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Abstract: Bacterial infections, especially antibiotic-resistant bacterial infections, pose a significant
threat to human health. Supramolecular gel with innate antibacterial properties is an advanced
material for the treatment of bacterial infections, which have attracted great attention. Herein, a
reactive oxygen species (ROS)-responsive innate antibacterial supramolecular gel is developed by
a bottom-up approach based on phenylalanine and hydrazide with innate antibacterial properties.
The structure of gelators and intermediate products was characterized by proton nuclear magnetic
resonance (1H NMR) and a high-resolution mass spectrum (HRMS). The results of 1H NMR and the
Fourier transform infrared spectrum (FT–IR) experiment disclosed that hydrogen bonding and the
π–π stacking force are the important self-assembly driving forces of gelators. The microstructure and
mechanical properties of gel were studied by Scanning electron microscope (SEM) and Rheometer,
respectively. An in vitro degradation experiment proved that the gelator has ROS-responsive degra-
dation properties. The in vitro drug release experiment further manifested that antibiotic-loaded gel
has ROS-responsive drug-release performances. An in vitro cytotoxicity experiment showed that
the supramolecular gel has good biocompatibility and could promote cell proliferation. The in vitro
antibacterial experiment proved that the supramolecular gel has excellent inherent antibacterial prop-
erties, and the antibacterial rate against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)
was 98.6% and 99.1%, respectively. The ROS-responsive supramolecular gel as a novel antibacterial
agent has great application prospects in treating antibiotic-resistant bacterial-infected wounds and
preventing the development of bacterial resistance.

Keywords: antibacterial gel; supramolecular gel; ROS-responsive; low molecular weight
gelator; biocompatibility

1. Introduction

As the first barrier of the human body, skin plays an important role in protecting body
tissues and preventing bacterial invasion. Human beings are vulnerable in daily life. Once
injured, defects and wounds may appear on the skin. If the wound is exposed to air and not
treated promptly, wounds are susceptible to bacterial infection. Bacterial infections result
in delayed wound healing, severe suffering, and associated secondary health problems [1].
Bacterial infections pose a significant threat to human health, and severe bacterial infections
can lead to nonhealing wounds, sepsis, or death [2]. According to statistics, bacterial
infections cause approximately 15-million deaths annually [3]. Antibiotics were widely
and traditionally used for treating bacterial infections. Unfortunately, due to the abuse
of antibiotics and the evolution of bacteria, an increasing number of antibiotic-resistant
bacteria have emerged. Therefore, there is an urgent need to develop new antibiotics or
antibacterial materials to treat wounds infected with antibiotic-resistant bacterial.

More researchers are committed to developing new antibacterial materials, such as
antimicrobial peptides, graphene, metal–organic frameworks (MOFs), metal ions and
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nanoparticles, and antimicrobial hydrogel, for the treatment of antibiotic-resistant bacte-
rial infections [4–8]. Among these antibacterial materials, antibacterial hydrogel is one
of the most promising antibacterial materials; this has aroused great research interest of
researchers. Antibacterial hydrogel as a wound dressing has especially significant advan-
tages in promoting the healing of bacterial-infected wounds, such as providing a moist
wound-healing environment, absorbing wound exudates, and providing appropriate oxy-
gen permeability. Natural polymers (such as chitosan and sodium alginate) and synthetic
polymers (such as polypeptide, polyethylene glycol, polyacrylic acid, and polyvinyl alco-
hol) are widely used as building blocks for constructing polymer hydrogels [9,10]. These
polymer-based hydrogels often use toxic cross-linking agents or heavy metal ions and
require complex synthesis steps and delicately designed monomers, which greatly limits
the large-scale production and biological application [11].

Different from polymer gel (usually formed by cross-linking of polymer chains through
a covalent bond), supramolecular gel is formed by noncovalent bond forces between low-
molecular weight gelators (LMWGs) such as hydrogen bonds, π–π stacking forces, the
van der Waals force, and hydrophobic forces [12,13]. Due to the programmable structure–
property relationship, supramolecular gel as a functional material is widely used in antibac-
terial, anticancer, three-dimensional cell culture, cell proliferation, and tissue-engineering
fields, which has aroused great research enthusiasm among researchers [14–17]. Among the
numerous materials used to construct supramolecular gel, polypeptides and oligopeptides,
as well as amino acids and their derivatives, have received great attention and are widely
used to construct supramolecular hydrogels for biomedical applications due to these sub-
stances’ excellent biocompatibility, biodegradability, and programmable design, which en-
dows versatility [18,19]. Most supramolecular antibacterial gels are constructed by loading
antibiotics [20,21]. Bajaj et al. constructed a ciprofloxacin hydrochloride (CIP·HCl)-loaded
hydrogel by nonimmunogenic cholic acid–glycine–glycine conjugate, which exhibited ex-
cellent antimicrobial effects [22]. Kumar et al. developed CIP·HCl-loaded supramolecular
hydrogels based on glyoxylamide, which showed good antibacterial activity by a sustained
release of CIP·HCl [23]. Unfortunately, the antibiotic-loaded gel is prone to multidrug resis-
tance due to the inability to rapidly release and maintain dose concentration of antibiotics
at the site of bacterial infection.

A stimulus-responsive drug-delivery system could release drugs rapidly at targeted
sites, maintain effective dose concentration, improve the treatment effect, and prevent the
emergence of multidrug resistance. Bacterial-infected wounds have a microenvironment of
low pH and a high concentration of ROS [24], which can be used as an endogenous stimu-
lus for stimulus-responsive drug-delivery systems. Recently, developing ROS-responsive
supramolecular gel for antitumor, antibacterial, and wound dressing has aroused great
attention [25–27]. Yang et al. developed a L-arginine and H2O2 co-loaded hydrogel
based on polyvinyl alcohol and N1-(4-Boronobenzyl)-N3-(4-Boronophenyl)-N1,N1,N3,N3-
Tetramethyl-1,3-Propanediaminium, which could allow for the ROS-responsive release of
nitric oxide to kill bacterial and promote wound healing [28]. To the best of our knowledge,
there is no report on the construction of ROS-responsive antibacterial supramolecular gel
based on LMWGs.

Furthermore, supramolecular hydrogel with inherent antibacterial properties is a
good alternative to antibiotics, which can effectively reduce the use of antibiotics and
kill antibiotic-resistant bacteria [29]. Phenylalanine is widely used in the construction of
supramolecular gel due to its good biocompatibility and excellent building block of gelator
(it has strong hydrogen bonding and π–π forces sites.) [30]. Excitingly, supramolecular
gel based on phenylalanine has inherent antibacterial properties [31,32]. Thakur et al. re-
ported that both Fmoc–phenylalanine hydrogel and the Fmoc–phenylalanine solution have
antibacterial activity against gram-positive bacterial [33]. Marchesan et al. developed a
supramolecular hydrogel based on the self-assembly of N-(4-Nitrobenzoyl)-Phenylalanine,
which exhibited a mild antimicrobial activity against E. coli [34]. Hydrazide and its deriva-
tives have received more attention in the field of drug research and development in recent
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years due to their biological activities (antibacterial and anti-inflammatory) [35–37]. Due to
hydrazide’s strong hydrophilicity and multiple hydrogen-bonding sites, hydrazide groups
are widely used as building blocks to regulate the hydrophilicity and hydrophobicity bal-
ance of compounds to construct supramolecular hydrogels [38–40]. Smith et al. developed
a supramolecular hydrogel based on the hydrazide compound, which can react with alde-
hydes without disrupting the gel network and selectively reacted with specific aldehydes
in aldehyde mixtures [41]. However, inherent antibacterial properties of supramolecular
gel based on hydrazide compounds have been ignored. Hence, the design of LMWGs inte-
grating hydrazide and phenylalanine is an effective method to construct supramolecular
gel with inherent antibacterial properties.

Herein, we designed a kind of ROS-responsive LMWG, which could self-assemble
into supramolecular gel with an inherent antibacterial performance. The ROS-responsive
LMWGs were constructed by conjugating phenylalanine methyl ester to both ends of
thioketal with different alkyl chain lengths before they react with hydrazine hydrate.
Gelation properties and critical gel concentration (CGC) of these gelators were investigated
in multiple solvents. The self-assembly mechanism of gelator was investigated by 1H NMR
and FT–IR spectroscopy. Rheological properties of the supramolecular gel were studied by
rheometer. 1H NMR and the in vitro release experiment were chosen to evaluate whether
the supramolecular gel has ROS-responsive degradation performance. The biological safety
of the supramolecular gel was evaluated by H929 and the 293T cell. The antibacterial
property of supramolecular gel against S. aureus and E. coli was investigated by the agar
disk experiment and the bacterial adhesion experiment.

2. Experimental Section
2.1. Materials

All solvents and reagents used in this study were chemically pure. N,N’-
carbonyldiimidazole (CDI), L-Phenylalanine methyl ester hydrochloride, 6-bromocaproic
acid, and 11-bromoundecanoic acid were provided from Saen chemical technology (Shang-
hai, China) Co., Ltd. Cell counting kit-8 (CCK-8), 3-mercaptopropionic acid, and methylthi-
azoletetrazolium (MTT) were purchased from Aladdin Bio–Chem Technology (Shanghai,
China) Co., Ltd. Poly(ethylene glycol) (Mw = 200 g/mol or 400 g/mol) was bought from
Sigma-Aldrich Co., Ltd. Solvents (St. Louis, MO, USA), CIP·HCl, levofloxacin hydrochlo-
ride (LFX·HCl), and tetracycline hydrochloride (TCC·HCl) were bought from Shanghai
Titan Technology Co., Ltd. (Shanghai, China). Hydrogen peroxide (H2O2) and hydrazine
hydrate were bought from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Characterizations

Chemical structure of the synthesized compounds was measured by 1H NMR spec-
troscopy (Bruker Avance II NMR spectrometer, Billerica, MA, USA, 500 MHz). Molecule
weight of new compounds was determined by HRMS (Thermo Scientific Q Exactive
LCMS, Waltham, MA, USA). Scanning electron microscope (SEM, Magellan 3020, Thermo,
American) was employed to observe the microstructure of xerogel. Gelation mechanism
was studied by FT–IR (Nicolet 6700, American) and 1H NMR spectra. Microplate reader
(Multiskan GO Microplate Spectrophotometer, Thermo Scientific) was applied to measure
drug-releasing amount and absorbance of CCK-8 and MTT. Mechanical properties of gel
were measured by a rheometer (DiscoveryHR20, American).

2.3. Synthesis of 6-Mercaptocaproic Acid/11-Mercaptoundecanoic Acid

According to reported method, 6-bromocaproic acid and 11-mercaptoundecanoic acid
were prepared [42].

2.4. Synthesis of Thioketal with Different Length Alkyl Chains

Thioketal TK1 (n = 2), TK2 (n = 5), and TK3 (n = 10) with different lengths of alkyl
chains were synthesized according to the procedure reported in our previously work [43].
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2.5. Synthesis Conjugate of Phenylalanine and Thioketal

Triethylamine (3.70 mL, 26.4 mmol) was added to the dichloromethane solution of
L-phenylalanine methyl ester hydrochloric acid (4.30 g, 22 mmol), and the hydrochloric
acid molecules were removed by acid-base reaction. TK1 (2.52 g, 10 mmol) and CDI (3.57 g,
22 mmol) were dissolved in dichloromethane (25 mL) and stirred until no more bubbles are
generated. Subsequently, the activated thioketal solution was added to L-Phenylalanine
methyl ester solution and stirred for 24 h under protection of N2. After the solvent was
removed, tetrahydrofuran was added to dissolve the product, and the undissolved triethy-
lamine hydrochloride was removed by filtering. The filtrate was concentrated and purified
by column chromatography to obtain the product Phe–TK1–Phe (4.82 g; yield: 84.1%). The
other conjugate of phenylalanine and TK2/TK3 was synthesized similarly.

2.6. Synthesis of ROS-Responsive Gelator

Phe–TK1–Phe (2.87 g, 5 mmol) was dissolved in mixture solvent (30 mL) of
dichloromethane and methanol (v:v = 1:2). Then, the solution was protected by N2. Sub-
sequently, hydrazine hydrate (2 mL) was injected by a syringe, and the mixed solution
was stirred for 24 h under ice bath conditions. The mixture was filtered and the solid was
washed by dichloromethane several times. The solid was collected and vacuum-dried to
obtain the gelator 1 (2.58 g, yield, 90.1%). Gelator 2 (n = 5) and Gelator 3 (n = 10) were
synthesized similarly to the procedure of Gelator 1.

2.7. ROS-Responsiveness of the Gelators

ROS-responsiveness of gelator was measured by 1H NMR spectra. Then, 200 mM of
H2O2 solution was obtained by adding 0.2 mL of H2O2 (30%) to 9.8 mL of PBS (pH 7.4).
Gelator 3 (20 mg) was dissolved in 5 mL of acetone then mixed with H2O2 (200 mM, 10 mL)
by vortex. After it was incubated at 37 ◦C for 24 h, the mixed solution was lyophilized, and
the lyophilized powder was characterized by 1H NMR.

2.8. Preparation of Blank and Antibiotic-Loaded Supramolecular Gel

First, 1 mL of solvent (such as H2O or chloroform) and certain amount of gelator were
added to a screw bottle then heated until the gelator is completely dissolved. The formation
of gel was judged by inverted observation, which determined the minimum amount of
gelator required to form a complete gel; this value was critical gel concentration (CGC).

Drug-loaded supramolecular gel was obtained by similar procedures of prepared
blank gel. Gelator and antibiotic (CIP·HCl, LFX·HCl, TCC·HCl) were added to a mixture
solvent of H2O and PEG200 (1 mL, v:v = 2:3), then heated until the solution becomes
clear. The antibiotic-loaded gel was formed as the temperature of solution cooling to
RT. Supramolecular gel constructed by 20 mg of Gelator 3 in 1 mL of mixture solvent
(PEG200 and H2O) was chosen to assess the antibiotic-loading properties. The maximum
antibiotic-loading content is the limit value when slightly more antibiotic cannot form gel.
Antibiotic-loading content (ALC) was obtained through the following formula:

ALC = [weight of antibiotic/(weight of antibiotic and gelator)] × 100%

2.9. Characterization of Microstructure of Gel

Microstructure of gel was observed by SEM. A certain amount of gelator was added
to chloroform or ethanol to prepare gel. The gel was dried by oil pump at RT to prepare
xerogel. The microstructure of the xerogel was observed by SEM after gold sputtering.

2.10. Investigation of Gelation Mechanism of Gelator

FT–IR and 1H NMR were used to study the gelation mechanism of gelator. For FT–
IR: Preparation of chloroform gel by Gelator 3 with a concentration of 10, 25 mg/mL,
respectively. The chloroform gel was dried by reducing pressure through oil pump to
obtain xerogel. Subsequently, the xerogel/gelator was measured by FT–IR. For 1H NMR: A
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particular amount of Gelator 3 was added to deuterated chloroform to prepare gel with
gelator concentration of 10, 20, 25 mg/mL, respectively. These gels were characterized by
1H NMR.

2.11. Rheological Measurement

Rheological properties of gel were characterized by rheometer. The specific experi-
mental method is similar to our previous work [25].

2.12. In Vitro Drug Release

Neutral PBS (pH 7.4) with or without ROS reagent (H2O2) was chosen to simulate
physiological environment and microenvironment of bacterial-infected wounds to study
the in vitro drug-release properties of CIP·HCl-loaded supramolecular gel. Gelator 3
(20 mg) and CIP·HCl (1 mg) were added to threaded bottles containing mixed solvent of
PEG200 and water (1 mL, v/v = 2:3) to prepare CIP·HCl-loaded supramolecular gel. Then,
2 mL of release medium were carefully added to the top of gel before the screw bottle
was placed in a constant temperature water bath oscillator (37 ◦C) for 72 h. Next, 0.2 mL
of release solution was obtained at the predetermined time points and added to 0.2 mL
of fresh medium simultaneously. Concentration of CIP·HCl in the release solution was
measured by a microplate reader at the wavelength of 273 nm, and the cumulative release
amount of CIP·HCl in the release solution at each time point was calculated. Three parallel
experiments were performed for each sample.

2.13. Cytotoxicity Assay

Cytotoxicity of supramolecular gel was tested by a CCK-8 assay using L929 and 293T
cells [18]. Prepare supramolecular gels by Gelator 2 with a concentration of 25 mg/mL in
mixture solvent of PEG200 and H2O (v:v = 1:1), as well as Gelator 3 with a concentration
of 20 mg/mL in mixture solvent of PEG200 and H2O (v:v = 3:2). In addition, 100 µL of
sol were added into 96 well plates and set overnight to form gel. Cells were seeded atop
the supramolecular gels and incubated for 24 h. After removal of the cell medium, 100 µL
of fresh medium containing 10 µL CCK-8 solutions were added into each well and then
incubated at 37 ◦C for 2 h. Control wells included cell-free gels, cells, and PBS. Optical
density (OD) values at 450 nm were recorded using a microplate reader. Viability of cells
was calculated according to the following equation:

Viability% = (Aa − Ab)/(Ac − Ad) × 100%

Aa: OD values of mixtures of hydrogel, CCK-8 and cells at 450 nm; Ab: OD values of
mixtures of hydrogel and CCK-8 mixture at 450 nm; Ac: OD values of mixtures of cells and
CCK-8 at 450 nm. Ad: OD values of CCK-8 at 450 nm.

2.14. Bacterial Adhesion Assay

Antibacterial capacity of the supramolecular gels was evaluated by E. coli (ATCC
(Manassas, VA, USA) 25922) and S. aureus (ATCC 43300), which cultured with tryptic soy
broth and agar. Then, 100 µL of sol were added to 96 well plates in triplicate and set
overnight to form gel. Subsequently, 100 µL of E. coli or S. aureus at a bacteria density of
1 × 107 CFU/mL were incubated with gel for 24 h at 37 ◦C. The antibacterial activity of
gels was assessed according to our previous work [44].

2.15. The Spread Plate Tests

E. coli and S. aureus bacteria cells (1 × 107 CFU/mL) were incubated on supra-
molecular gels for 24 h and washed three times with PBS. Then, 100 µL of diluted bacteria
solution (1000 times) were incubated on agar plates for 24 h. Bacterial colonies were pho-
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tographed by Colony Counting Instrument, and the antibacterial ratio was counted by
following formula:

Antibacterial ratio =
CFUcontrol group −CFUexperimental group

CFUcontrol group
× 100%

3. Results and Discussion
3.1. Synthesis and Characterization of Gelator

ROS-responsive LMWGs were synthesized according to Scheme 1. The structure of
intermediates and gelators was characterized by 1H NMR. A new single peak (-C(CH3)2-)
appeared at 1.604 ppm (Figure S1), 1.577 ppm (Figure S2), and 1.582 ppm (Figure S3),
respectively, and the other peaks could be well-matched with the structure of target thioke-
tal, which proved that the thioketal was successfully prepared. The dd peak appeared at
4.910 ppm (Figure S4), 4.895 ppm (Figure S5), and 4.903 ppm (Figure S6), respectively, which
was the peak of typical methine proton (PhCH2CH-), which proved that L-phenylalanine
methyl ester has successfully conjugated to thioketal. The single peak of methoxyl protons
(CH3O-) appeared at 3.718 ppm (Figure S4), 3.723 ppm (Figure S5), and 3.730 ppm (Figure
S6), respectively, while disappeared in the spectrum of corresponding gelators. Further-
more, the other peaks could be well-assigned to the structure of the target gelator, which
demonstrated that Gelator 1, Gelator 2, and Gelator 3 were successfully obtained.
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Scheme 1. Synthesis scheme of gelators.

HRMS was used to further characterize the structure of new compounds. Compound
TK2, HRMS (ESI+) calcd for (C15H28O4 S2 + Na)+: 359.13212; found: 359.13129. Compound
TK3, HRMS (ESI+) calcd for (C25H48O4S2 + Na)+: 499.28862; found: 499.28787. Compound
Phe-TK1-Phe, HRMS (ESI+) calcd for (C29H38N2O6S2 + H)+: 575.22440; found: 575.22382.
Compound Phe-TK2-Phe, HRMS (ESI+) calcd for (C35H50N2O6S2 + H)+: 659.31831; found:
659.31750. Compound Phe-TK3-Phe, HRMS (ESI+) calcd for (C45H70N2O6S2 + H)+: 799.47481;
found: 799.47382. gelator 1, HRMS (ESI+) calcd for (C27H38N6O4 + H)+: 575.24687;
found: 575.24628. gelator 2, HRMS (ESI+) calcd for (C33H50N6O4 + H)+: 659.34077;
found: 659.34003. gelator 3, HRMS (ESI+) calcd for (C43H70N6O4 + H)+: 799.49727;
found: 799.49762.
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3.2. Preparation of Blank Supramolecular Gel and Antibiotic-Loaded Supramolecular Gel

The gelation properties of Gelator 1, Gelator 2, and Gelator 3 were widely explored
in 18 solvents from weak polarity solvents (petroleum ether, cyclohexane, etc.) to strong
polarity (acetonitrile, acetone, methanol, water, etc.) solvents and mixed solvents (PEG200
and water, ethanol and water). Some photos of gel are shown in Figure 1. The CGC of
Gelator 1, Gelator 2, and Gelator 3 in different solvents was determined (Table S1). All
gelators can form gel in ethyl acetate, dichloromethane, chloroform, acetonitrile, methanol,
and a mixture of ethanol and H2O, which indicated that all gelators have good gelation
ability. Compared to Gelator 1 and Gelator 2, Gelator 3 could form gel in more solvents.
In addition, Gelator 3 has the lowest CGC among three gelators in the same solvent.
These results indicated Gelator 3 has the best gelation ability. A good gelling performance
means that a more stable gel can be obtained, and that the gel has a higher antibiotic-
loading capacity. Therefore, the supramolecular gel, which was constructed by Gelator 3,
was chosen to investigate the antibiotic-loading capacity, gelation mechanism, rheological
properties, ROS-responsive properties, in vitro drug-release properties of antibiotics-loaded
gel, and antibacterial activity.
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(c) Gel prepared by Gelator 3 (15 mg/mL) in PEG200; (d) Chloroform gel prepared by Gelator 3
(10 mg/mL) in chloroform; (e) Acetonitrile gel prepared by Gelator 3 (2 mg/mL) in acetonitrile;
(f) Ethylene glycol gel prepared by Gelator 3 (5 mg/mL) in ethylene glycol.

The combined administration of multiple drugs targeting different sites is an effective
way to improve treatment efficacy and avoid drug resistance. The construction of the
antibiotic-loading supramolecular gel by supramolecular gel with inherent antibacterial
properties can not only prevent the development of bacteria resistance but also effectively
kill drug-resistant bacteria. CIP·HCl, LFX·HCl, and TCC·HCl were chosen to evaluate
the antibiotic-loading capacity of supramolecular gel. Since both PEG and water are
biocompatible, and since the gelator cannot form gel in water, the antibiotics have poor
solubility in PEG200. Hence, the mixture solvent of PEG200 and H2O was chosen to
prepare an antibiotic-loaded gel. Supramolecular gel exhibited an excellent antibiotic-
loading capacity; the ALC of CIP·HCl, LFX·HCl, and TCC·HCl were 84.6%, 87.5%, and
63.6%, respectively.
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3.3. Characterization of Microstructure of Supramolecular Gel

SEM was applied to characterize the microstructure of the supramolecular gel. Since
SEM is not suitable for the direct observation of wet samples, the xerogel was prepared
to reduce the pressure through the oil pump. The gel prepared in a low-boiling-point
solvent (such as ethanol or chloroform) was chosen for SEM observation. A dense and
entangled fiber network was observed in the xerogel of ethanol and chloroform with
different concentrations (Figure 2), which indicated that Gelator 3 will first self-assemble
into one-dimensional fiber before the fibers interweave and intertwine to form a cross-
linked three-dimensional network; the solvent was then fixed in it. The results suggested
Gelator 3 could self-assemble into supramolecular gel by non-covalent bond interactions in
ethanol and chloroform.
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3.4. Investigation of ROS-Responsive Degradation Properties
1H NMR was applied to characterize the ROS-responsive properties of supramolecular

gel. The H2O2 solution (200 mM) was used as an ROS reagent. The peak of methyl protons
(1.51 ppm) and amino protons (4.22 ppm) disappeared after they were treated with H2O2
solution for 24 h (Figure 3), which indicated that the thioketal structure of Gelator 3 has
been cleaved and the amino has been oxidized [43]. The results proved that Gelator 3 has
ROS-responsive properties.
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3.5. Self-Assembly Mechanism of Gelator

In order to explore the self-assembly mechanism of gelator, different concentrations
of chloroform-d gel were prepared and measured by 1H NMR. As the concentration of
Gelator 3 increases from 10 mg/mL to 25 mg/mL, the chemical shift of the amide N–H
bond proton significantly moves to the low field (from 7.919 ppm shift to 7.931, 6.514 ppm
to 6.520 ppm, Figure 4). It demonstrated that the hydrogen-bonding force is present among
gelators. With the increase of gelator concentration, more gelator molecules participated
in the formation of hydrogen bonds, and the degree of hydrogen-bond association is
higher [45,46]. Moreover, the chemical shift of benzene ring protons moved to the high field
(from 7.279 ppm to 7.277 ppm) with the increase of gelator concentration, which indicated
that the π–π stacking force is present among gelators [29]. In conclusion, the hydrogen
bond and π–π stacking force are the self-assembly driving force of gelator.

FT–IR spectroscopy was applied to further disclose the self-assembly driving force of
gelator. In the spectrum of Gelator 3 (Figure 5A), the peaks at 3433.7 cm−1 and 3296.5 cm−1

separately were asymmetrical and symmetrical stretching vibrations of the N–H bond in the
amnio group; the peak at 2926.7 cm−1 and 2846.6 cm−1 separately were asymmetrical and
symmetrical stretching vibrations of methylene; the peak at 1641.6 cm−1 and 1534.8 cm−1

belonged to stretching vibrations of carbonyl and the deformation vibrations of the N–H
bond, respectively. The stretching vibration peak of the N–H bond in the amino group in the
spectrum of xerogel shifted to a low wavenumber compared with the spectrum of Gelator
3, and from 3296.5 cm−1 (Gelator 3), it shifted to 3293.8 cm−1 (10 mg/mL) and 3291.1 cm−1

(25 mg/mL) (Figure 5B). The results demonstrated that a strong hydrogen-bond force
exists in the gel phase [46]. Compared to the spectrum of the gelator, the frequency of the
carbonyl-stretching vibration peak of xerogel also slightly shifted from a low wavenumber
(from 1641.6 cm−1 (gelator) to 1640.8 cm−1 (25 mg/mL)), while the frequency of the N–
H deformation vibration peak of xerogel appeared at a high wavenumber (1536.6 cm−1
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(10 mg/mL), 1537.2 cm−1 (25 mg/mL)). The results indicated that the hydrogen bond
formed between carbonyl and the N–H bond [38]. The spectral band of the methylene-
stretching vibration peak in xerogel was stronger than in gelator, which indicated that
the alkyl chains between gelators in the gel phase are stacked, and that Van der Waals
forces exist between alkyl chains. In summary, hydrogen and the van der Waals force are
important driving forces for gelator self-assembly.
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3.6. Rheological Properties

Mechanical properties of both blank gels and antibiotic-loaded gels were investigated
by rheometer [22]. The storage modulus of gels higher than the corresponding loss modulus
was observed in Figure 6A,B, which confirmed that all gel samples that were applied for
the rheological test were real gels. The dynamic modulus of the blank gel increased as
the concentration of Gelator 3 increased from 20 to 30 mg/mL, which implied that the
mechanical strength of the gels increased as the concentration increased [47]. It may be
caused by more gelator molecules participating in self-assembly and forming stronger
gel with the increased concentration of gelator. The dnamic modulus of CIP·HCl-loaded
gel, LFX·HCl-loaded gel, and TCC·HCl-loaded gel were obviously decreased compared to
their corresponding blank gels, which indicated that the antibiotic molecule will disturb
the self-assembly of gelator (Figure 6A). Moreover, with the increase of the CIP·HCl-
loading capacity, the dynamic modulus of the CIP·HCl-loaded gel slightly decreased
(Figure 6A). Complex viscosities of all gels decreased linearly with increasing frequency
(Figure 6C), which indicated that both blank and antibiotic-loaded gels have shear-thinning
performances [25]. Results of the dynamic-strain and time-sweep experiment (Figure 6D)
showed that the network of gel was destroyed as the strain increased; however, it could
be recovered after the strain was withdrawn. The destroy-and-recovery properties of
these gels was attributed to the intrinsic dynamic and reversible non-covalent interaction
between gelators [25]. The excellent shear-thinning and destroy-and-recovery ability ensure
that the blank and antibiotic loaded-gels have injectability.
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3.7. In Vitro Drug-Release Properties

Drug-release properties are a crucial parameter for evaluating carrier performance.
Neutral PBS and neutral PBS with 100 mM H2O2 were chosen to evaluate the in vitro
drug-release properties of antibiotic-loaded supramolecular gel. There were no significant
differences in the release curves between the two environments during the first 10 h of
release (Figure 7C). Subsequently, the CIP·HCl-loaded supramolecular gel in the ROS
environment exhibited a faster drug-release rate. In the initial stage, the antibiotics were
likely loaded on the gel surface and released rapidly, which is a passive diffusion process
that results in similar release curves in the two media. Then, the antibiotics encapsulated
in gel began to release. In this stage, the gel in the ROS medium could obtain an accel-
erated release through the ROS-responsive degradation. The cumulated release amount
of CIP·HCl-loaded supramolecular gel in the neutral and ROS environment were 57.75%
and 63.44%, respectively (Figure 7C). The results indicated that the supramolecular gel has
ROS-responsive in vitro drug-release properties.
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3.8. Cytotoxicity Test

Good biocompatibility is a prerequisite for supramolecular gel to be used as drug-
delivery vehicles. Since Gelator 1 cannot form gel in biocompatibility solvents (such as
PEG200, H2O, and the mixture solvent of PEG200 and H2O), the cytotoxicity of supramolec-
ular gel constructed by Gelator 2 and Gelator 3 in the mixture solvent of PEG200 and H2O
was investigated against L929 and 293T cells. The group of gel and cell co-culture showed
higher OD values than the group of gel, and the supramolecular gel constructed by Gelator
3 exhibited higher OD values than supramolecular gel constructed by Gelator 3 (Figure 8A).
In addition, the cell viabilities treated with supramolecular gels were higher than 100% at
L929 and 293T cells, especially the supramolecular gels constructed by Gelator 3 (Figure 8B).
The results suggested that the supramolecular gels not only have good biocompatibility
but also show that they promote cell proliferation.
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3.9. In Vitro Antibacterial Test

E. coli and S. aureus bacterial cells were selected to evaluate the in vitro antibacterial
activity of supramolecular gel. Since Gelator 3 has better comprehensive performance than
Gelator 2, Gelator 3 with a concentration (20 mg/mL) slightly higher than CGC (18 mg/mL)
was chosen for antibacterial investigation. Antibacterial properties of supramolecular gel
were first evaluated by bacterial adhesion assay. Bacterial activity was assessed by MTT
assay after incubation with gel for 24 h. The viability of both E. coli and S. aureus treated with
CIP·HCl, blank gel, and CIP·HCl-loaded gel was comparable, while it was significantly
lower when treated with PBS (Figure 9A), which indicated both blank gel and CIP·HCl-
loaded gel have excellent antibacterial properties.
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Antibacterial properties of the supramolecular gel were further investigated by the
colony formation unit (CFU) assay. The numbers of E. coli and S. aureu colonies formed on
the agar plates of different supramolecular gels were shown in Figure 9C,D. An obvious
decrease of the number of colonies was observed for antibiotic (CIP·HCl), blank supramolec-
ular gel, and CIP·HCl-loaded supramolecular gel compared with control group (PBS), thus
emphasizing higher bactericidal activity of antibiotic (CIP·HCl), blank supramolecular gel,
and CIP·HCl-loaded supramolecular gel. The antibacterial rate of CIP·HCl (1 mg/mL),
CIP·HCl (3 mg/mL), blank supramolecular gel, CIP·HCl (1 mg/mL)-loaded supramolec-
ular gel, and CIP·HCl (3 mg/mL)-loaded supramolecular gel, separately, were 97.96%,
98.30%, 98.65%, 98.75%, and 98.21%, respectively, against E. coli, while they were 95.90%,
98.30%, 99.12%, 98.86%, and 98.36%, respectively, against S. aureus (Figure 9B). The antibac-
terial performance of blank supramolecular gel was equivalent to CIP·HCl and CIP·HCl-
loaded supramolecular gel. The results indicated that the supramolecular gel constructed
by Gelator 3 has inherent potent antibacterial properties. The antibacterial properties of
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blank supramolecular gel come from Gelator 3, as PEG200 and H2O are biocompatible
and have no antibacterial properties. The innate and excellent antibacterial properties of
Gelator 3 probably originate from the moieties of phenylalanine and hydrazide in its struc-
ture, which possess innate antibacterial properties. It may be attributed to the combined
antibacterial effects of phenylalanine and hydrazide, resulting in comparable antibacterial
effects to antibiotics for the supramolecular gel. Due to the good antibacterial properties
of both the blank gel and antibiotics themselves, the antibiotic-loaded gel also exhibits
excellent antibacterial effects. The supramolecular gel as a novel antibacterial agent has
great application prospects in treating wounds infected with antibiotic-resistant bacterial.
The antibiotic-loaded ROS-responsive supramolecular gel, as a novel antibacterial agent,
has great potential in antibacterial and preventing the development of bacterial resistance
because it can efficiently and cooperatively kill bacterial through the gelator itself and the
ROS-responsive release of antibiotics.

4. Conclusions

A kind of ROS-responsive LMWG was synthesized, while the gelation properties and
CGC were explored. Gelator 3 with the best gelation properties was chosen to investigate
the antibiotic-loading capacity, gelation mechanism, rheological properties, ROS-responsive
properties, in vitro drug-release properties of antibiotic-loaded gel, cytotoxicity, and antibac-
terial activity. Results showed that Gelator 3 has ROS-responsive degradation properties
and a good antibiotic-loading capacity. Results of 1H NMR and FT–IR experiments revealed
that the hydrogen bond, π–π stacking force, and van der Waals force are self-assembling
driving forces of gelator. The blank gel and CIP·HCl-loaded gel exhibited good shear-
thinning properties. The cytotoxicity assay indicated supramolecular gel constructed by
Gelator 3 in PEG200 and H2O have good biocompatibility and promote cell-proliferation
properties. Results of in vitro antibacterial experiments showed that the supramolecular gel
has innate antibacterial properties, and the antibacterial properties of the supramolecular
gel were equivalent to antibiotic CIP·HCl and CIP·HCl-loaded gel. Our supramolecular gel
and antibiotic-loaded supramolecular gel as a wound-dressing have enormous potential in
treating antibiotic-resistant bacteria-infected wounds.
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