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Abstract: Three-dimensional printing technology has been used for more than three decades in many
industries, including the automotive and aerospace industries. So far, the use of this technology in
medicine has been limited only to 3D printing of anatomical models for educational and training
purposes, which is due to the insufficient functional properties of the materials used in the process.
Only recent advances in the development of innovative materials have resulted in the flourishing
of the use of 3D printing in medicine and pharmacy. Currently, additive manufacturing technology
is widely used in clinical fields. Rapid development can be observed in the design of implants and
prostheses, the creation of biomedical models tailored to the needs of the patient and the bioprinting
of tissues and living scaffolds for regenerative medicine. The purpose of this review is to characterize
the most popular 3D printing techniques.

Keywords: 3D printing; applications of biomaterials in medicine; polymer biomaterials

1. Introduction

Conventional bone scaffold manufacturing techniques, such as phase inversion, sol-
vent casting, leaching or electrospinning, are often unable to take into account the fine
architectural details of the manufactured elements, control product porosity or ensure high
reproducibility in production [1,2]. The use of 3D printing methods has turned out to be a
promising solution to these difficulties. Every year, 3D printing becomes a more powerful
and indispensable tool in many fields of science [3].

Additive manufacturing (AM), commonly known as 3D printing, is a promising group
of techniques for the quick and precise design of various types of products with complex
geometries. Additive manufacturing techniques are based on layer-by-layer application of
the printed material, resulting in a three-dimensional physical model. Three-dimensional
models can be created through various types of imaging techniques or through the use of
computer-aided design (CAD) systems. Three-dimensional printing is a highly desirable
approach to manufacturing as it enables the creation of designs with complex geometry
and architectures that are not possible with conventional manufacturing processes [4–7]. In
addition, this technique is much cheaper and faster. The design flexibility of this process
also enables a reduction in human errors during prototyping and the production of more
components in one process cycle.

Three-dimensional printing technology has been evolving at a very fast pace since the
early 1970s due to the wide application of this technology in every industry and everyday
life (Figure 1). Three-dimensional printing methods have recently gained more and more
importance in the fields of medical and pharmaceutical applications. The introduction of
3D printing in pharmacy has made it possible to model new multifunctional drug delivery
systems that are characterized by an accelerated release process [8]. In terms of the medical

Pharmaceutics 2023, 15, 2169. https://doi.org/10.3390/pharmaceutics15082169 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15082169
https://doi.org/10.3390/pharmaceutics15082169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-6851-5869
https://orcid.org/0000-0002-2661-6570
https://doi.org/10.3390/pharmaceutics15082169
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15082169?type=check_update&version=2


Pharmaceutics 2023, 15, 2169 2 of 20

aspect, 3D printing is currently widely used for the production of anatomical structures,
surgical templates and implants in bone surgery and dentistry. Recently, 3D printing has
been applied in such fields of medicine as orthopedics, spine surgery, maxillofacial surgery,
neurosurgery and cardiac surgery [9].
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Figure 1. Applications of 3D rapid prototyping technology.

3D printing and additive manufacturing consist of a process of building
three-dimensional objects from a digital file supplied to the printer software. The geometry
of the object is designed using computer-aided design (CAD) software using commercial
industry standard programs such as SolidWorks or AutoCAD. On the other hand, the
creation of 3D models is usually performed using programs such as Blender, FreeCAD,
Meshmixer and SketchUp, which are available in free versions. The designed object is
saved in the appropriate file format that can be read by the 3D printer software [10–13].

An important aspect is the selection of the appropriate biomaterial, which should
be characterized by biocompatibility, ease of printing with adjustable degradation rates
and the ability to imitate morphologically living tissue. The choice of biomaterial for the
3D printing mechanism depends on the intended use of the final product. For example,
a biomaterial characterized by high mechanical stiffness and a longer biodegradation
time can be successfully used for orthopedic or dental applications. However, in the case
of applications on the skin or in other visceral organs, the biomaterial used should be
characterized by high flexibility and a faster rate of degradation. Most biomaterials are
used for orthodontic applications because materials such as metals, ceramics, polymers
and composites have high rigidity. Soft polymers, e.g., hydrogels, are widely used in cell
bioprinting for tissue/organ production.

Three-dimensional technology uses various types of materials, such as metals or
ceramics, but the most commonly used group of materials is polymers. Polymers have
found wide application in AM technologies due to their ease of processing and low cost.
The material possibilities of polymers for 3D printing depend on their molecular structure,
which affects their physicochemical properties and processing ability [6]. Currently, in
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order to improve the properties of polymers used for 3D printing, various types of fillers,
e.g., nanoparticles, are introduced into the polymer matrix.

In additive manufacturing, the material is laid out layer by layer in a predetermined
path that reflects the shape of the printed object until the complete geometry of the object
is obtained. Depending on the 3D printing process, additive manufacturing can be di-
vided into four categories, including extrusion printing (fused deposition modeling (FDM)
and bioprinting) [14–17], material sintering (selective laser sintering (SLS), electron beam
manufacturing (EBM), stereolithography (SLA) and continuous liquid interface produc-
tion (CLIP)) [18–21], material binding (binder jetting/inkjet and PolyJet) [22] and object
lamination (laminated object manufacturing (LOM)).

This paper summarizes the applications of 3D printing in various fields of medicine
and introduces various examples of 4D printing. The referenced research discusses the
development of materials science and 3D printing technology with uses in medicine and
examples in pharmacy.

2. A Review of the Literature
2.1. FDM Technique

Fused deposition modeling (FDM) is one of the oldest 3D printing techniques and
therefore it is the most common and cheapest type of additive manufacturing technology.
In this technique, the thermoplastic fiber passes through a heated printhead, where it is
heated to about 0.5 ◦C above the melting point of the material and is laid layer by layer on
the printer’s build platform; the process continues until the full geometry of the product is
obtained. Fused deposition modeling printers (which are printers equipped with multiple
printheads) can use a wide range of materials and can print at high resolutions from
many materials simultaneously. The key role in printing the product is the appropriate,
optimal selection of individual process parameters, such as the temperature used (of the
extruded material and the working table), the number and height of layers and the angle
and thickness of the raster. Appropriate selection of 3D printing parameters affects the final
performance of the product, including mechanical properties and pore size.

The most commonly used thermoplastic polymer in the FDM process is acrylonitrile
butadiene styrene terpolymer. However, materials such as polylactide, polyamide, polycar-
bonate and polyvinyl alcohol are just some of the other commonly used printing filaments.
Lactic acid-based polymers, including polylactide and polycaprolactone, are well known
for their biocompatible and biodegradable properties and are therefore widely used in
medical and pharmaceutical applications. These polymers are characterized by low melting
points, which facilitate the introduction of drugs without causing the polymers to lose
their bioactivity due to thermal degradation. Moreover, these polymers are hydrolyzed
in vivo and eliminated by excretion [23–26]. In addition, polylactide is characterized by
higher mechanical strength compared with polycaprolactone, which allows it to be used
for products that require/work under loads.

In medicine, FDM is used to produce patient-specific medical devices such as implants,
prostheses, anatomical models and surgical templates. Often, thermoplastic polymers are
doped with various bioactive agents, including antibiotics [27,28], chemotherapeutics [29–31],
hormones [32,33], nanoparticles [34–37] and other oral doses [38,39] for personalized
medicine. Combinations of materials such as PCL/chitosan [40] and PCL/β-TCP (trical-
cium phosphate) [41] are also used in the FDM process to increase the bioactive properties
of scaffolds. The use of this technology to create medical models and non-biocompatible
materials such as ABS [42] or thermoplastic polyurethane [43] can be useful for periopera-
tive planning and surgical simulations. These models are also used as educational elements
for students, and as tools to explain procedures to patients before they undergo surgery.

This technology is based on the selective deposition of molten material layer by layer
by using a temperature-controlled printhead, as shown in Figure 2.
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Standard filaments used in FDM technology are made of thermoplastic polymers,
such as polycarbonate, acrylonitrile butadiene styrene (ABS) or polyamide (PA). However,
biopolymers such as PLA, PCL and PLGA are most often used for the production of bone
scaffolds. In addition to polymers, this method can also be used to process composites,
biocomposites, nanocomposites and fiber-reinforced composites [44–48].

FDM technology ensures the use of a wide range of materials, low cost and short
process time. It also controls the pore size and morphology of the products. However,
during printing, voids can occur, which adversely affects the properties of the resulting
products. Moreover, this technology has a low resolution of about 40 µm. This relatively
low-resolution value is related to the difficulties in processing molten thermoplastics
through a small-diameter nozzle [8,49,50].

The table below presents a comparison of the printing temperatures and the properties
of individual thermoplastics (Table 1).

Table 1. Summary of printing temperatures and properties of various thermoplastic materials used
in 3D FDM printing.

Thermoplastic
Polymer

Acrylonitrile
Butadiene

Styrene
(ABS)

Polylactidic
Acid (PLA)

Polyetheretherketone
(PEEK)

Polyetherimide
(PEI) Polycarbonates

Acrylonitrile
Butadiene

Styrene
(ABS)

Polyamide
(Nylon)

Printing
temperatures

(◦C)
220–250 190–220 350–400 355–390 150 210–270 230–260

Properties

High
strength,
flexibility

and
durability

Biodegradable,
brittle

High mechanical
strength, durability and

flexibility

High specific
strength, fire

resistance and
chemical
resistance

Thermoplastic,
strong, and

some grades
are optically
transparent

High rigidity,
good

weldability
and

insulating
properties

High
strength,

elastic

FDM technology has found application in many industrial fields, including the
aerospace, automotive, marine, sports equipment, electrical and medical industries. In
the automotive industry, FDM is mainly used in the printing of instruments, handles
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and prototypes. Most applications in the medical industry are still being tested for the
biocompatibility of composite parts printed with FDM [50].

In the extrusion-based bioprinting method, materials, so-called bioinks (biomaterials
filled with cells and other biological materials, used for 3D printing), are extruded through
the printhead using pneumatic pressure or mechanical force. As in the case of FDM, the
materials are laid down continuously, layer by layer, until the required shape of the product
is obtained. Because this process does not involve any heating procedures, it is most
commonly used to produce engineered tissue structures with cells and growth hormones.
This 3D printing process allows small units of cells to be deposited accurately, with minimal
cell damage caused by the process. Advantages such as precise cell deposition, control
over cell distribution rate and process speed have greatly increased the applications of this
technology in the fabrication of living scaffolds.

Currently, research is being conducted on many different polymers for use in bio-
printing technology. Commonly used natural polymers include collagen [51], gelatin [52],
alginate [53] and hyaluronic acid (HA) [54], and synthetic poly(vinyl alcohol) [55] and
polyethylene glycol. Often, bioinks are post-treated via chemical or UV cross-linking to
improve their mechanical properties. Depending on the type of polymer used in bioinks,
biological tissues and scaffolds of varying complexity can be produced. With this technique,
multiple printheads carrying different types of cell lines can be obtained for printing a
complex multicell construct. Extrusion bioprinting has been used to fabricate scaffolds
for the regeneration of bone [56], cartilage [57], the aortic valve [58], skeletal muscle [59],
neurons [60] and other tissues. Despite all this success, material selection and mechanical
strength still remain major problems in bioprinting [61–63].

In material sintering, the powdered form of the printing material in a tank is fused into
a solid object via physical (UV/laser/electron beam) or chemical (binding liquid) sources.
Thanks to this technique, objects made of photocurable polymer resins can be 3D printed
with high accuracy and resolution. The main limitation of this technology is the small
number of materials that can be used for the process. Most currently available photocur-
able resins are based on low molecular weight polyacrylate or epoxy resins. Composite
polymer–ceramic resins, consisting of calcium phosphate salts based on hydroxyapatite,
are commonly used for biomedical applications.

The inkjet or binder jet printing process is similar to the previously described material
sintering, only instead of melting the powder bed with a laser or electron beam, a binder
liquid is selectively dropped onto the powder bed to bond the materials layer by layer. This
technique enables the use of two types of printheads, thermal and piezoelectric. Widely
used materials include water, phosphoric acid, citric acid, poly(vinyl alcohol) and poly-DL-
lactide [64]. A wide range of powdered substances, including polymers and composites,
are used for medical applications and tissue engineering. Finished 3D printed objects are
often postprocessed to improve their mechanical properties [65–69].

In the PolyJet printing technique, as in the case of inkjet printing, layers of photopoly-
mer resin are sprayed onto the build plate and cured simultaneously with a UV light
source. Unlike the inkjet process, multiple types of materials can be injected and cured
simultaneously. This gives us the opportunity to create a complex multi-material object.
Thanks to these capabilities, PolyJet is widely used in medicine to produce anatomical
models for surgery planning and preoperative simulations. Objects with high resolution
and varying modular strength can be 3D printed with high dimensional accuracy using the
PolyJet technique. Since the UV source is right next to the spray nozzle and cures the resin
instantly, post-treatment of the structure is not necessary. Many types of photopolymers
such as ABS, Veroclear, Verodent and Fullcure are commercially available for use in PolyJet
printing [70,71].

In laminated object manufacturing technology, thin layers of paper, plastic or sheet
metal are glued together layer by layer and cut to the required shape using a metal knife
or laser. The process is inexpensive, fast and easy to use. It produces relatively lower-
resolution objects and is used for multicolor prototyping.
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2.2. SLA Technology

SLA (stereolithography) technology is the basic method of rapid prototyping, devel-
oped in 1984 by Charles Hull [4,47]. This method uses the photopolymerization process.
The manufactured object is created as a result of selective hardening of the material with
laser light. The schematic process of SLA printing is shown in Figure 3.
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A high-energy light source, e.g., ultraviolet (UV) light, and photoreactive resin or
monomer solutions are used to produce structures using the SLA method. The monomers
used for SLA printing have in their structure acrylic or epoxy groups that can be activated
using radiation [47].

This method has been investigated for the creation of various microdevices for medical
applications, including tissue scaffolds. By using this method, constructions with high
resolutions and precision compared with other 3D printing methods can be obtained.
However, this method is expensive, and its use is limited by small material resources and a
long process time [6].

SLA uses an ultraviolet (UV) scanning laser to cure layers of liquid photopolymer
resin. Each layer is solidified in the xy direction, and the build platform gradually descends
in the z direction to be cured. The photopolymerization process merges the layers, which in
turn stiffens and strengthens the structure. SLA is a multifunctional and versatile technique.
Many resin systems are applied using this method [72].

2.3. SLS Technology

Another frequently used AM technique is SLS (selective laser sintering) technology.
This method is based on the successive melting and sintering of polymers or ceramic
granules using a programmed laser beam with layer-by-layer production, as shown in
Figure 4 [3,73,74]. The main principle of operation for the SLS technique is that the plastic,
which is applied in the form of powder, is selectively plasticized with a laser beam. The
material is ultimately applied to the working platform with the use of an appropriate
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tool. The whole process takes place in strictly defined thermal conditions surrounded by
a protective atmosphere. After applying one layer, subsequent layers are applied. The
whole process is repeated. As a result of the SLS process, models with complex geometry
are created with no need to use support material (the function of support structures is
performed by unsintered powder).
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SLS technology is widely used in tissue engineering, because regardless of the type
of material used, the product is characterized by high resolution and has a structure with
numerous and large pores, which enables better cell regeneration. However, too many
pores translate into a reduction in the mechanical properties of the products [1]. One of the
main advantages of selective laser sintering is that the powder left on the platform acts as a
support during the construction of the component. Thanks to this, the process does not
require printing a separate support material and enables the production of products with
complex geometry [6].

2.4. Four-Dimensional Printing Technology

The introduction of 4D printing to industry has revolutionized all sectors of the
economy. Current research shows that 4D printing, although still at an early stage of
development, is a promising technology that brings huge benefits [75,76].

Research has shown that most materials used for 3D printing, such as metals, plastics
and ceramics, are not applicable in 4D printing. Four-dimensional technology uses intel-
ligent or composite materials that change shape under the influence of external stimuli,
such as temperature, humidity, light or pH [75–78]. Materials for 4D printing are classified
according to many criteria, most often due to the type of stimulus to which they respond.
Currently, researchers devote a large amount of attention to hydrogels, because they are
very interesting intelligent materials that react vigorously with water. In addition, these
materials can react to the effects of the world and electricity [77,78].

Recently, it has been shown that 4D printing technology is a future-proof technology
that can be used in every industry (Figure 5). In fields such as medicine, pharmacy or
tissue engineering, this technology can produce biocompatible products (stents, artificial
organs) that show a change in deformation in a physiological environment [79,80]. Four-
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dimensional printing can also be used in aviation and construction in order to obtain
elements that should have greater strength and flexibility.
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2.5. Vacuum Casting (VC) Method

One of the commonly used methods of casting industrial parts is the vacuum casting
method. This model is used to duplicate existing parts in small series. This method is one
of the most widespread and easiest-to-adapt methods of tooling production. The process
can be divided into several stages. The first one is based on the preparation of a silicone
rubber mold in order to cast previously computer-designed parts (master pattern). At this
stage, the designed prototype is poured with silicone. After the mold is cross-linked, it is
divided into two parts and the prototype is removed. The next stage is placing the mold
in a vacuum chamber, and its empty part is filled with the designated material composite.
The vacuum conditions cause the removal of gas bubbles, resulting in uniformity in the
mold and accurate reproduction of the model [79]. In the third step, the resin is cured in
the oven and, after cross-linking, is carefully removed from the mold. The scheme of the
VC method is shown in Figure 6 [46].

The vacuum casting method in silicone molds uses less expensive tools and materials,
and is therefore a good alternative to existing microform production methods. In addition,
silicone rubber is characterized by good thermal stability and chemical resistance, which
allows one to make castings from a wide range of resins. This material is made of Si-O and
Si-C chains in a matrix of linear polymers, which enables the free exchange of molecules
and low interfacial energy. Therefore, the cast material is not exposed to a reaction with the
surface of the mold [81–90].

In order to obtain subsequent parts through vacuum casting, chemically hardening
resins, such as polyester, polyurethane or epoxy resins, are mainly used. Specific functional
or aesthetic properties of castings are obtained by mixing resin with fillers. They can be
both coloring pigments that give the product aesthetic value, as well as silicas or metal
powders that affect the final physicochemical properties of the product [83,91,92]. Currently,
there is an increase in interest in hybrid composites, and their appropriate design allows
the use of the characteristics of individual components. This results in minimizing the
disadvantages resulting from their individual use [93]. Oleksy and others used the vacuum
casting method to produce a gear made of a composite containing epoxy resin and hybrid
filling. It was found that this hybrid has a regular layered morphology, which increased
the mechanical strength of the product. The tensile strength increased by 44% [93,94].
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This technology can be used to obtain silicone molds in which, through vacuum
casting, we obtain casts of anatomical structures often used by orthopedic surgeons for
preoperative training. Figure 7 shows the process of obtaining a silicone mold.
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The first step is to form a 3D model with a given and acceptable form. An essential
requirement is that the objects intended for casting must be made in accordance with the
principles of injection molding. For this purpose, appropriately dedicated software is used:
AutoCAD, SolidWorks or CATIA. The designed 3D model is a sketch that matches the
quality of the master model. After the pattern is developed, the mold is cast. The master
model, complete with casting cores, inserts and gates, is suspended in the casting box. The
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formed road is placed in a vacuum casting box, and liquid silicone is poured around it,
filling in all the details. It is then placed at 40 ◦C for several hours to cure. The box and
dividers come out after the silicone dries and sets. To finish, the cavity of the negative mold
of the piece is exposed by gently splitting the mold with a knife. The mold is then put
back in place and the sprue gates are attached to the mixing and pouring vessel. Vacuum
casting resins and color pigments are thoroughly mixed and vented under vacuum during
the auto-potting process. Then, a vacuum is created in the mold and resin is poured inside.
After pouring the resin into the mold, it is heated in a drying room until it hardens. The
casting can be removed from the mold when it has hardened. Once casting is complete, the
gate and risers can be removed and final finishing touches can be applied.

3. Discussion

Three-dimensional printing is defined as the most modern technologies that enable
and support the precise and quick production of objects of various structures, forms and
materials. The latest advances in 3D printing technology and in various fields (from
medicine to industry) enable doctors and engineers to design and print various types
of templates, implants and structures [95]. Also, in the pharmaceutical department, 3D
printing is used because it offers significant advantages compared with traditional phar-
maceutical processes. Advances in 3D printing technology may lead to the design of a
suitable 3D printing device capable of producing formulations with the intended drug-
release abilities. The methods under development appear to be transformative tools with
greater flexibility in pharmaceutical production. Three-dimensional printing technology
is a process that enables the production of three-dimensional preparations under digital
control. Such a process can provide developed regimens for the treatment of patients
with various ailments [96]. Major 3D printing technology platforms in the medical field
include inkjet printing, binder jetting, fused fiber fabrication, selective laser sintering,
stereolithography and pressure-assisted microsyringes [97]. Another area of research that
3D printing is expected to revolutionize is the production of implantable bioresorbable
drug-release scaffolds (stents). The ability to customize and create customized, tailor-made
bioresorbable scaffolds has the potential to address many stent-related challenges, such
as inadequate stent size and design, to abolish late stent thrombosis, and to aid in arterial
growth. Three-dimensional printing offers rapid prototyping and an efficient method of
producing stents, allowing one to customize designs to individual needs [98].

The medical field is more willing and more likely to utilize the possibility of rapid pro-
duction for anatomical models; the most common is printing with plasticized plastic—FDM
(fused deposition modeling). The universality of this method results from the wide avail-
ability of low-cost devices and the wide range of materials used in this technology. In
addition, the technology is developed dynamically, which results in improved accuracy
of the reproduction of manufactured models while maintaining a low price and short
printing time. FDM technology is used in the case of illustrative models that show the
relationships of structures in the modeled organ, enabling improvements in preoperative
preparation; they are also a didactic element for young doctors, students and patients them-
selves. In the case of simulating operations or creating a complex pathology that requires
high accuracy of elements, models made with FDM technology do not fully fulfill their role.
Therefore, when producing phantoms, other technologies are used, e.g., stereolithography
technologies such as SLA or PolyJet. Their greatest advantages are precise mapping of
the shapes, high accuracy of the manufactured elements and lower layer thickness values.
Models printed with these technologies are more detailed, which is why in the case of
highly complex operations, e.g., cardiac surgery, where it is also necessary to model the
network of blood vessels, these methods are used. It should also be mentioned that due to
the way SLA and PolyJet printers work, we have the opportunity to use resins and other
materials with reduced hardness, which translates into the possibility of producing models
imitating living soft tissues.
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SLA as a 3D printing technique is very fast and very accurate. It allows one to obtain
ready-made molds of uniform quality. Molds can be produced using SLA on the principle of
photopolymerization. Various 3D printing technologies have been introduced. SLA (as one
of the available methods) has commercial applications. SLA has several advantages over
other methods, such as cost-effectiveness, controlled integrity of materials and faster speed.
The development of SLA enabled the development of printed pharmaceutical devices.
Given current trends, it is expected that SLA will be used in parallel with conventional
3D model fabrication methods. This 3D printing technology can be used as a novel drug
delivery tool [21].

Thanks to this, printed models can be used to simulate operations, even many times,
as is the case in IPCZD. These technologies are more expensive and time-consuming than
the FDM method. The decision on the selection of technology is related to the specific
case, the time and budget available to the hospital and the requirements to be met by the
model [90,99,100].

The production of implants or prostheses is dominated by the technologies of selective
laser sintering of metal powders—DMLS (direct metal laser sintering)—using titanium
powders which are also used in the classic production of endoprostheses.

Due to the high loads occurring in the areas of application of endoprostheses or some
titanium plates, they are impossible to print with other technologies based on production
from plastics [100,101].

Recently, 3D printing has been applied more and more in the field of biomedicine,
including the clinical application [102] of lumbar spine [103] and long bone prosthetics
in orthopedics [104] and the clinical application of oral jaws [105] and skulls for neuro-
surgery [106]. In addition, tissues and organs including skin [107], blood vessels [108], and
hearts [109], etc. have all been produced in large quantities via this technique.

Material sciences are advancing rapidly, and they are closer than ever to engineered
tissue models capable of predicting preclinical responses to therapies, modeling disease
and being used as lifesavers of cardiac function after native myocardial injury.

However, the main problem of 3D printing is in vivo integration. In this review, we
highlight the seminal and recently published work that has influenced and pushed the
field of tissue bioengineering towards achieving tissue vascularization [110,111]. Three-
dimensional printing shows great promise in its ability to pattern hierarchal architectures
of the heart and its vasculature, but is ultimately hindered by the material properties of
bioinks and the resolution of the print when printing connective capillary beds. In cases of
irreversible damage, treatment is difficult due to the inherent complexity of the gradient
nature of biochemical and mechanical properties and the microscale composition of many
cell types.

Three-dimensional printing has emerged to fabricate patient-specific bioactive scaf-
folds that possess controlled microarchitectures for bridging bone defects in complex
configurations [112].

Tissue engineering applications of 3D bioprinting, in particular, have attracted the at-
tention of many researchers. Three-dimensional scaffolds produced via the three-dimensional
bioprinting of biomaterials (bioinks) enable the regeneration and restoration of various
tissues and organs. These 3D bioprinting techniques are useful for fabricating scaffolds
for biomedical and regenerative medicine and tissue engineering applications, permitting
rapid manufacture with high precision and control over size, porosity and shape [113].

Three-dimensional printing is a rapid prototyping technology which assembles bioma-
terials, including cells and bioactive agents, under the control of a computer-aided design
model in a layer-by-layer fashion. It has great potential in organ manufacturing areas with
the combination of biology, polymers, chemistry, engineering, medicine and mechanics.
At present, 3D printing technologies can be used to successfully print living tissues and
organs, including blood vessels, skin, bones, cartilage, kidneys, the heart and the liver. The
unique advantages of 3D printing technologies for organ manufacturing have improved
the traditional medical level significantly. In this article, we summarize the latest research
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progress on polymers in bioartificial organ 3D printing areas. The important characteristics
of the printable polymers and the typical 3D bioprinting technologies for several complex
bioartificial organs, such as the heart, liver, nerves and skin, are introduced [114].

Tissue engineering has been recognized as a highly promising strategy to solve the
problems of organ donor shortage through the fabrication of artificial organs/tissue. This
includes the prospective technology of 3D printing, which has been adapted to various
cell types and biomaterials to replicate the heterogeneity of urological organs for the
investigation of organ transplantation and disease progression. The literature shows that
advances in this field towards the development of functional urological organs or disease
models have progressively increased. Although numerous challenges still need to be
tackled, 3D printing has the potential to fabricate functional urological organs for clinical
transplantation and in vitro disease models [115].

The book by Douglas describes the challenges and accomplishments in the bioprinting
of blood vessels, cartilage, skin, bone, skeletal muscle, neuromuscular junctions, liver, heart,
lungs, kidneys and so-called organs-on-a-chip, as well as the challenges of providing a
blood supply and nerves to bioprinted tissues [116].

Three-dimensional printing approaches in medicine and pharmacy provide a solu-
tion by embedding tissue-specific cues, biomaterials and cell types at high resolution in
a hierarchical and complex architecture, offering promising prospects for regenerating
tissue interfaces.

Each tissue interface has specific characteristics that require the development of new
bioinks to achieve their complexity. The biochemical composition of bioinks can be fine-
tuned by adding growth factors, bioactive molecules, molecular signals or varying numbers
of cells and cell types and arrays to achieve the natural properties of tissue interfaces, as
well as help better integrate with the host tissue. The efficiency of the printing process
depends on the properties of the polymer or bioink. The developed bioink should meet the
requirements for printability, including viscoelasticity, gel time and cross-linking mecha-
nism. In addition, printing systems should also allow custom printing patterns to allow
the microscale material to be deposited in the appropriate and desired geometry. Each
approach to bioprinting has advantages and disadvantages regarding bioink characteristics,
printability and precision. While some can generate constructs at nanoscale resolution,
the final structure may not provide a suitable microenvironment for cell viability and
functionality or meet the target physical properties of the tissue interface [116,117].

Modification of physical structures’ properties, such as pore size, fiber diameter and
bioink types, enabled the development of specific tissue analogues with different functions
in different tissue zones.

Also crucial is the postprocessing step that determines the functionality of the bio-
fabricated structure, including viability, proliferation, cell differentiation and remodeling
of the construct. While biofabrication technologies facilitate the controlled deployment
and realization of the physicochemical and geometrical properties of tissue interfaces,
traditional cell culture methods need to be modified to enable multicell coculture systems.
An imbalance between the proliferation and differentiation of different cell types can hinder
the successful maturation of tissue interfaces in vitro.

Initial steps have been made in the development of interface tissue models for drug
discovery or small organ models. We anticipate that their clinical applications will soon
emerge. Due to potential issues with ethical regulations and social barriers, animal models
are most often used to predict the body’s response to engineered, viable biomimetic tissue
interface structures, but they may not be biologically and mechanically biocompatible with
the human body. Since tissue interfaces are mechanically unstable, disintegration of the im-
plant and failure to integrate with the host tissue are highly likely. In addition, the passage
of clinical infections into host tissue can cause serious problems. Ongoing development,
however, can help overcome transplant challenges and facilitate rapid integration.

Three-dimensional printing, with its personalized and highly customized characteris-
tics, has great potential in the pharmaceutical industry [117].
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We found that 3D printing technology has the following applications in pharmacy:

• To print pills according to the individual condition of the patient [118];
• To make the dosage more suitable for each patient’s own physical condition [119–122];
• To print tablets with specific shapes and structures to control the release rate [123,124];
• To precisely control the distribution within cells [125];
• To develop biomaterials to build organs [126–151];
• To develop biomaterials to build organs-on-a-chip for drug testing [152];
• To make transdermal microneedle patches to reduce pain in patients [153].

Three-dimensional bioprinting is used to produce personalized and complex products
on demand that increase the availability, effectiveness and safety of drug therapies and
delivery systems. In addition, this review describes the ability of 3D bioprinting to produce
patient-specific tissues and living cell systems (e.g., organ-on-a-chip constructions).

Four-dimensional printing (printing materials designed to change over time or un-
der stimuli) can be used to overcome many of the inherent limitations of conventional
three-dimensional printing technologies. It also provides a comprehensive insight into
the critical future of bioprinting; the key requirements for 4D printing include material
programmability, multi-material printing methods and precision designs for meticulous
transformations and even clinical applications [154–157].

However, bioink formulation is one of the main challenges in the 3D bioprinting of
cell-laden scaffolds for human tissues. Bioink consists of a biomaterial solution (ink) and
cells in the presence or absence of growth factors [158].

Some bioprinting companies also provide professional commercial software (e.g.,
Axway TradeSync Integration Manager® version 4, BioAssemblyBot® 400 and BioCAD®

version 0.0.2.2) to design, draw and print multiscale structures ranging from cells to tissue
constructs. Three-dimensional bioprinting is an emerging technology expected to revolu-
tionize the fields of tissue engineering and regenerative medicine. The conventional tissue
engineering approaches use three-dimensional (3D) prefabricated scaffolds as matrices to
load cells [158].

4. Materials and Methods

The types of publications considered for analysis mainly included review and articles
in the English language. A search focused on 3D printing was conducted on PubMed,
Google Scholar, Elsevier and Scopus from inception to June 2023. The search terms included
the phrases “3D printing” and “3D technology”. The authors of this review worked on
the basis of an agreed scheme, selecting articles based on their title, language, abstract and
access. Duplicate records were removed.

5. Conclusions

The use of 3D printing in medicine continues to grow due to its capabilities, such as
personalization of medicine, cost-effectiveness, speed and increased productivity. Three-
dimensional printing is rapidly gaining wider use in health care and pharmacy. The
technology has shown success in improving surgical techniques through the development
of tissues, organ models and a new model of drugs and drug delivery.

The ability to use multiple materials and colors, as well as reduced material waste
due to higher deposition accuracy, are two major advantages of this process that are
driving its demand. Three-dimensional printing could also be used to monitor smart
implant performance.

Four-dimensional printing can be used to overcome many of the inherent limitations of
conventional three-dimensional printing technologies. It also provides a comprehensive in-
sight into the critical future of bioprinting. Four-dimensional printing provides advantages
including material programmability, multi-material printing methods and precision designs
for meticulous transformations and even clinical applications. Additive manufacturing has
revolutionized the field of medicine and continues to grow rapidly. Popular clinical applica-
tions include the manufacture of implants and prostheses tailored to the needs of patients;
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engineering scaffolds for regenerating biosynthetic tissues and organs; personalization of
drug delivery systems; and anatomical modeling for perioperative simulations.
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