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Abstract: Studies have demonstrated that pigment-epithelium-derived factor (PEDF) is a robust 

inhibitor of tumour growth and development, implying that this may serve as a promising target 

for therapeutic intervention. However, the precise impact of PEDF on cancerous cell metabolic 

pathways remains uncertain despite ongoing research. In this light, this study aimed to employ a 

metabolomics approach for understanding the metabolic reprogramming events in breast cancer 

across different glycaemic loads and their response to PEDF. Gas chromatography-quadrupole mass 

spectrometry (GC/Q-MS) analysis revealed metabolic alterations in ER+ human cell line MCF-7 cells 

treated with PEDF under varying glycaemic conditions. The identification of significantly altered 

metabolites was accomplished through MetaboAnalyst (v.5.0) and R packages, which enabled both 

multivariate and univariate analyses. Out of the 48 metabolites identified, 14 were chosen based on 

their significant alterations in MCF-7 cells under different glycaemic conditions and PEDF treatment 

(p < 0.05, VIP > 0.8). Dysregulation in pathways associated with amino acid metabolism, 

intermediates of the TCA cycle, nucleotide metabolism, and lipid metabolism were detected, and they 

exhibited different responses to PEDF. Our results suggest that PEDF has a diverse influence on the 

metabolism of MCF-7 cells in both normo- and hyperglycaemic environments, thereby warranting 

studies using patient samples to correlate our findings with clinical response in the future. 
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1. Introduction 

Breast cancer (BC) accounts for nearly 25% of all cancers diagnosed in women [1]. 

Based on molecular characteristics, BC can be divided into several subtypes, each with 

distinct biological features and clinical outcomes. The most widely used classification 

system is the one developed by the Cancer Genome Atlas (TCGA) network [2], which 

includes the following subtypes: luminal-like tumours, which consist of luminal-A, 
estrogen receptor +/progesterone receptor +/human epidermal growth factor receptor 

2−/(ER+/PR+/HER2−) and luminal-B (ER+/PR−/HER2+) tumours, HER2-enriched breast 

cancers, which exhibit overexpression of the receptor tyrosine-protein kinase Erb-B2 

oncogene, and basal-like tumours, that are heterogeneous and a more aggressive subtype 

[2,3]. Despite notable advancement in the management of BC in recent decades, mainly 

due to better earlier detection techniques, the efficacy of therapeutic interventions remains 

suboptimal and is contingent upon various factors. The limited success in managing BC 

is, to a certain extent, attributable to a lack of pathophysiological understanding of the 
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disease, which translates to subpar individualised treatment and unfavourable clinical 

outcomes [4]. Consequently, developing novel therapeutic modalities for BC is critical to 

improving BC patient outcomes. 

Cancerous cells exhibit a unique metabolic phenotype that confers the ability to 

sustain high energetic demands of vigorous cellular proliferation and growth [5]. A 

notable characteristic of cancerous cells is their augmented reliance on glucose as an 

energy substrate, a phenomenon commonly referred to as the Warburg effect, 

characterised by elevated glucose uptake and glycolytic activity, even under aerobic 

conditions [6]. This starkly contrasts the oxidative-phosphorylation-dependent energy 

production mechanism utilised by normal cells. Furthermore, cancerous cells exhibit an 

altered metabolic profile characterised by the activation of biosynthetic pathways that 

facilitate the generation of fundamental macromolecules, such as nucleotides and lipids, 

crucial for supporting the cellular proliferation and progression requisite for 

tumourigenesis [7,8]. A growing body of evidence suggests a link between 

hyperglycaemia (elevated blood sugar levels) and BC, in which tumours may be more 

likely to grow and spread in a high-glucose environment [9,10]. Several studies have 

shown that hyperglycaemia can induce inflammation, oxidative stress, and hormonal 

imbalances, contributing to the development and progression of BC [10,11]. Additionally, 

insulin resistance, a metabolic dysfunction often concomitant with hyperglycaemia, has 

been linked to an increased risk of BC [10]. By unravelling the underlying biology of BC 

in this area, practitioners can then develop therapeutic strategies tailored to the specific 

characteristics of each patient’s tumour. 

Pigment-epithelium-derived factor (PEDF) is a secreted glycoprotein of the serpin 

(serine protease inhibitor) superfamily, which was initially identified as a potent 

angiogenic inhibitor secreted by retinal pigment epithelium (RPE) cells [12]. PEDF 

exhibits a plethora of molecular activities, including neurotrophic, anti-inflammatory, 

anti-oxidative, and anti-tumour functions [13,14]. These functions are mediated through 

its interaction with various receptors, such as laminin receptor (LR) [15] and PEDF 

receptor (PEDF-R) [16]. Notably, PEDF has been proposed to modulate the lipolytic 

pathway through its interaction with its receptor, adipose triglyceride lipase (ATGL), 

suggesting its involvement in regulating lipid metabolism and energy balance [17]. 

Furthermore, PEDF’s influence on this pathway has been associated with improved 

insulin resistance and enhanced metabolic efficiency [17,18]. Numerous studies have 

suggested that a reduction in PEDF expression is linked to increased poor prognosis and 

tumour aggressiveness in various types of cancer [13,19] and have consistently 

demonstrated the downregulation of PEDF in BC cells [13]. Thus, the multifaceted role of 

PEDF in cancer has generated considerable interest among researchers, highlighting the 

potential for PEDF-based therapeutics in cancer treatment in the future. Although 

previous research has acknowledged PEDF’s multifunctional properties and its potential 

role as a metabolic regulator, the specific interplay between PEDF, glycaemic conditions, 

and tumour cell metabolism remains limited in terms of mechanistic elucidation. 

Metabolomics, a rapidly evolving field of omics sciences, plays a pivotal role in 

cancer research by providing valuable insights into the metabolic alterations associated 

with tumourigenesis and disease progression [20]. Untargeted metabolomics is an 

unbiased approach that allows for discovering novel metabolic alterations [21]. It does not 

rely on predefined targets, enabling the detection of unexpected or previously unknown 

metabolic changes [20,21] and identifying new therapeutic targets or pathways. In a 

recently published study, we utilised gas chromatography-mass spectrometry (GC/MS) 

to point out metabolic alterations in the triple-negative breast cancer (TNBC) cell line 

(MDA-MB-231) after being subjected to glycaemic loading in response to PEDF [22]. 

However, to gain a comprehensive understanding of the metabolic reprogramming 

occurring in each BC subtype under glycaemic loading and to assess the effectiveness of 

PEDF, we performed our experiment on the MCF-7 cell line to the intricate molecular 

pathways and metabolic adaptations by employing untargeted metabolomics. The 
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dissimilarities in both the phenotypic and genotypic characteristics of the MCF-7 and 

MDA-MB-231 cell lines make them ideal subjects for individualised experimentation to 

explore the complex interplay of the metabolic pathways involved in tumourigenesis and 

progression as well as their distinct metabolic responses to PEDF. Unravelling the 

mechanisms governing the reprogramming of metabolic pathways associated with PEDF 

treatment in BC cells in the context of glycaemic conditions can open up new avenues for 

further targeted research and ultimately enhance the development of more effective 

cancer treatments. 

2. Materials and Methods 

2.1. Reagents and Materials 

The recombinant PEDF was supplied by MD Bioproducts (Bethesda, MD, USA). The 

MCF-7 was from the American Tissue Culture Collection, ATCC (Manassas, VA, USA). 

Dulbecco’s modified Eagle medium (DMEM), foetal bovine serum (FBS), and 

antibiotic/antimycotic were all purchased from Sigma-Aldrich, Saint Louis, MO, USA. 

HPLC-grade isopropanol (IPA), methanol (MeOH), and water (H2O) were obtained from 

Sigma-Aldrich, along with alkanes, 4,4′-dibromooctafluorobiphenyl, and hexane. 

Derivatisation reagents including methoxyamine (MOX), trifluoroacetamide (MSTFA), 

and 1% trimethylsilyl chloride (TMCS) were purchased from Thermo Fisher Scientific, 

Waltham, MA, USA. 

2.2. Cell Cultivation 

The human luminal-A (ER+/PR+/−/HER2−) breast adenocarcinoma cell line (MCF-7) 

was cultured in DMEM with 10% foetal bovine serum (FBS) and 1% antibiotics and 

antimycotics under normal glucose conditions (5 mM). The cultures were grown to 80% 

confluence under controlled conditions at 37 °C with 5% CO2 and passaged weekly 

following the established ATCC protocols. For the metabolomics analysis, the MCF-7 cells 

were seeded in 24-well plates at a density of 4 × 105 cells/well in two distinct media groups 

with varying glucose concentrations (5 mM and 25 mM). After the cells were cultured for 

24 h, they were exposed to a physiologically normal concentration of PEDF (100 nM) [23] 

and then incubated overnight. Subsequently, the cells underwent trypsinisation and were 

centrifuged at 700× g for 5 min. The culture medium was discarded, and the obtained 

pellets were promptly frozen at −80 °C until sample preparation. The experiment was 

carried out with six replicates per media condition. 

2.3. Sample Preparation for Metabolomics Analysis 

Metabolite extraction and derivatisation were performed following a previously 

described method [22]. In brief, 500 µL of cooled protein precipitation solvent containing 

methanol/isopropanol/water was added to each sample tube. After mixing and chilling 

for 20 min at 4 °C, the resulting mixtures were centrifuged at 21,952× g for 15 min at 4 °C. 

Finally, the supernatants containing the cell metabolites were subjected to evaporation to 

dryness under a nitrogen stream. The dried residues were derivatised using two steps as 

follows: methoxyamination was performed by adding 30 µL of methoxyamine 

hydrochloride and heating for an hour at 60 °C. This preceded the addition of MSTFA as 

trimethylsilylation reagent containing 1% trimethylchlorosilane (TMCS) and a standard 

mixture of the alkane retention index (50 µL). The mixture was then incubated for 20 min 

at 45 °C to allow the reaction to take place. Following this, each sample was dissolved 

with 20 µL of an injection standard that contained 4,4′-dibromooctafluorobiphenyl at a 

concentration of 10 mg/L in hexane. The supernatant of each sample was immediately 

transferred to autosampler GC/MS glass vials for GC/MS analysis. 
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2.4. Metabolome Profiling Using GC/Q-MS 

An Agilent 5977B MSD/Agilent 8860 GC system fitted with a Restek Rxi-5-ms column 

(30 m length × 0.25 mm internal diameters (id); 0.25 µm film) was used to analyse the 

derivatised samples. Approximately 1 µL of each sample was injected at a split ratio of 1:1 

in random order. The chromatographic method was conducted at a constant flow rate of 

helium 1 mL/min as the carrier gas, ramping from 20 °C/min to 320 °C, and then holding 

at 320 °C for 5 min. The MS source, transfer line, and quadrupole temperature were set at 

150 °C, 290 °C, and 250 °C, respectively, operating in electron ionisation mode at −70 eV. 

After a 5.4 min solvent delay, mass spectrometry data were collected at a scan rate of 20 

spectra/sec within the range of m/z 50–600. 

2.5. Data Processing and Statistical Analysis 

The data were processed using MS-DIAL (version 4.9) to create a data matrix 

consisting of InChIKey, peak intensity, and the original dataset’s average retention time 

(RT). Metabolite names were assigned to the GC/MS spectra based on two parameters: 

mass spectral similarity and retention indices (calculated using a mixture of alkanes). To 

confirm the identified metabolites, the GC/MS spectra were compared to several mass 

spectral libraries, including Fiehn library, MassBank, Golm DB, GNPS, and HMDB. The 

peak intensity was normalised by sum and scaled using autoscaling with MetaboAnalyst 

(v5.0) to achieve normal distribution. Multivariate and univariate statistics and 

visualisation were performed with supervised partial least squares discriminant analysis 

(PLS-DA) and one-way analysis of variance (ANOVA). The data were displayed as a 

boxplot by applying the R packages “ggpubr” and “tidyverse.” An investigation into the 

primary biological pathways was conducted via an enrichment pathway analysis using 

MetaboAnalyst (v5.0), with a significance threshold of p-value < 0.05 and FDR < 0.1. 

3. Results 

3.1. Metabolic Profile among the Groups 

The data were processed by MS-DIAL, resulting in 356 compounds, out of which 48 

metabolites were considered reliable for further analysis (Table S1), and then categorised 

into different levels formed from the ClassyFire system [24]. Metabolites at the subclass 

level were abundant, with amino acids, peptides, and analogues accounting for a 

significant portion, along with dicarboxylic acids and derivatives (Figure 1A). The 

complete names and classes of the metabolites are set out in Table S2. 

A supervised PLS-DA model score plot showed a perfect separation among the 

groups (Figure 1B). The cross-validation and the permutation revealed that the model was 

significant (Figure S1A,B). To conduct a comprehensive analysis of the metabolome, 

molecular networks were employed. Figure 2 displays nodes represented as pie charts 

depicting the metabolic changes in MCF-7 cells in response to glycaemic loading and 

PEDF treatment. 
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Figure 1. (A) The sunburst plot displaying the entire range of metabolomes identified in this study, 

including amino acids, lipids, and other classes, along with their corresponding metabolites and 

conjugates. (B) PLS-DA plot of MCF-7 cells under glycaemic loading with and without PEDF created 

with 95% confidence and cross-validated R2Y = 0.98122 and Q2 = 0.80111 coefficients. 

 

Figure 2. Molecular network of all detected metabolites using GC/MS. Pie charts displaying the 

distribution of metabolite intensities under the high-glucose (H-control: blue; H-treated: red) and 

normal-glucose (N-control: grey; N-treated: dark yellow) conditions. 
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3.2. Response of MCF-7 Metabolomes to PEDF under Glycaemic Loading 

Using one-way ANOVA analysis (p-values  <  0.05, FDR q  <  0.05) coupled with a 

multivariate test with a VIP score of  ≥ 0.8 revealed that out of 48 metabolites, 14 

metabolites exhibited substantial differences among the groups (Table 1). To visualise the 

differences amongst the four groups (normal and high-glucose conditions with and 

without PEDF), boxplots were constructed for the most significant metabolites using data 

from the ANOVA analysis (Figure 3). These findings indicated that certain metabolites 

involved in lipid metabolism, such as cholesterol, oleic acid, and palmitoleic acid, were 

reduced under normal and high-glucose conditions after exposure to PEDF. Cholesterol 

exhibited the most pronounced changes. The metabolite levels that pertain to amino acid 

metabolism, including glycine, methionine, aspartic acid, beta-alanine, and threonine, 

showed considerable alterations among the groups. Methionine presented notable 

changes, decreasing substantially under high-glucose conditions and increasing under 

both normal and high-glucose conditions after exposure to PEDF. Tricarboxylic acid cycle 

(TCA) cycle intermediates, including malate, succinic acid, and fumaric, displayed 

distinct patterns in their intensities after exposing the cells to PEDF under glycaemic 

loading. PEDF’s impact on homocysteine and methylmalonic acid levels was statistically 

significant, influencing their response by the glucose level. 

Table 1. Significant alterations in metabolites under normal and high-glucose conditions, both with 

and without PEDF (one-way ANOVA and Tukey’s HSD tests). 

Metabolites VIP 

One-Way ANOVA Multiple Comparisons Tukey HSD (a p-Value) 

a p-Value FDR HT vs. HC NC vs. HC NT vs. HC NC vs. HT NT vs. HT 
NC vs. 

NT 

Uracil 1.0007 1.07 × 10−7 5.14 × 10−6 0.982 0.000 0.525 0.000 0.325 0.000 

beta-Alanine 1.587 1.39 × 10−6 3.33 × 10−5 0.012 0.012 0.011 0.000 0.000 1.000 

Methionine 2.1201 2.56 × 10−5 0.000409 0.999 0.011 0.000 0.015 0.000 0.188 

Glycine 0.97332 0.000313 0.003589 0.851 0.000 0.573 0.002 0.959 0.007 

Succinic acid 1.643 0.000448 0.003589 0.008 0.000 0.003 0.584 0.970 0.836 

Cholesterol 1.8464 0.000449 0.003589 0.014 0.001 0.001 0.715 0.568 0.995 

Homocysteine 1.9154 0.000654 0.004486 0.946 0.246 0.001 0.479 0.002 0.059 

Methylmaloni

c acid 
1.5986 0.002992 0.015957 0.966 0.010 0.833 0.003 0.981 0.001 

Oleic acid 1.0777 0.006105 0.041381 0.994 0.004 0.490 0.007 0.644 0.089 

Fumaric acid 1.4726 0.004588 0.022023 0.037 0.005 0.019 0.793 0.989 0.929 

Threonine 1.4385 0.005339 0.023298 0.931 0.007 0.104 0.027 0.290 0.596 

Malate 1.4995 0.010921 0.040484 0.999 0.036 0.084 0.049 0.112 0.974 

Aminomaloni

c acid 
1.7133 0.010964 0.040484 0.631 0.052 0.013 0.414 0.148 0.911 

Palmitoleic 

Acid 
0.96085 0.012301 0.042175 1.000 0.019 0.675 0.020 0.685 0.180 

Aspartic acid 1.2957 0.014993 0.047976 0.673 0.011 0.168 0.116 0.737 0.548 

Key: ANOVA, analysis of variance; VIP, variation important in the projection; FDR, false discovery 

rate; HT, high-glucose treated; HC, high-glucose control; NT, normal-glucose treated; NC, normal-

glucose control. a p-value < 0.05 is considered statistically significant based on the one-way ANOVA 

and Tukey’s post hoc test. 
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Figure 3. The boxplots display the distribution of 14 metabolites that exhibited the highest 

significance (p-values < 0.05 and VIP scores > 0.8) in the analysis of variance. These boxplots allow 

for comparing the four groups: normal and high-glucose conditions with and without PEDF. On the 

x-axis, each group is represented by individual metabolites, while the y-axis indicates the 

normalised peak intensity. Metabolites showing significant differences were calculated using 

Tukey’s Honestly Significant Difference (TukeyHSD) test and indicated as (*) p ≤ 0.05, and (**) p ≤ 

0.01. The key for the groups is as follows: H represents high-glucose (H-control: blue; H-treated: 

red) and N represents normal-glucose (N-control: grey; N-treated: dark yellow). 

3.3. Pathway Analysis 

MetaboAnalyst (v.5.0) was used to perform an enrichment analysis of the 14 critical 

metabolites. The findings indicated that PEDF had a notable impact on three major 

metabolic pathways. The first pathway affected by PEDF was arginine and proline 

metabolism, as evidenced by changes in glycine, fumaric acid, aspartic acid, and succinic 

acid. The second pathway influenced by PEDF was glycine and serine metabolism, which 

exhibited alterations in glycine, threonine, methionine, and homocysteine. The third 

significant pathway affected by PEDF was the citric acid cycle with amended metabolites 

such as fumaric acid, malate, and succinic acid (Figure 4). All of the enriched pathways 

can be found in Table S3. 
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Figure 4. A metabolite set enrichment analysis (MSEA) based on differentially altered metabolites 

identified among the groups. MSEA was used to detect significantly enriched metabolic pathways 

among the groups. 

4. Discussion 

Hyperglycaemia, a metabolic diabetes, has been implicated in recent decades as a 

risk factor for breast cancer [9], which can not only increase the mortality and incidence 

of BC but also highlights the negative impact on the effectiveness of chemotherapy and 

the potential development of chemoresistance [10]. Hence, gaining a comprehensive 

understanding of the various types of metabolic reprogramming in the field is crucial to 

create targeted treatments that tackle the altered pathways in BC. 

It has been demonstrated that PEDF is associated with metabolic disorders [18]. On 

the other hand, various studies have reported reduced PEDF expression in BC cells [13]. 

Nevertheless, no conclusive evidence supports the notion that PEDF plays a specific role 

in the metabolic alteration of BC cells under glycaemic status. Our group recently 

conducted a study utilising GC/MS analyses to investigate metabolic shifts in the TNBC 

cell line (MDA-MB231) in response to glycaemic loading and PEDF exposure [22]. The 

results showed that the Warburg effect in MDA-MB-231 was affected by PEDF regardless 

of glucose level. To gain a more comprehensive understanding of the metabolic 

reprogramming in each subtype of BC with distinct metabolism and to evaluate the 

efficacy of PEDF, we conducted additional experiments on the MCF-7 cell line to examine 

changes in metabolism in response to glycaemic loading and PEDF exposure. 
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The metabolomic analysis conducted in this study revealed significant alterations in 

the metabolic profile of MCF-7 breast cancer cells following PEDF treatment under normal 

and high-glucose conditions. Several metabolites were found to be differentially regulated 

by PEDF treatment, including uracil, beta-alanine, methionine, glycine, succinic acid, 

cholesterol, homocysteine, methylmalonic acid, oleic acid, fumaric acid, threonine, 

malate, palmitoleic acid, and aspartic acid. These metabolites play crucial roles in various 

metabolic pathways, including nucleotide, amino acid, lipid, and energy metabolism. 

The biosynthesis of nucleotides plays a vital role in the metabolic processes necessary 

for tumour cell replication [25]. Accordingly, the replication of malignant cells hinges on 

their ability to synthesise DNA and RNA through nucleotide metabolism, thereby 

enabling them to undergo self-proliferation without any regulatory constraints [25,26]. In 

the present study, the observed decrease in uracil levels in the high-glucose groups 

suggests that elevated glucose levels may negatively impact nucleotide metabolism. This 

finding is remarkable as it indicates a potential metabolic vulnerability in tumour cells 

exposed to high-glucose environments. Additionally, the study showed that exposure to 

PEDF further reduced uracil levels under both normal and high-glucose conditions. 

Notably, the more pronounced decrease in uracil levels under normal glucose conditions 

suggests that PEDF may have a greater impact on nucleotide metabolism in a non-diabetic 

or normoglycemic environment. Under high-glucose conditions, different metabolic 

pathways may play more prominent roles, potentially compensating for the effects of 

PEDF on uracil metabolism and resulting in a more modest reduction in uracil levels. This 

also accords with our earlier observations, which showed changes of uracil in MDA-

MB231 cells under both normo- and hyperglycemic conditions; however, the alteration of 

it was not significant [22]. This finding is particularly interesting because it highlights the 

capability of PEDF as a nucleotide metabolism modulator and suggests its potential 

therapeutic relevance in targeting tumour cell replication. The metabolism of uracil in 

humans is a multifaceted and highly regulated process that involves numerous enzymatic 

reactions, including uridine phosphorylase 2 [27], uridine kinase [28], and uracil 

phosphoribosyltransferase [29], which ultimately convert uracil into uridine 

monophosphate (UMP), a precursor for RNA synthesis. In cancer cells, the metabolism of 

uracil is often altered due to changes in gene expression or mutations in key enzymes, 

resulting in the accumulation of uracil and its derivatives [28,30]. Considering the role of 

nucleotide metabolism in cancer cell proliferation and the observed effects of glucose and 

PEDF on uracil levels, these findings provide insights into the metabolic regulation of 

tumour cells and raises intriguing questions about the underlying mechanisms involved. 

Amino acid metabolism is one of the key pathways that is altered in cancer cells, and 

changes in the levels of specific amino acids have been linked to tumour cell growth and 

survival [31]. The present study showed that the metabolism of approximately six amino 

acids changed among groups with different responses to PEDF under glycaemic 

conditions. Methionine, glycine, and beta-alanine showed the most significant differences. 

Glycine is a non-essential amino acid that plays an essential role in various cellular 

processes, including protein synthesis, energy metabolism, and redox regulation [32]. In 

our study, in the high-glucose group, a decreased level of glycine compared to the normal 

glucose group was noted. These changes regarding glycine levels corroborate the findings 

of our previous study performed on MDA-MB-231 [22]. The decrease in glycine levels 

under high-glucose conditions may be due to a combination of reactive oxygen species 

(ROS)-mediated oxidation, glycation end products (AGEs) formation [33], and increased 

demand due to mammalian target of rapamycin (mTOR) activation [34]. In addition, after 

exposing cells to PEDF, glycine levels decreased and slightly increased under normal and 

high-glucose conditions, respectively. This suggests that PEDF may have a protective 

effect on glycine depletion induced by high glucose levels, potentially through inhibition 

of the mTOR pathway or by mitigating oxidative stress. 

The reduction in methionine levels observed in MCF-7 cells under high-glucose 

conditions may be attributed to the upregulation of the transsulfuration pathway, which 
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diverts the methionine pool towards cysteine synthesis [35,36]. This diversion is mediated 

by cystathionine-β-synthase (CBS) activation due to increased cellular energy levels [36]. 

Moreover, we observed elevated levels of homocysteine under normal conditions; a 

sulphur-containing amino acid formed during the metabolism of methionine to cysteine 

[37,38]. Consequently, a decrease in methionine and an increase in homocysteine indicate 

dysregulation in methionine metabolism in response to the glucose-rich environment in 

ER+ human BC. Elucidating the precise mechanisms underlying these changes is 

challenging due to metabolism’s complexity and other factors’ influence. There are 

similarities between the alteration of methionine by PEDF in the glycaemic environment 

in this study and the one that our group performed on MDA-MB-231; however, the 

changes were not significant [22]. Exposure to PEDF seemed to regulate methionine and 

homocysteine levels under both normal and high-glucose conditions. The slight increase 

in methionine levels under high-glucose conditions after PEDF exposure could be 

attributed to the potential activation of enzymes involved in methionine synthesis, 

partially compensating for the earlier observed decrease in methionine levels. Further 

investigation allows us to gain a deeper understanding of how PEDF may impact this 

particular pathway. 

Our experiment uncovered a noteworthy observation pertaining to the beta-alanine 

levels. Beta-alanine is a non-proteinogenic amino acid produced in the human body [39] 

from the breakdown of pyrimidines, the decarboxylation of l-aspartate by intestinal 

microbes, and transamination [40,41]. Beta-alanine plays an essential role in the synthesis 

of carnosine, a dipeptide found primarily in muscle tissue [42]. Carnosine contributes to 

various physiological processes in the body, including buffering acidity in muscle cells, 

reducing oxidative stress, and regulating glucose metabolism [43]. Additionally, 

carnosine has been found to inhibit the proliferation of breast, ovarian, colon, and 

leukemic cancer cells [44]. Interestingly, exposure to PEDF increased beta-alanine levels 

under both normal and high-glucose conditions in ER+ human BC. This implies that PEDF 

might directly target beta-alanine biosynthetic pathways or interact with upstream 

regulators, circumventing the influence of glucose availability. This finding can 

potentially be elucidated by the biochemical conversion of uracil into beta-alanine, 

whereby the administration of PEDF triggered a decline in uracil concentration followed 

by an elevation in beta-alanine levels, facilitating carnosine biosynthesis. The elevated 

beta-alanine levels induced by PEDF may have broader implications in the context of 

cancer biology and metabolic disorders. Beta-alanine, as a component of carnosine, can 

modulate intracellular pH and act as an antioxidant [43], potentially influencing cancer 

cell proliferation, survival, and response to oxidative stress [42]. Moreover, dysregulation 

of beta-alanine metabolism has been linked to metabolic disorders, suggesting that the 

PEDF-mediated increase in beta-alanine levels may have implications for metabolic 

homeostasis. As we delve deeper into our investigations, our understanding of how PEDF 

can regulate metabolic processes through its impact on beta-alanine continues to expand. 

Another important finding was the significant changes in the metabolites associated 

with the TCA cycle, particularly malate, fumaric acid, and succinic acid. All three 

increased under high-glucose conditions, and after exposure to PEDF, their levels 

increased under normal conditions and decremented under high-glucose conditions. In 

concordance with the present results, our previous study demonstrated the same trends 

regarding the mentioned metabolites in MDA-MB-231 in that the malate levels showed 

more significant differences between them [22]. Under high-glucose conditions, the 

increased availability of pyruvate and other TCA cycle intermediates may lead to an 

increased cycle rate, resulting in the production of excessive fumaric acid, succinic acid, 

and malate [45,46]. Fumaric acid can stimulate the Keap1/Nrf2 pathway, leading to the 

upregulation of antioxidant genes and cytoprotective mechanisms, thereby promoting 

tumour cell survival [47]. Known to be a prolyl hydroxylases inhibitor, succinic acid is 

able to stabilise hypoxia-inducible factors (HIFs) and activate genes involved in 

angiogenesis and energy metabolism [48]. Furthermore, malate generation in cancer cells 
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serves as an effective mechanism for supporting glycolysis by promoting NADPH 

synthesis, an important cofactor for antioxidant defences and other cellular processes 

[49,50]. These changes in fumaric acid, succinic acid, and malate levels in response to 

PEDF and high-glucose conditions reflect the complex interplay between different 

metabolic pathways and cellular responses to these conditions. Nevertheless, these 

findings suggest that PEDF can protect the balance of TCA cycle metabolism regardless 

of glucose conditions. 

The present study observed a noteworthy alteration in lipid metabolism, specifically 

concerning cholesterol, which agrees with our previous work on MDA-MB-231. 

Cholesterol plays an integral role in cell membranes [51] and the synthesis of certain 

hormones that regulate cell growth and functions [52]. Cancer cells heavily rely on 

cholesterol for their growth and proliferation [53]. PEDF can modulate different signaling 

pathways involved in lipid metabolism. The effect of PEDF on lipid metabolism and its 

precise mechanisms are still not fully understood. However, previous studies has shown 

that PEDF can enhance lipolysis by binding to the adipose triglyceride lipase (ATGL), a 

key enzyme responsible for the breakdown of triglycerides [54]. Our study demonstrates 

that high-glucose levels significantly increased cholesterol levels compared to normal 

conditions. Nevertheless, the administration of PEDF in both situations ultimately leads 

to decreased cholesterol levels. This compelling evidence suggests that PEDF might 

profoundly impact lipid metabolism during cellular stress. 

However, despite their similarities in metabolite alterations under normal and high-

glucose conditions and responses to PEDF, MCF-7 and MDA-MB-231 exhibit distinct 

differences in their metabolic profiles. The metabolic disparities between MCF-7 and 

MDA-MB-231 cells are likely attributed to their different genetic backgrounds and 

molecular characteristics [55]. MCF-7 cells are estrogen receptor positive and represent a 

luminal subtype of breast cancer, while MDA-MB-231 cells are triple negative and belong 

to the basal-like subtype. These divers’ molecular profiles could lead to disparities in the 

expression and activity of metabolic enzymes and pathways and subsequently influence 

their response to glucose availability and the modulation of metabolic pathways by PEDF. 

As an example, in our previous study, we observed a significant impact of PEDF on 

metabolites associated with the Warburg effect in MDA-MB-231 cells, specifically lactate 

and glucose-6-phosphate (G6P) [22]. In contrast, in the case of MCF-7 cells, G6P was not 

identified as a metabolite, suggesting a differential metabolic response between these cell 

lines. Interestingly, the effect of PEDF on lactate levels in MCF-7 cells mirrored that 

observed in MDA-MB-231 cells, although the changes were not statistically significant. 

On the other hand, our findings indicate that in MCF-7 cells, PEDF exerts a more 

pronounced effect on metabolic pathways associated with arginine, proline, glycine, serine, 

and the TCA cycle, as evidenced by alterations in metabolite levels. This starkly contrasts with 

the impact of PEDF on metabolic pathways in MDA-MB-231 cells, highlighting a differential 

metabolic response to PEDF between the two breast cancer cell lines. 

5. Conclusions 

After considering the original objective of this study, it is now possible to state that 

this finding yielded valuable insights into the link between metabolic processes and 

glycaemic conditions in BC, specifically the luminal-A (ER+/PR+/−/HER2−) subtype, as well 

as the significant impact of PEDF on metabolic pathways. The metabolomics data analysis 

demonstrates that PEDF has a diverse impact on the metabolism of MCF-7 cells under 

both normo- and hyperglycaemic conditions. More importantly, this study has identified 

new metabolic markers that are heavily influenced by PEDF, which can play a crucial role 

in regulating the metabolism of BC cells. Understanding how PEDF affects cellular 

metabolism provides insights into the complex regulatory mechanisms that cells employ 

to adapt to changing environmental conditions, such as glucose availability. This 

knowledge contributes to our understanding of cellular homeostasis and metabolic 

plasticity. PEDF has been shown to modify the levels of metabolites in essential metabolic 
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pathways such as the TCA cycle, lipid metabolism, and amino acid metabolism. While 

there are notable similarities in the alteration of metabolites and PEDF responses between 

MCF-7 and MDA-MB-231 cells, their distinct metabolic profiles highlight the need for a 

comprehensive understanding of the metabolic heterogeneity within breast cancer 

subtypes under stress conditions. Unraveling the complexities of their divergent 

metabolism could provide valuable insights into their respective tumour biology and aid 

in developing personalised treatment approaches for breast cancer patients. The observed 

impact of PEDF on diverse metabolic pathways in BC cells raises intriguing questions 

about the underlying mechanisms. Further investigations into the specific molecular 

interactions and signaling cascades involved in PEDF-mediated metabolic regulation can 

provide valuable mechanistic insights. Understanding these mechanisms can uncover 

novel targets for therapeutic intervention and enhance our knowledge of fundamental cellular 

processes. Hence, more research must be conducted to fully discover primary mechanisms of 

these effects, especially at the protein level, to enhance the accuracy of initial therapeutic 

selection systems and identify new targets to improve breast cancer treatment. 
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