa0.5.

∆δt = |δt2 − δt1| (11)

According to Bagley et al. [113], δd and δp have thermodynamically similar effects,
while δh has a different effect in nature [114], because they are interactions between hy-
drogen atoms and electronegative atoms such as O, N, and F. So, δd and δp parameters
were combined as a volume-dependent solubility parameter, and δv, and Ra(v) factor were
introduced as follows:

δv =
(

δd
2 + δp

2
)0.5

(12)

Ra(v) =
[
4(δv2 − δv1)

2 + (δh2 − δh1)
2
]0.5

(13)

The two-dimensional plot of δv against δh, i.e., the Bagley diagram, has been applied
in different aspects, such as predicting the miscibility of two materials and the duration
of drug intestinal absorption [115,116]. Albers et al. [117] found that for API and polymer
systems, miscibility can be achieved if Ra(v) is not higher than 5.6 Mpa0.5.

Van Krevelen and Hoftyzer [118] introduced a three-dimensional approach to measure
the difference in solubility parameters using Equation (14).

∆δ =
[
(∆δd)

2 +
(
∆δp

)2
+ (∆δh)

2
]0.5

(14)

Three parameters representing hydrogen bonding, polarity, and dispersion forces can
be considered as three-dimensional coordinates of HSP space points. The two components
are miscible if ∆δ ≤ 5 MPa0.5. For the purpose of convenient visualization of the spherical,
instead of using the ellipsoidal solubility plot, a modified radius (Ra) equation (Equation
(15)) was proposed [119] as a representation of the Euclidean distance between the centrum
HSP1 (δd1, δp1, δh1) and another point HSP2 (δd2, δp2, δh2) in the Hansen space (Figure 12).

Ra =
[
(4∆δd)

2 +
(
∆δp

)2
+ (∆δh)

2
]0.5

(15)
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The HSP method was first used in co-crystal formation prediction in 2011 [48], and
later, in 2020, it was used to indicate the good miscibility of tadalafil and repaglinide in
co-amorphous systems [50]. The reliability of the HSP as a formation prediction tool for
both co-crystal/salts and co-amorphous forms has been shown in a number of articles. For
example, the HSP method was used to predict the formation of multicomponent crystal
forms of minoxidil (MIN) [70] with 18 co-formers, and of 2-amino-4,6-dimethoxypyrimidine
(MOP) [65] with 63 co-formers using the Ra(v), ∆δ and ∆δt criteria. Since there were large
deviations from the experimental results for Ra(v) and ∆δ criteria, only the ∆δt criterion
was chosen in further discussion in both MIN and MOP cases. The overall success rates
of co-former prediction by the ∆δt criterion were 65.5% and 62.5% for MIN and MOP,
respectively. In co-amorphous systems prediction, the ∆δt value between florfenicol and
oxymatrine was determined to be 3.87 MPa0.5, indicating good miscibility between the API
and co-former, contributing to the successful formation of a co-amorphous system [66].
The HSP method with the van Krevelen criterion ∆δ was successful in predicting four
out of six norfloxacin co-amorphous systems. The results showed better accuracy than
the Greenhalgh criterion ∆δt, as it could offer more accurate information about the forces
present between the molecules (e.g., polar interactions, hydrogen bonding and dispersion
interactions) [67].

3.4. Conductor-like Screening Model for Real Solvents (COSMO-RS)

The COSMO-RS theory was developed by Klamt and co-workers [121] to predict the
thermodynamic equilibria of pure components and liquid mixtures using static thermo-
dynamic methods based on quantum chemical calculations. According to COSMO, the
solute molecule can be represented as a collection of partial charges and the surrounding
solvent can be approximated as a dielectric continuum of permittivity [122]. On the ba-
sis of COSMO, combined with statistical mechanics methods, Klamt [121,121] developed
COSMO-RS to overcome some shortcomings of dielectric continuum solvation models. The
COSMO-RS theory takes into account the molecular interactions (i.e., electrostatics, hydro-
gen bonding and Van der Waals interactions [123]) in calculating the chemical potentials of
pure components and liquid mixtures.

COSMO-RS theory has been used in several research fields, including the prediction of
solubility [122] and pKa [124], identification of suitable solvents [125], solvate or co-crystal
formers [122], and the calculation of partitioning coefficients [126]. It is also a possible
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method for screening of multicomponent crystal forms [65,70]. Even though COSMO-
RS theory has the capability of theoretically predicting the formation of a co-crystal or a
co-amorphous system [51], the reliability of this method as a formation prediction tool
only has been recently shown for multicomponent crystal forms [64,70]. On the basis of
the assumption that the interactions between the API and co-former in multicomponent
crystal forms are comparable to those in a virtual supercooled liquid, the formation of
multicomponent crystal forms can be explained by liquid phase thermodynamics without
considering the long-range packing order [69]. Therefore, the interaction strength of the
API and co-former in the supercooled liquid state is able to predict co-crystallization, which
is estimated using the excess enthalpy ∆Hex (Equation (16)) of the API and co-former with
a given stoichiometry as compared with the pure materials [127].

∆Hex = HAB − xAHA − xBHB (16)

where HAB is the enthalpy of the supercooled stoichiometric mixture of components A and
B. HA and HB are the enthalpy of the pure components A and B, respectively, and x is the
mole fraction of each component. The probability of forming a multicomponent crystal
form is higher when the ∆Hex is more negative.

Although the COSMO-RS method ignores the solid-state order, it could success-
fully predict the formation of 21 new multicomponent crystal forms of 2-amino-4,6-
dimethoxypyrimidine [65] with 63 co-former candidates with an overall success rate
of 84.1% when ∆Hex < −1 kcal/mol. Surprisingly, the COSMO-RS method showed
up to 100% overall success rate in predicting the formation of multicomponent crys-
tal forms of pymetrozine [64] and minoxidil [70] when ∆Hex < −3.0 kcal·mol−1 and
∆Hex < −2.00 kcal·mol−1, respectively. Alhadid et al. [128] calculated a solid–liquid phase
diagram of 5 l-menthol/xylenol eutectic systems, where menthol/3,4-xylenol at 1:2 and
2:1 ratios, and l-menthol/3,5-xylenol at 1:1 ratio could form co-crystals. The authors further
investigated solid-liquid equilibria data of the l-menthol/phenol eutectic system where two
co-crystals were formed in 1:2 and 2:1 ratios, and successfully used the non-random two-
liquid model (an activity coefficient model frequently applied to calculate phase equilibria)
and COSMO-RS models to obtain the phase diagrams [129]. When exploring the possibility
of forming new posaconazole co-crystals, COSMOquick selected 28 candidates from a list of
approximately 140 potential co-formers. There were 13 new posaconazole multicomponent
crystal forms (seven anhydrous, five hydrates, and one solvate) obtained [53]. The COSMO-
RS method could also detect the transferability of co-crystallization between analogous
molecules. Przybyłek et al. [52] used mixing enthalpy to evaluate the co-crystal formation
of two methylxanthine derivatives, theophylline and caffeine, as shown in Figure 13. The
mixing enthalpy of theophylline and caffeine showed a linear relationship and phenolic
acids were found to be the most promising co-formers.

3.5. Artificial Intelligence (AI)

In recent years, AI methods, especially machine learning (ML), have emerged as
promising and effective strategies to predict both multicomponent crystal forms and co-
amorphous systems [130]. This method is mainly based on molecular descriptors repre-
senting the physicochemical properties of a molecule which are computed according to its
chemical structure. Figure 14 displays the ML approaches commonly used. Building data
sets based on experimental data is the first step in ML [131]. Molecules are characterized
using artificial molecular features (such as molecular fingerprints and descriptors) or auto-
matically extracted features (e.g., convolutional neural networks). ML algorithms are used
to learn how a specific system is formed and include the creation and evaluation of models.
The combination of AI with complementary experimental studies allows the leverage of
the computational capabilities of AI to analyze vast amounts of data, identify patterns,
and generate predictive models. Moreover, when AI predictions are complemented by
experimental validations, it is possible to validate and refine these models, leading to a
more comprehensive understanding of the underlying mechanisms of the formation of
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multicomponent solid forms. This may significantly reduce the time and cost of develop-
ing effective drugs [131], by creating a cluster analysis for co-former screening [132] and
predicting the formation of multicomponent solid forms based on principal component
analysis [133] and multivariate adaptive regression splines [134,135].
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The main limitation in applying deep learning (DL) approaches in crystal engineering
lies in the critical bottleneck of data availability, while the model performance also heavily
relies on the key factor of data quality. The CSD comprises an extensive repository of
high-quality positive samples (i.e., examples of successful multicomponent solid state form
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formation), providing valuable support for DL applications [130]. In data collection and
augmentation, ML methods retrieve positive sample data from the CSD. Negative samples,
however, are collected from experiments or experimental reports [130], or by computational
methods such as network-based link prediction [135] and molecular similarity-based meth-
ods [57]. These data can be used to train ML models. Gröls et al. [56] developed different
ML algorithms based on 1000 co-crystallization events and 2083 chemical descriptors to
accurately predict mechanochemical co-crystallizations. The eXtreme Gradient Boosting
model was able to identify three new co-crystals of diclofenac through mechanochemistry.
Similarly, they developed and compared different machine learning and deep learning
algorithms based on 418 experimental amorphization cases and 2066 molecular descriptors
to predict mechanochemical amorphization [59]. The gradient boost model showed an
accuracy of over 73% and was able to identify six novel co-amorphous systems with folic
acid. Jiang et al. [130] used 6819 positive and 1052 negative samples to develop a graph
neural network based on a deep learning model, as shown in Figure 15. The effectiveness
of the graph neural network was shown by seven competitive models and three different
and challenging out-of-sample tests, achieving prediction accuracy of higher than 96%.
Wang et al. [57] developed a co-crystal prediction model based on the random forest ap-
proach. The positive samples were from the CSD and the negative ones were created
by randomly combining different molecules into chemical pairs. The effectiveness of the
model was shown by the formation of two co-crystals of captopril with l-proline and
sarcosine. Przybyłek et al. [134] developed a MARSplines algorithm model containing 1D
and 2D molecular descriptors and validated it for phenolic acid co-crystals. In a study
of Meng-Lund et al. [62], molecular descriptors were computed for six APIs (carvedilol,
mebendazole, carbamazepine, furosemide, indomethacin, and simvastatin), as well as for
20 naturally occurring amino acids, to build a partial least squares discriminant analy-
sis (PLS-DA) model. Although this model was capable of accurately predicting 19 out
of 20 mebendazole–amino acid co-amorphous combinations, it was limited to the use of
amino acids as co-formers.
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Chambers et al. [136] later built a model based on multivariate PLS-DA using the same
six drugs and 20 amino acids. The model was then used to predict co-amorphous systems of
mebendazole with 29 non-amino acid co-formers where 26 (90%) were correctly predicted.
Deng et al. [67] calculated Pearson correlation coefficients and Ridge regressions between
several molecular descriptors and co-amorphous forms. It was found that in norfloxacin
co-amorphous salt systems, the formation of co-amorphous forms was dependent on the
selection of a co-former with more π-conjugated rings, better miscibility with a smaller ∆δ
value (ideally less than or close to 5 MPa0.5), and a larger ∆pKa. Wang et al. [61] found that
the aminopyridine synthon cannot completely guarantee the co-crystal formation between
nimesulide and a series of pyridine analogues. By performing quantitative analysis of Ridge
and Lasso regressions, it was discovered that the formation of co-crystals was influenced by
several molecular descriptors of the co-formers, ranked in order of their impact as follows:
MEPs, h_ema (sum of hydrogen bond acceptor strengths), Kier flex (molecular flexibility),
and the horizontal distance of two N atom projections.

3.6. Other Approaches

ter Horst et al. [137] proposed a thermodynamic principle-based experimental method
to discover co-crystals according to the solubility of their pure components (i.e., starting ma-
terials). The method considers the solubilities of individual components to identify suitable
concentration ranges for exploring and discovering potential co-crystals, rather than focus-
ing solely on the specific ratios or proportions of the co-crystal components. The screening
steps are shown in Figure 16. Saturation temperature and reference temperature are terms
determined from the phase diagram of a co-crystal system at different temperatures in
solution. Co-crystals are likely to be formed if the saturation temperature is higher than
the reference temperature by >10 ◦C. This method successfully led to the discovery of new
co-crystals, including those involving carbamazepine with isonicotinamide, benzamide,
and 3-nitrobenzamide, as well as cinnamic acid with 3-nitrobenzamide.
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In recent years, computational methods have also been developed to screen co-formers
more accurately and efficiently. A modified, non-bonded interaction energy model was
introduced by Deng and co-workers [23] to predict the formation of co-amorphous systems.
The formation of co-amorphous systems was believed to be driven by the interactions
between the API and co-former. Their hypothesis suggests that the strength of these
interactions directly influences the likelihood of co-amorphous formation. To quantify
these molecular interactions, researchers calculate and denote the non-bonded energy
difference (∆Enon-bonded) between the API and co-former. A higher absolute value of
∆Enon-bonded was indicative of a greater probability of co-amorphous formation. This
model was developed based on 105 solvent-based cases involving 13 different drugs, and
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successfully predicted five new co-amorphous combinations of gefitinib and four new
co-amorphous combinations of erlotinib.

4. Conclusions

Co-crystals, salts and co-amorphous systems are multicomponent solid forms con-
taining one or more types of molecules. They are able to offer significant benefits to the
bioavailability, solubility, dissolution, stability, permeability, and other physicochemical and
pharmacokinetic properties of APIs. Choosing appropriate co-formers for a specific API
is essential to develop solid formulations with ideal properties, which generally requires
a significant amount of time and resources. Over the past few years, several knowledge-
based methodologies, as well as computer-assisted prediction methods, have emerged
exhibiting efficacy and accuracy in co-former selection and prediction of the formation of
multicomponent solid forms. More strategies have been developed for multicomponent
crystalline forms than amorphous forms. Some methodologies, such as HSP, and other
new approaches, such as artificial intelligence, are applicable for both solid-state forms.
Though none of the single approaches can completely and accurately predict the formation
of multicomponent solid forms, each approach can offer valuable guidance in selecting
the most suitable co-formers. The implementation of multiple screening/prediction ap-
proaches can result in considerable enhancements in the effectiveness and accuracy of
predicting the formation of co-crystals, salts and co-amorphous systems, as confirmed by
previous studies.

It can be expected that in the future, more investigations will continue to promote
screening/prediction efficiency by using multiple approaches as well as developing novel
models. One direction could be the integration and combination of various approaches
mentioned in this review. For instance, combining machine learning algorithms with molec-
ular docking methods could hold potential to improve the precision of multicomponent
solid-state forms (co-crystal and co-amorphous) formations. The combination of quantum
mechanical simulations with virtual screening techniques offers opportunities to delve
deeper into the intricate interplay of thermodynamic stability and intermolecular inter-
actions of multicomponent systems. High-throughput virtual screening methods taking
into account advancements in computing power coupled with experimental screening
to validate the predictions will speed up the identification of potential co-crystals and
co-amorphous forms.

Collaborations between computational scientists and experimentalists are required to
arrive at synergistic approaches to co-crystal and co-amorphous discovery. As researchers
explore novel combinations of approaches, significant advancements in the field are fore-
seeable. These collective endeavors are poised to pave the way for the expedited discovery
and development of innovative drug formulations, which could have a transformative
impact on the pharmaceutical industry.
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Abbreviations

AI artificial intelligence
API active pharmaceutical ingredient
CED cohesive energy density
COSMO-RS conductor-like screening model for real solvents
CSD Cambridge structural database
FDA food and drug administration
GSF griseofulvin
MC molecular complementarity
MEPs molecular electrostatic potential surfaces
MIN minoxidil
ML machine learning
MOP 2-amino-4,6-dimethoxypyrimidine
PLS-DA partial least square discriminant analysis
REG regorafenib
SPN spironolactone
T2 5,5′-di(pyridin-4-yl)-2,2′-bithiophene
TDZH 1,2,4-thiadiazole derivative
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52. Przybyłek, M.; Ziółkowska, D.; Mroczyńska, K.; Cysewski, P. Applicability of Phenolic Acids as Effective Enhancers of Cocrystal
Solubility of Methylxanthines. Cryst. Growth Des. 2017, 17, 2186–2193. [CrossRef]

53. Guidetti, M.; Hilfiker, R.; Kuentz, M.; Bauer-Brandl, A.; Blatter, F. Exploring the Cocrystal Landscape of Posaconazole by
Combining High-Throughput Screening Experimentation with Computational Chemistry. Cryst. Growth Des. 2023, 23, 842–852.
[CrossRef] [PubMed]

54. Li, C.; Wu, D.; Li, J.; Ji, X.; Qi, L.; Sun, Q.; Wang, A.; Xie, C.; Gong, J.; Chen, W. Multicomponent crystals of clotrimazole: A
combined theoretical and experimental study. CrystEngComm 2021, 23, 6977–6993. [CrossRef]

55. Li, J.; Wu, D.; Xiao, Y.; Li, C.; Ji, X.; Sun, Q.; Chang, D.; Zhou, L.; Jing, D.; Gong, J.; et al. Salts of 2-hydroxybenzylamine with
improvements on solubility and stability: Virtual and experimental screening. Eur. J. Pharm. Sci. 2022, 169, 106091. [CrossRef]
[PubMed]

56. Gröls, J.R.; Castro-Dominguez, B. Mechanochemical co-crystallization: Insights and predictions. Comput. Chem. Eng. 2021, 153,
107416. [CrossRef]

57. Wang, D.; Yang, Z.; Zhu, B.; Mei, X.; Luo, X. Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Cryst.
Growth Des. 2020, 20, 6610–6621. [CrossRef]

58. Hao, Y.; Hung, Y.C.; Shimoyama, Y. Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine
Learning Algorithms. Cryst. Growth Des. 2022, 22, 6608–6615. [CrossRef]

59. Gröls, J.R.; Castro-Dominguez, B. Intelligent Mechanochemical Design of Co-Amorphous Mixtures. Cryst. Growth Des. 2022, 22,
2989–2996. [CrossRef]

60. Fink, E.; Brunsteiner, M.; Mitsche, S.; Schröttner, H.; Paudel, A.; Zellnitz-Neugebauer, S. Data-Driven Prediction of the Formation
of Co-Amorphous Systems. Pharmaceutics 2023, 15, 347. [CrossRef]

61. Wang, M.; Ma, Y.; Shi, P.; Du, S.; Wu, S.; Gong, J. Similar but Not the Same: Difference in the Ability to Form Cocrystals between
Nimesulide and the Pyridine Analogues. Cryst. Growth Des. 2021, 21, 287–296. [CrossRef]

62. Meng-Lund, H.; Kasten, G.; Jensen, K.T.; Poso, A.; Pantsar, T.; Rades, T.; Rantanen, J.; Grohganz, H. The use of molecular
descriptors in the development of co-amorphous formulations. Eur. J. Pharm. Sci. 2018, 119, 31–38. [CrossRef]

63. Childs, S.L.; Stahly, G.P.; Park, A. The Salt−Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. Mol.
Pharm. 2007, 4, 323–338. [CrossRef]

64. Wu, D.; Li, J.; Xiao, Y.; Ji, X.; Li, C.; Zhang, B.; Hou, B.; Zhou, L.; Xie, C.; Gong, J.; et al. New Salts and Cocrystals of Pymetrozine
with Improvements on Solubility and Humidity Stability: Experimental and Theoretical Study. Cryst. Growth Des. 2021, 21,
2371–2388. [CrossRef]

65. Wu, D.; Zhang, B.; Yao, Q.; Hou, B.; Zhou, L.; Xie, C.; Gong, J.; Hao, H.; Chen, W. Evaluation on Cocrystal Screening Methods and
Synthesis of Multicomponent Crystals: A Case Study. Cryst. Growth Des. 2021, 21, 4531–4546. [CrossRef]

66. Li, B.; Hu, Y.; Guo, Y.; Xu, R.; Fang, X.; Xiao, X.; Jiang, C.; Lu, S. Coamorphous System of Florfenicol-Oxymatrine for Improving
the Solubility and Dissolution Rate of Florfenicol: Preparation, Characterization and Molecular Dynamics Simulation. J. Pharm.
Sci. 2021, 110, 2544–2554. [CrossRef]

67. Deng, Y.; Deng, W.; Huang, W.; Zheng, Z.; Zhang, R.; Liu, S.; Jiang, Y. Norfloxacin co-amorphous salt systems: Effects of molecular
descriptors on the formation and physical stability of co-amorphous systems. Chem. Eng. Sci. 2022, 253, 117549. [CrossRef]

68. Huang, K.-S.; Britton, D.; Etter, M.C.; Byrn, S.R. A novel class of phenol–pyridine co-crystals for second harmonic generation. J.
Mater. Chem. 1997, 7, 713–720. [CrossRef]

https://doi.org/10.1021/cg901230b
https://doi.org/10.1021/acs.cgd.5b00185
https://doi.org/10.1039/c0ce00428f
https://doi.org/10.1021/acs.cgd.9b00335
https://doi.org/10.1021/acs.cgd.8b00216
https://doi.org/10.1016/j.ijpharm.2011.01.030
https://www.ncbi.nlm.nih.gov/pubmed/21256944
https://doi.org/10.1007/s12247-020-09428-2
https://doi.org/10.1039/C9RA07149K
https://www.ncbi.nlm.nih.gov/pubmed/35492562
https://doi.org/10.1039/C9CE01160A
https://doi.org/10.1021/acs.cgd.7b00121
https://doi.org/10.1021/acs.cgd.2c01072
https://www.ncbi.nlm.nih.gov/pubmed/36747574
https://doi.org/10.1039/D1CE00934F
https://doi.org/10.1016/j.ejps.2021.106091
https://www.ncbi.nlm.nih.gov/pubmed/34875374
https://doi.org/10.1016/j.compchemeng.2021.107416
https://doi.org/10.1021/acs.cgd.0c00767
https://doi.org/10.1021/acs.cgd.2c00812
https://doi.org/10.1021/acs.cgd.1c01442
https://doi.org/10.3390/pharmaceutics15020347
https://doi.org/10.1021/acs.cgd.0c01132
https://doi.org/10.1016/j.ejps.2018.04.014
https://doi.org/10.1021/mp0601345
https://doi.org/10.1021/acs.cgd.1c00009
https://doi.org/10.1021/acs.cgd.1c00415
https://doi.org/10.1016/j.xphs.2021.02.005
https://doi.org/10.1016/j.ces.2022.117549
https://doi.org/10.1039/a604311j


Pharmaceutics 2023, 15, 2174 31 of 33

69. Kumar, A.; Nanda, A. In-silico methods of cocrystal screening: A review on tools for rational design of pharmaceutical cocrystals.
J. Drug Deliv. Sci. Technol. 2021, 63, 102527. [CrossRef]

70. Deng, Y.; Chen, Y.; Xie, F.; Tang, J.; Zhang, R.; Yang, H.; Jiang, Y.; Liu, S. Minoxidil Multi-Component Crystals with Aromatic
Carboxylic Acids: Theoretical Calculation and Structural Analysis. Cryst. Growth Des. 2022, 22, 3941–3953. [CrossRef]

71. Cruz-Cabeza, A.J. Acid–base crystalline complexes and the pKa rule. CrystEngComm 2012, 14, 6362–6365. [CrossRef]
72. Desiraju, G.R. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34,

2311–2327. [CrossRef]
73. Chadwick, K.; Sadiq, G.; Davey, R.J.; Seaton, C.C.; Pritchard, R.G.; Parkin, A. Designing Acid Acid Co-Crystals—The Use of

Hammett Substitution Constants. Cryst. Growth Des. 2009, 9, 1278–1279. [CrossRef]
74. Aakeröy, C.B.; Salmon, D.J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 2005, 7,

439–448. [CrossRef]
75. Saha, S.; Desiraju, G.R. Acid···Amide Supramolecular Synthon in Cocrystals: From Spectroscopic Detection to Property Engineer-

ing. J. Am. Chem. Soc. 2018, 140, 6361–6373. [CrossRef] [PubMed]
76. Domingos, S.; André, V.; Quaresma, S.; Martins, I.C.B.; Minas da Piedade, M.F.; Duarte, M.T. New forms of old drugs: Improving

without changing. J. Pharm. Pharmacol. 2015, 67, 830–846. [CrossRef] [PubMed]
77. Ganie, A.A.; Rashid, S.; Ahangar, A.A.; Ismail, T.M.; Sajith, P.K.; Dar, A.A. Expanding the Scope of Hydroxyl-pyridine Supramolec-

ular Synthon to Design Molecular Solids. Cryst. Growth Des. 2022, 22, 1972–1983. [CrossRef]
78. Babu, N.J.; Reddy, L.S.; Nangia, A. Amide−N-Oxide Heterosynthon and Amide Dimer Homosynthon in Cocrystals of Carboxam-

ide Drugs and Pyridine N-Oxides. Mol. Pharm. 2007, 4, 417–434. [CrossRef]
79. Goud, N.R.; Babu, N.J.; Nangia, A. Sulfonamide−Pyridine-N-oxide Cocrystals. Cryst. Growth Des. 2011, 11, 1930–1939. [CrossRef]
80. Bolla, G.; Mittapalli, S.; Nangia, A. Celecoxib cocrystal polymorphs with cyclic amides: Synthons of a sulfonamide drug with

carboxamide coformers. CrystEngComm 2014, 16, 24–27. [CrossRef]
81. Musumeci, D.; Hunter, C.A.; Prohens, R.; Scuderi, S.; McCabe, J.F. Virtual cocrystal screening. Chem. Sci. 2011, 2, 883–890.

[CrossRef]
82. Hunter, C.A. Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Toolbox. Angew. Chem. Int. Ed.

2004, 43, 5310–5324. [CrossRef]
83. Aakeröy, C.B.; Desper, J.; Smith, M.M. Constructing, deconstructing, and reconstructing ternary supermolecules. Chem. Commun.

2007, 38, 3936–3938. [CrossRef]
84. Grecu, T.; Hunter, C.A.; Gardiner, E.J.; McCabe, J.F. Validation of a Computational Cocrystal Prediction Tool: Comparison of

Virtual and Experimental Cocrystal Screening Results. Cryst. Growth Des. 2014, 14, 165–171. [CrossRef]
85. Etter, M.C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem. 1991, 95, 4601–4610. [CrossRef]
86. Pagliari, A.B.; Meyer, A.R.; Solner, V.B.; Rosa, J.M.L.; Hörner, M.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Effect of hydrogen

bonds and π· · ·π interactions on the crystallization of phenyl-perfluorophenyl amides: Understanding the self-organization of a
cocrystal. CrystEngComm 2022, 24, 5348–5363. [CrossRef]

87. Yeo, C.I.; Tan, Y.S.; Kwong, H.C.; Lee, V.S.; Tiekink, E.R.T. I· · ·N halogen bonding in 1:1 co-crystals formed between 1,4-
diiodotetrafluorobenzene and the isomeric n-pyridinealdazines (n = 2, 3 and 4): Assessment of supramolecular association and
influence upon solid-state photoluminescence properties. CrystEngComm 2022, 24, 7579–7591. [CrossRef]

88. Wzgarda-Raj, K.; Palusiak, M.; Wojtulewski, S.; Rybarczyk-Pirek, A.J. The role of sulfur interactions in crystal architecture:
Experimental and quantum theoretical studies on hydrogen, halogen, and chalcogen bonds in trithiocyanuric acid–pyridine
N-oxide co-crystals. CrystEngComm 2021, 23, 324–334. [CrossRef]

89. Galek, P.T.A.; Allen, F.H.; Fábián, L.; Feeder, N. Knowledge-based H-bond prediction to aid experimental polymorph screening.
CrystEngComm 2009, 11, 2634–2639. [CrossRef]

90. Cheney, M.L.; Shan, N.; Healey, E.R.; Hanna, M.; Wojtas, L.; Zaworotko, M.J.; Sava, V.; Song, S.; Sanchez-Ramos, J.R. Effects of
Crystal Form on Solubility and Pharmacokinetics: A Crystal Engineering Case Study of Lamotrigine. Cryst. Growth Des. 2010, 10,
394–405. [CrossRef]

91. Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler,
M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [CrossRef]
[PubMed]

92. Sarkar, N.; Sinha, A.S.; Aakeröy, C.B. Systematic investigation of hydrogen-bond propensities for informing co-crystal design and
assembly. CrystEngComm 2019, 21, 6048–6055. [CrossRef]

93. Sarkar, N.; Gonnella, N.C.; Krawiec, M.; Xin, D.; Aakeröy, C.B. Evaluating the Predictive Abilities of Protocols Based on Hydrogen-
Bond Propensity, Molecular Complementarity, and Hydrogen-Bond Energy for Cocrystal Screening. Cryst. Growth Des. 2020, 20,
7320–7327. [CrossRef]

94. Wood, P.A.; Feeder, N.; Furlow, M.; Galek, P.T.A.; Groom, C.R.; Pidcock, E. Knowledge-based approaches to co-crystal design.
CrystEngComm 2014, 16, 5839–5848. [CrossRef]

95. Taylor, C.R.; Day, G.M. Evaluating the Energetic Driving Force for Cocrystal Formation. Cryst. Growth Des. 2018, 18, 892–904.
[CrossRef] [PubMed]

https://doi.org/10.1016/j.jddst.2021.102527
https://doi.org/10.1021/acs.cgd.2c00339
https://doi.org/10.1039/c2ce26055g
https://doi.org/10.1002/anie.199523111
https://doi.org/10.1021/cg801225s
https://doi.org/10.1039/b505883j
https://doi.org/10.1021/jacs.8b02435
https://www.ncbi.nlm.nih.gov/pubmed/29697258
https://doi.org/10.1111/jphp.12384
https://www.ncbi.nlm.nih.gov/pubmed/25648101
https://doi.org/10.1021/acs.cgd.2c00006
https://doi.org/10.1021/mp070014c
https://doi.org/10.1021/cg200094x
https://doi.org/10.1039/C3CE41885E
https://doi.org/10.1039/c0sc00555j
https://doi.org/10.1002/anie.200301739
https://doi.org/10.1039/b707518a
https://doi.org/10.1021/cg401339v
https://doi.org/10.1021/j100165a007
https://doi.org/10.1039/D2CE00231K
https://doi.org/10.1039/D2CE01165D
https://doi.org/10.1039/D0CE01319F
https://doi.org/10.1039/b910882c
https://doi.org/10.1021/cg901010v
https://doi.org/10.1107/S1600576719014092
https://www.ncbi.nlm.nih.gov/pubmed/32047413
https://doi.org/10.1039/C9CE01196J
https://doi.org/10.1021/acs.cgd.0c00987
https://doi.org/10.1039/c4ce00316k
https://doi.org/10.1021/acs.cgd.7b01375
https://www.ncbi.nlm.nih.gov/pubmed/29445316


Pharmaceutics 2023, 15, 2174 32 of 33

96. Chan, H.C.S.; Kendrick, J.; Neumann, M.A.; Leusen, F.J.J. Towards ab initio screening of co-crystal formation through lattice energy
calculations and crystal structure prediction of nicotinamide, isonicotinamide, picolinamide and paracetamol multi-component
crystals. CrystEngComm 2013, 15, 3799–3807. [CrossRef]

97. Vener, M.V.; Levina, E.O.; Koloskov, O.A.; Rykounov, A.A.; Voronin, A.P.; Tsirelson, V.G. Evaluation of the Lattice Energy of
the Two-Component Molecular Crystals Using Solid-State Density Functional Theory. Cryst. Growth Des. 2014, 14, 4997–5003.
[CrossRef]

98. Hofmann, D.W.M.; Apostolakis, J. Crystal structure prediction by data mining. J. Mol. Struct. 2003, 647, 17–39. [CrossRef]
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