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Abstract: Clinically, indobufen is widely used for the treatment of antiplatelet aggregation and
anticoagulation. Prior studies have discovered that abnormal platelet function can be promptly
restored to normal when the drug is stopped. Herein, through the study of the enzyme reaction
kinetics, we demonstrated that the inhibitory effect of indobufen on cyclooxygenase-1 (COX-1) was
reversible and non-competitive. Specifically, the cyclooxygenase inhibition experiment showed that
the level of 6-keto-PGF1α in the gastric mucosa of the indobufen-treated groups was significantly
higher than that of the aspirin group (### p < 0.001), indicating a higher level of PGI2 in and a better
physiological state of the gastric mucosa. Moreover, the rat gastric ulcer index and mucosal section
experiments further confirmed the relief of gastrointestinal irritation and the adverse reaction rate of
the indobufen-treated group compared to those of the aspirin group. Furthermore, indobufen was
verified to exert reversible inhibitory activity on the heme group of COX-1 and thus reversibly inhibit
COX-1 activity. In general, compared with aspirin, the long-term oral administration of indobufen
yields a lower risk of gastrointestinal symptoms, such as ulcers.

Keywords: indobufen; anticoagulant effect; antiplatelet effect; adverse reaction; COX-1

1. Introduction

Indobufen, an isoindoline phenyl-butyric acid derivative, is effective in antiplatelet
aggregation and anticoagulation [1]. It is wildly applied to treat ischemic cardiovascular dis-
ease caused by arteriosclerosis, ischemic cerebrovascular disease, and venous thrombosis.
Indobufen can also be used in clinical practice to prevent thrombosis during hemodial-
ysis. In broad terms, arterial thrombosis is treated with drugs targeting platelets, and
venous thrombosis is treated with drugs targeting coagulation cascade proteins [2]. As a
reversible inhibitor of cyclooxygenase-1 (COX-1), indobufen can suppress the production
of thromboxane A2 (TXA2), which plays a vital role during the formation of the platelet
thrombus [3]. After the platelets adhere to the exposed collagen of the damaged vascular
endothelium, the signal transduction mechanism is activated in the platelets. Platelets
release substances that promote platelet aggregation, including adenosine diphosphate
(ADP) and TXA2. These substances bind to the corresponding receptors, i.e., ADP binds
to the P2Y1/P2Y12 receptor, and TXA2 binds to the TPα/TPβ receptor. Afterward, the
content of the second messenger calcium ion increases, and the content of the second
messenger cyclic adenosine monophosphate (cAMP) decreases. These events result in
the exposure of the fibrinogen binding site on the platelet surface. Platelets adhere and
aggregate through fibrinogen, forming a platelet thrombus [4]. Moreover, indobufen can
also inhibit platelet aggregation induced by ADP, epinephrine, platelet-activating factor,
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and collagen [5,6]. In addition to antiplatelet effects, indobufen also plays a role in the
anticoagulation process by reducing the plasma levels of the coagulation factors. Indobufen,
for example, has been found to reduce platelet factors 3 and 4 to inhibit the activation
of coagulation factors II and X [6,7]. Two pathways—intrinsic and extrinsic—initiate the
coagulation cascade. The intrinsic pathway is initiated by substances within the damaged
blood vessel, while the extrinsic pathway is activated when the blood is exposed to tissue
factors from the surface of extravascular cells [8]. The intrinsic and extrinsic pathways
converge at a common pathway, starting at the factor X (FX) level. Activated FX (FXa)
forms the prothrombinase complex, together with factor Va (FVa) and calcium ion on a
phospholipid membrane surface, which can activate prothrombin (FII) to form thrombin
(FIIa). FIIa then converts soluble fibrinogen (FI) to fibrin (FIa), which creates a solid blood
clot, along with erythrocytes and platelets [6,9]. In addition, indobufen can downregulate
tissue factor (TF) in the monocytes, which, coupled with its antiplatelet effect, may add ben-
efits for the use of the drug in the management of atherothrombosis [10]. Some researchers
suggest that indobufen has a weaker antiplatelet aggregation effect than does aspirin in
patients with coronary atherosclerosis [11], while Lee et al. found that the initial inhibitory
effect of indobufen (200 mg twice daily) on platelet aggregation in healthy volunteers was
comparable to that of aspirin (200 mg daily), and the anti-aggregation effect diminished
faster than the rate after the administration of aspirin [12].

Indobufen is rapidly and completely absorbed after oral administration, reaching peak
plasma concentrations within 2 h. The elimination half-life (t1⁄2β) is about 7 h, and the low
apparent volume of distribution of 15 L is a reflection of the high plasma protein binding
(>99%) of the drug. The fraction of the administered dose excreted in urine within 48 h of
administration is about 70 to 80%, with most of it excreted via the kidney as glucuronic
acid conjugates and 11 to 13% excreted as the unchanged drug [1]. There are also common
adverse gastrointestinal effects after long-term administration of indobufen. However, the
incidence of gastrointestinal reactions to indobufen, such as nausea, dyspepsia, abdominal
pain, peptic ulcer, and gastritis, has been reported to be lower than that with aspirin [13].
Indobufen also causes less gastrointestinal bleeding than does aspirin [14]. The difference
in gastrointestinal irritation between aspirin and indobufen is mainly due to the types
of the binding nature. Aspirin has an irreversible binding nature to COX-1, whereas the
binding nature of indobufen to COX-1 is reversible [1,12]. Specifically, aspirin inhibits
native COX-1 in gastric parietal cells and reduces the synthesis of the gastric mucosal
protective substances dinoprostone (PGE2) and prostacyclin (PGI2). Under physiological
conditions, PGE2 and PGI2 can (1) stimulate the secretion of gastric mucus and bicarbonate;
(2) reduce the permeability of gastric epithelial cells; (3) reduce the reverse diffusion of
gastric acid; and (4) expand gastric blood vessels and increase gastric mucosal blood flow.
Thus, PGE2 and PGI2 increase the resistance of the gastric mucosa to injury [12]. Although
indobufen also inhibits natural COX-1 in gastric parietal cells and reduces the synthesis
of PGE2 and PGI2, it is a reversible inhibitor of COX-1. Indobufen can form a complex
with the enzyme and inhibit the reaction by inhibiting the enzyme’s interaction with the
substrate. However, this complex can be broken down into the enzyme and the inhibitor,
and the broken-down enzyme can still catalyze the reaction. Therefore, the incidence of
gastrointestinal adverse reactions following indobufen administration is usually lower than
that associated with aspirin. In long-term medication, the difference in the incidence and
extent of adverse reactions is crucial to the patient’s medication compliance.

In this study, we evaluated indobufen’s antiplatelet and anticoagulant activity. We
first compared indobufen with ticlopidine and aspirin for antiplatelet activity, followed
by a comparison of indobufen with dabigatran and rivaroxaban regarding anticoagulant
activity. The antiplatelet and anticoagulation mechanisms of indobufen were explored
and supplemented. Furthermore, we assessed the adverse stomach reactions of indobufen,
taking aspirin as the control, to explain the difference in adverse stomach reactions between
the two drugs from the perspective of enzymatic reactions. We studied the reversible
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inhibition effect and the influence of the type of indobufen used on COX-1 and explored
and predicted the binding sites of both.

2. Materials and Methods
2.1. Animals

Male and female New Zealand white rabbits were provided by the Pukou LaiFu
Animal Breeding Farm (Nanjing, China); the experimental animal ethical approval number
is SCXK (Hu) 2019-0005. Male and female Sprague Dawley (SD) rats were provided by the
Shanghai Institute of Planned Parenthood Research (Shanghai, China); the experimental
animal ethical approval number is SCXK (Hu) 2018-0006.

2.2. Reagents

Indobufen was provided by Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd.
(Hangzhou, China). Aspirin, ticlopidine, and COX-1 were purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA). Rivaroxaban was obtained from Bayer (China) Co., Ltd. (Shanghai,
China). Dabigatran etexilate was obtained from Boehringer Ingelheim (China) Co., Ltd.
(Shanghai, China). Arachidonic acid (AA), phenol, and ibuprofen were provided by Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Hematin and 5′-ADP, Na2 were
obtained from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). Prostaglandin
E2 Express Kit, Thromboxane B2 ELISA Kit, and 6-keto Prostaglandin F1α ELISA Kit were
obtained from Cayman Chemical (Ann Arbor, MI, USA). The Rat FIIa ELISA Kit and Rat FXa
ELISA Kit were obtained from Shanghai MLBIO Biotechnology Co., Ltd. (Shanghai, China).
All other reagents were of analytical grade and are commercially available.

2.3. Statistical Analysis and Software Setting

In this study, we express all experimental data as the mean ± standard deviation.
One-way ANOVA (in SPSS) was used to compare the variance homogeneity tests of the
means between groups. If the homogeneity of variance was satisfied, the results were
verified using Tukey’s method, and vice versa, using Dunnett’s T3. We ran the t-test with
independent samples to demonstrate the significance between the two groups. Choosing
a type I error α = 0.05, we concluded that the test results were significant when the
p-value was less than 0.05. In the following subsections, we analyze the statistical results of
the experiments.

2.4. Study on the Antiplatelet Effects of Indobufen
2.4.1. AA-Induced Platelet Aggregation

After local anesthetization of the rabbits with lidocaine, blood was collected via
surgical separation of the common carotid artery. Platelet-rich plasma (PRP) was prepared
at a blood-to-anticoagulant ratio of 1 to 9, using 3.8% sodium citrate as an anticoagulant,
and centrifuged at 50× g for 10 min. The remaining portion was centrifuged at 62× g for
10 min to prepare platelet-poor plasma (PPP), and the platelet aggregation experiment was
performed according to the turbidimetric method. Amounts of 240 µL of PRP and 30 µL
of indobufen and aspirin were added to the assay tube, which was incubated for 5 min,
and 30 µL of AA (final concentration 0.6 mmol/L) was used as an inducer to enable the
observation and recording of the maximum aggregation rate within 5 min. The inhibition
rate of AA-induced platelet aggregation was calculated for each compound using 1%
DMSO as a control.

2.4.2. ADP-Induced Platelet Aggregation

PRP and PPP were prepared according to the method described in Section 2.4.1.
Amounts of 240 µL PRP and 30 µL indobufen and ticlopidine were added to the assay tube,
which was incubated for 5 min, and 30 µL ADP (final concentration 10 µmol/L) was used
as an inducer to allow for the observation and recording of the maximum aggregation rate
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within 5 min. In addition, 1% DMSO was used as a control to calculate the inhibitory rate
of each compound on platelet aggregation induced by ADP:

Inhibition rate of platelet aggregation (%)

=
the maximum aggregation rate of the control group − the maximum aggregation rate of test drugs

the maximum aggregation rate of the control group × 100

2.5. Study on the Anticoagulant Effects of Indobufen

This section explains the procedure for the experiment on the anticoagulant effects
of indobufen. At the start, 70 SD rats, male, weighing 200 ± 20 g each, were randomly
divided into seven groups:

(1) The control group;
(2) The high-dose indobufen group (40 mg/kg);
(3) The low-dose indobufen group (20 mg/kg);
(4) The positive drug dabigatran etexilate high-dose group (30 mg/kg);
(5) The positive drug dabigatran etexilate low-dose group (22 mg/kg);
(6) The positive drug rivaroxaban high-dose group (2 mg/kg);
(7) The positive drug rivaroxaban low-dose group (1 mg/kg).

Dabigatran etexilate is a direct thrombin inhibitor, with an inhibitory effect on coag-
ulation factor IIa; rivaroxaban is a direct factor Xa inhibitor. This part of the experiment
included a comparison with drugs with different anticoagulant mechanisms to explore the
pathway of indobufen’s anticoagulant effect. Therefore, dabigatran etexilate and rivaroxa-
ban were set as positive controls. The control group was set as the negative control to avoid
false positive results and ensure the accuracy of the experimental results.

2.6. Study on the Adverse Stomach Reactions of Indobufen

First, 50 SD rats were randomly divided into five groups, with 10 rats per group. The
five groups were as follows:

(1) The control group;
(2) The low-dose indobufen group (20 mg/kg);
(3) The medium-dose indobufen group (30 mg/kg);
(4) The high-dose indobufen group (40 mg/kg);
(5) The aspirin group (10.14 mg/kg).

Both PGI2 and TXA2 are prostatic acid derivatives, which can be continuously synthe-
sized and released by gastric mucosa cells, and they exhibit strong cell protection. However,
PGI2 and TXA2 are very unstable, so the content of 6-Keto-PGF1α and TXB2 metabolites
of PGI2 and TXA2 in gastric mucosal tissues and serum were determined under different
conditions. Rats in each group were fed adaptively for one week, and then they were
administered the corresponding treatment by gavage once a day for eight consecutive days.
The test was performed after 2 h of gavage administration on day 8. The rats were bled
to extract the gastric tissue, gastric mucosal changes were observed, and the ulcer index
was recorded. Part of the rat’s stomach tissue was fixed in a 10% formaldehyde solution,
and then paraffin-embedded and sectioned. HE was stained and observed under an optical
microscope to record the changes in the gastric mucosal tissue. The gastric mucosa was
scraped, and the levels of thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-
PGF1α) in the gastric mucosa were measured. After eight days of administration, the levels
of 6-keto-PGF1α and TXB2 in the serum were measured using the corresponding ELISA
detection kit.

2.7. Study on the Mechanism of Indobufen on Cyclooxygenase-1
2.7.1. Study on the Reversible Inhibition of Indobufen

To study the reversible inhibition of indobufen, we first added an appropriate amount
of 0.1 M pH 8.0 Tris-HCl buffer, phenol solution, hematin solution, test drug solution, and
COX-1 solution to a 1.5 mL EP tube, which was incubated under oscillation for 10 min at
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37 ◦C. After 10 min, we added a certain amount of arachidonic acid solution at 37 ◦C to
bring the final volume of the enzymatic reaction system to 1 mL. The final concentration
of each component, under the conditions of 37 ◦C and oscillating incubation for 2 min, is
shown in Table 1 (I). We then added 100 µL of 1M hydrochloric acid to the tube and placed
it in an ice-water bath at 0 ◦C to stop the reaction. An ELISA kit was used to determine the
concentration level of the enzymatic reaction product PGE2. The enzyme concentration
was plotted against the initial speed of the enzymatic reaction to determine whether the
drugs were COX-1 reversible inhibitors.

Table 1. The concentration of each component in the enzymatic reaction system.

Component Units
Concentration

(I) (II) (III)

Phenol mM 2 2 2
Hematin µM 1 1 1

Arachidonic acid µM 100 0.5, 1, 2, 4, 6, 8, 10 100
COX-1 U/mL 0.625, 1.25, 2.5, 5, 7.5, 10, 12.5 5 2.5

Indobufen µM 2, 5, 10 1, 2, 5 5
Aspirin µM 2, 5, 10 / /

Ibuprofen µM 2, 5, 10 1, 2, 5 /
pH 8.0 Tris-HCl M 0.1 0.1 0.1

Iron ion µM / / 5, 40, 80
Magnesium ion µM / / 5, 40, 80

Imidazole µM / / 5, 40, 80
EDTA µM / / 5, 40, 80

2.7.2. Study on the Reversible Inhibition Type of Indobufen

In this experiment, we first added 0.1 M pH 8.0 Tris-HCl buffer, 2 mM phenol solution,
1 µM hematin solution, the test drug solution, and 100 µM arachidonic acid solution to a
1.5 mL EP tube, which was incubated under oscillation for 10 min at 37 ◦C. After 10 min,
we added 5 U/mL COX-1 solution at 37 ◦C to increase the final volume of the enzymatic
reaction system to 1 mL. The final concentration of each component, under the conditions
of 37 ◦C and incubation with shaking for 2 min, is shown in Table 1 (II). Then, we added
100 µL of 1 M hydrochloric acid to the tube and placed the tube in an ice-water bath at 0 ◦C
to stop the reaction. An ELISA kit was used to measure the concentration of the enzymatic
reaction product PGE2. Finally, we used the reciprocal of the substrate concentration
compared to the reciprocal of the enzymatic reaction rate to fit the graph to determine the
type of inhibition.

2.8. Study Regarding the Site in COX-1 Interacting with Indobufen

Here, we investigated the interaction between COX-1 and indobufen. Specifically, we
added the following reagents to a 1.5 mL EP tube:

(1) An appropriate amount of 0.1 M pH 8.0 Tris-HCl buffer;
(2) Phenol solution;
(3) Hematin solution;
(4) Arachidonic acid solution;
(5) Indobufen solution;
(6) Iron ion solution;
(7) Magnesium ion solution;
(8) EDTA solution;
(9) Imidazole solution.

Then, we incubated the mixed reagents in a constant-temperature shaker at 37 ◦C for
10 min and then added the appropriate amount of COX-1 concentrate at 37 ◦C to bring
the final volume of the enzymatic reaction system to 1 mL. The final concentration of each
component is shown in Table 1 (III). Finally, we incubated the tube at 37 ◦C for 2 min, added
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100 µL of 1M hydrochloric acid to the tube, and placed the tube in an ice-water bath at 0 ◦C
to stop the reaction. An ELISA kit was used to measure the concentration of the enzymatic
reaction product PGE2. Additionally, the COX-1 inhibition rate was calculated as

The COX-1 inhibition rate (%)

= (the PGE2 concentration of the control group − the PGE2 concentration of test drugs)
the PGE2 concentration of the control group × 100

3. Results
3.1. Study of the Antiplatelet Effects of Indobufen
3.1.1. AA-Induced Platelet Aggregation

The results of the AA-induced platelet aggregation (Section 3.2.1) are shown in Table 2.
We compared the impact on the platelet aggregation induced by AA between indobufen
and the positive control aspirin. In general, both drugs inhibited AA-induced platelet
aggregation, but indobufen showed a significantly stronger inhibition than did aspirin.
Under the successive actions of COX-1 and TXA2 synthetase, AA is catalyzed to produce
TXA2, a substance that promotes platelet aggregation. Indobufen and aspirin can decrease
the production of TXA2 by inhibiting COX-1 to achieve antiplatelet aggregation. The
differences in the interaction between the inhibitor and its binding site on the synthase may
be related to the stereo-chemical distinctions, causing a difference in the inhibitory capacity
in vitro [15].

Table 2. The effect on the platelet aggregation induced by AA in the platelet-rich plasma of rabbits
in vitro (n = 6).

Group Concentration (µmol/L) Max Aggregation (%) Inhibition Rate (%)

Control / 52.23 ± 3.36 /

Indobufen

1 45.72 ± 1.64 12.48
2 40.17 ± 2.27 ** 23.10
4 25.08 ± 1.44 ***# 51.98
6 14.48 ± 1.01 ***+++ 72.27
8 5.43 ± 1.12 ***ˆˆˆ 89.60

Aspirin

10 44.73 ± 1.21 * 14.36
20 40.28 ± 2.07 ** 22.88
40 29.48 ± 1.47 *** 43.55
80 21.22 ± 1.30 *** 59.38
100 14.90 ± 1.06 *** 71.47

* p < 0.05, ** p < 0.01, *** p < 0.001 versus the control group; # p < 0.05 versus the aspirin group, with a concentration
of 40 mmol/L; +++ p < 0.001 versus the aspirin group, with a concentration of 80 mmol/L; ˆˆˆ p < 0.001 versus the
aspirin group, with a concentration of 100 mmol/L.

3.1.2. ADP-Induced Platelet Aggregation

The results of the ADP-induced platelet aggregation experiments (Section 3.2.2) are
shown in Table 3. We tested five concentration levels of indobufen and the ticlopidine
positive control group. It was found that the inhibition rate was positively correlated
with the drug concentration, and the maximum platelet aggregation of the indobufen
and ticlopidine groups was significantly reduced compared with that of the control group
(*** p < 0.001). At the same concentration level, the maximum platelet aggregation in the
indobufen groups was significantly lower than that in the ticlopidine groups, except for
the group with a concentration of 0.6 mmol/L. Ticlopidine inhibits platelet aggregation by
irreversibly binding to the ADP receptor (P2Y12 receptor) on the platelet surface. However,
aspirin has no apparent inhibitory effect on platelet activation induced by ADP stimula-
tion [16,17]. This observation indicates that indobufen may inhibit platelet aggregation
through pathways other than just the COX-1 pathway.
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Table 3. The effect on the platelet aggregation induced by ADP in the platelet-rich plasma of rabbits
in vitro (n = 6).

Group Concentration (mmol/L) Max Aggregation (%) Inhibition Rate (%)

Control / 32.17 ± 1.88 /

Indobufen

0.1 25.27 ± 1.48 ***# 21.45
0.2 22.27 ± 1.28 ***# 30.78
0.4 18.18 ± 2.14 ***## 43.47
0.6 13.30 ± 2.37 *** 59.48
0.8 9.38 ± 0.91 ***## 70.83

Ticlopidine

0.1 27.98 ± 2.21 *** 13.01
0.2 24.93 ± 1.98 *** 21.30
0.4 21.63 ± 1.40 *** 32.75
0.6 14.87 ± 1.78 *** 53.78
0.8 12.27 ± 1.46 *** 61.87

*** p < 0.001 versus the control group; # p < 0.05, ## p < 0.01 versus the ticlopidine group at the same concentration level.

3.2. Study on the Anticoagulant Effects of Indobufen

Both platelet activation and activation of the prothrombin system in plasma cause
coagulation, and in vitro platelet aggregation assays have demonstrated that indobufen
inhibits platelet aggregation caused by platelet activation. However, in terms of anticoagu-
lation, some studies have shown a significant effect of indobufen on the four coagulating
indices, which is different from our expectations [6]. To investigate the anticoagulant
pathways and gain a more comprehensive understanding of the anticoagulant effect of
indobufen, we measured the effect of indobufen on the level of coagulation factors IIa and
Xa in rats.

3.2.1. The Effect of Indobufen on the Level of Coagulation Factor IIa in Rats

As shown in Figure 1A, after seven days of continuous administration, compared with
the blank group, the levels of coagulation factor IIa in rats in the low-dose (Figure 1A(b):
20 mg/kg) and high-dose (Figure 1A(c): 40 mg/kg) indobufen groups were significantly
reduced (* p < 0.05, ** p < 0.01). The level of coagulation factor IIa in rats was reduced
significantly (** p < 0.01) in the high-dose dabigatran etexilate group. However, there was
no significant difference between the low-dose dabigatran etexilate group and the blank
group. This result indicates that indobufen effectively inhibits the formation of blood
coagulation factor IIa at both low- and high-level doses, thus validating the anticoagulant
effect of indobufen in vivo.

3.2.2. The Effect of Indobufen on the Level of Coagulation Factor Xa in Rats

As shown in Figure 1B, after seven days of continuous administration, the level
of coagulation factor Xa in rats was significantly reduced (* p < 0.05) in the high-dose
indobufen group (Figure 1B(c): 40 mg/kg). However, there was no significant difference
between the low-dose indobufen group (Figure 1B(b): 20 mg/kg) and the blank group
(Figure 1B(a)). In addition, compared with the blank group, the levels of coagulation factor
Xa in rats in the high-dose (Figure 1B(e): 2 mg/kg) and low-dose (Figure 1B(d): 1 mg/kg)
groups of the positive drug rivaroxaban were significantly reduced (*** p < 0.001, * p < 0.05).
This result shows that indobufen has a significant inhibitory effect on the production of
coagulation factor Xa under the action of high doses, thereby verifying the anticoagulant
effect of indobufen at the animal body level.

Indobufen can effectively inhibit the production of coagulation factor IIa, and it can
also effectively inhibit the production of coagulation factor Xa at high doses. The above
experiments show that indobufen not only inhibits platelet aggregation through the COX-1
pathway and the ADP-induced platelet aggregation pathway, but also has significant effects
on anticoagulation.
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3.3. Study on the Adverse Stomach Reactions of Indobufen
3.3.1. The Effect of Indobufen on the Gastric Ulcer Index in Rats

The score for the gastric ulcer index refers to Guth’s standard: 0 for normal gastric
mucosa, 1 for point injury, 2 for lesions < 1 mm, 3 for lesions 1–2 mm, 4 for lesions 2–3 mm,
etc. When the injury width is >2 mm, the injury index score is doubled. As shown in Table 4,
after eight days of continuous administration, compared with the control group, the low-
dose test drug indobufen (20 mg/kg) group did not show any apparent gastrointestinal
irritation. According to the standard graph of the ulcer damage index score shown in
Figure 2A, the red circle represents the bleeding point, that is, the gastric mucosa injury, it
can be seen through visual observation that no ulcers occurred in the rats in the low-dose
indobufen group after eight days of dosing. The incidence of ulcers in the medium-dose
(30 mg/kg) group was only 10%, which was lower than the 20% noted in the aspirin group.
The incidence of ulcers in the high-dose (40 mg/kg) group was 40%, which was higher
than the 20% observed in the aspirin group. These results show that the incidence of
gastrointestinal irritation and adverse reactions was significantly lower in the low-dose
and medium-dose indobufen groups than that observed in the aspirin group, but was
higher in the high-dose indobufen group than that in the aspirin group. Additionally, the
incidence of gastrointestinal irritation and adverse reactions increased with higher doses of
indobufen [18].

Table 4. The effect of indobufen on the extent and rate of gastric ulcer in rats (n = 10).

Number Control Group
Indobufen Group Aspirin Group

10.14 mg/kg20 mg/kg 30 mg/kg 40 mg/kg

1 0 0 0 0 0
2 0 0 0 0 1
3 0 0 1 1 0
4 0 0 0 1 0
5 0 0 0 4 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 2 0
9 0 0 0 0 1

10 0 0 0 0 0

Ulcer rate (%) 0 0 10 40 20

The ulcer injury index scoring standard chart is available in Figure 2A.
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Figure 2. (A) Ulcer injury index scoring standard chart: (a) score of 0 points; (b) score of 1 point;
(c) score of 2 points; (d) score of 4 points. (B) The effect of indobufen on the histopathological
examination of rat gastric tissue: (a) the control group; (b) indobufen 20 mg/kg; (c) indobufen
30 mg/kg; (d) indobufen 40 mg/kg; (e) aspirin 10.14 mg/kg. (Scale bar = 100 µm.)

3.3.2. The Effect of Indobufen on Gastric Mucosal Slices in Rats

As shown in Figure 2B, the glandular tissue of the gastric mucosa in the control group
rats showed normal performance (Figure 2B(a)). The cell structure of the stomach was
intact, neatly arranged, and evenly sized, and presented as a single column. The gastric
glands of rats in the low-dose (Figure 2B(b): 20 mg/kg) and medium-dose (Figure 2B(c):
30 mg/kg) indobufen administration groups were arranged somewhat neatly, and no
significant abnormalities were observed. The black arrow represents damage to the stomach
mucosa, gastric mucosa injury was obviously observed in the high-dose indobufen group
(Figure 2B(d): 40 mg/kg) and the aspirin group (Figure 2B(e)), and the gastric tubes of the
rats were disordered or unevenly dense. The epithelial cells were necrotic and exfoliated.
The mucosa of the lamina propria and muscularis became thinner. The above results of
the gastric mucosal sections are consistent with the measurement results of the gastric
ulcer index in Table 4. Compared with the aspirin group, the indobufen group showed
significantly reduced gastrointestinal irritation and adverse reactions.

3.3.3. The Effect of Indobufen on the Levels of TXB2 and 6-keto-PGF1α in Rat
Gastric Mucosa

As shown in Figure 3A, the levels of TXB2 in the gastric mucosa of the 20 mg/kg,
30 mg/kg, and 40 mg/kg indobufen groups and the aspirin group were significantly
reduced compared with the levels in the control group (*** p < 0.001) [19]. There was no
significant difference in TXB2 levels between the aspirin group and the groups correspond-
ing to different doses of indobufen. This may be due to the similar ability of indobufen
and aspirin to inhibit TXB2 via the COX-1 pathway in the gastric mucosa. As shown in
Figure 3B, the levels of 6-keto-PGF1α in the gastric mucosa of the 20 mg/kg group, 30
mg/kg group, and 40 mg/kg indobufen groups and aspirin group were also significantly
reduced compared with the results for the control group (*** p < 0.001). These results imply
that COX-1 was inhibited in the gastric parietal cells. However, the level of 6-keto-PGF1α
in the gastric mucosa of the different indobufen groups (Figure 3B(b–d)) was significantly
higher than that of the aspirin group (### p < 0.001). PGI2 is the product of COX-1 and
PGI2 synthase, successively acting on AA. Additionally, PGI2 can affect gastric mucosal
blood flow and has a protective effect on the gastrointestinal mucosa [19,20]. Unstable
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PGI2 transforms into the more stable 6-keto-PGF1α under physiological conditions, and
thus the level of 6-keto-PGF1α in the gastric mucosa of rats can reflect the level of PGI2 in
the gastric mucosa, which can explain the difference in the gastric irritation of different
NSAIDs, to a certain extent [21]. The levels of 6-keto-PGF1α in the gastric mucosa of the
indobufen groups were significantly higher than those of the aspirin group, indicating that
the gastrointestinal irritation of the indobufen groups was significantly lower than that of
the aspirin group, consistent with the experimental results in Sections 3.4.1 and 3.4.2.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 

mucosa, gastric mucosa injury was obviously observed in the high-dose indobufen group 
(Figure 2B(d): 40 mg/kg) and the aspirin group (Figure 2B(e)), and the gastric tubes of the 
rats were disordered or unevenly dense. The epithelial cells were necrotic and exfoliated. 
The mucosa of the lamina propria and muscularis became thinner. The above results of 
the gastric mucosal sections are consistent with the measurement results of the gastric 
ulcer index in Table 4. Compared with the aspirin group, the indobufen group showed 
significantly reduced gastrointestinal irritation and adverse reactions. 

3.3.3. The Effect of Indobufen on the Levels of TXB2 and 6-keto-PGF1α in Rat Gastric  
Mucosa 

As shown in Figure 3A, the levels of TXB2 in the gastric mucosa of the 20 mg/kg, 30 
mg/kg, and 40 mg/kg indobufen groups and the aspirin group were significantly reduced 
compared with the levels in the control group (*** p < 0.001) [19]. There was no significant 
difference in TXB2 levels between the aspirin group and the groups corresponding to dif-
ferent doses of indobufen. This may be due to the similar ability of indobufen and aspirin 
to inhibit TXB2 via the COX-1 pathway in the gastric mucosa. As shown in Figure 3B, the 
levels of 6-keto-PGF1α in the gastric mucosa of the 20 mg/kg group, 30 mg/kg group, and 
40 mg/kg indobufen groups and aspirin group were also significantly reduced compared 
with the results for the control group (*** p < 0.001). These results imply that COX-1 was 
inhibited in the gastric parietal cells. However, the level of 6-keto-PGF1α in the gastric mu-
cosa of the different indobufen groups (Figure 3B(b–d)) was significantly higher than that 
of the aspirin group (### p < 0.001). PGI2 is the product of COX-1 and PGI2 synthase, succes-
sively acting on AA. Additionally, PGI2 can affect gastric mucosal blood flow and has a 
protective effect on the gastrointestinal mucosa [19,20]. Unstable PGI2 transforms into the 
more stable 6-keto-PGF1α under physiological conditions, and thus the level of 6-keto-
PGF1α in the gastric mucosa of rats can reflect the level of PGI2 in the gastric mucosa, which 
can explain the difference in the gastric irritation of different NSAIDs, to a certain extent 
[21]. The levels of 6-keto-PGF1α in the gastric mucosa of the indobufen groups were signif-
icantly higher than those of the aspirin group, indicating that the gastrointestinal irritation 
of the indobufen groups was significantly lower than that of the aspirin group, consistent 
with the experimental results in Sections 3.4.1 and 3.4.2. 

 
Figure 3. The effect of indobufen on the level of TXB2 (A) and 6-keto-PGF1α (B) in the gastric 
mucosa of rats (n = 10, *** p < 0.001 versus the control group; # p < 0.05, ### p < 0.001 versus 
the aspirin group). 

  

Figure 3. The effect of indobufen on the level of TXB2 (A) and 6-keto-PGF1α (B) in the gastric mucosa
of rats (n = 10, *** p < 0.001 versus the control group; # p < 0.05, ### p < 0.001 versus the aspirin group).

3.3.4. The Effect of Indobufen on the Levels of TXB2 and 6-keto-PGF1α in the Serum of Rats

As shown in Figure 4A, TXB2 levels in the serum were significantly lower in the
20 mg/kg, 30 mg/kg, and 40 mg/kg indobufen groups and the aspirin group compared
with the control group (*** p < 0.001). It was indicated that indobufen substantially reduced
the serum level of TXB2 in rats at high, medium, and low doses. In Figure 4B, 6-keto-
PGF1α in the serum of the 20 mg/kg, 30 mg/kg, and 40 mg/kg indobufen groups was also
significantly reduced compared with the control group (*** p < 0.001). Meanwhile, TXB2 and
6-keto-PGF1α levels in serum were significantly lower in the different indobufen groups
than in the aspirin group (### p < 0.001). This result indicates that the inhibition of the
COX-1 enzyme was considerably stronger in the indobufen group than in the aspirin group.
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3.4. Study on the Mechanism of Indobufen on Cyclooxygenase-1
3.4.1. Study on the Reversible Inhibition of Indobufen

We verified the reversible inhibition effect of indobufen via the kinetic method. First,
different amounts of enzymes were added to the reaction system containing a certain
amount of inhibitors, the initial reaction velocity was measured, and the initial velocity
(v) was plotted against the enzyme concentration ([E]). When a reversible inhibitor was
added to the system, the concentration of the enzyme was constant, and the enzyme activity
was proportionally inhibited, resulting in a line with a lower slope compared to that of
the control group. When an irreversible inhibitor was added to the system, the inhibitor
inactivated a certain amount of enzyme. If the amount of enzyme was greater than a
certain amount, enzyme activity was shown, and the plotted line was parallel to the control
group [22]. Ibuprofen and aspirin were reported as reversible and irreversible inhibitors
of COX-1, respectively [23]. As shown in Figure 5A, it could be concluded from the [E]–V
image that indobufen showed reversible inhibition of COX-1 compared with the ibuprofen
group and the aspirin group.

3.4.2. Study on the Reversible Inhibition Type of Indobufen

Based on the determination of indobufen as a reversible inhibitor of COX-1, we
investigated the reversible inhibition type through enzymatic reaction kinetics. The kinetic
characteristics of competitive inhibition are an increase in the Michaelis constant (Km), an
unchanged maximum (Vm), an increase in the slope of the straight line, and the intersection
of the straight lines on the vertical axis when an inhibitor is present. In contrast, the
kinetics of non-competitive inhibition are characterized by a constant Michaelis constant
(Km), a decreasing maximum (Vm), and an increasing slope of the straight line, which will
intersect on the transverse axis when inhibitors are present [24]. As shown in Figure 5B,
the intersection of the ibuprofen group (Figure 5B(b)) lay roughly on the vertical axis,
indicating that ibuprofen was a competitive inhibitor. In contrast, the lines of the indobufen
group in Figure 5B(a) intersected on the horizontal axis. This confirmed that indobufen
was a non-competitive inhibitor. Specifically, indobufen’s inhibition constant (Ki) was 7.65
µM, and its Km was 16.64 µM, after further calculation.

3.5. Study on the Site in COX-1 Interacting with Indobufen

Indobufen is a reversible, non-competitive inhibitor of COX-1. Non-competitive
inhibitors do not directly interact with the catalytic active center of the enzyme but exert
the inhibitory effect by acting on other groups in the enzyme, such as prosthetic groups [25].
As shown in Figure 6B, the heme group is a critical prosthetic group in the process of
COX-1 catalyzing the formation of PG from AA, and the iron ion in heme plays a role
in electron transfer during the oxidation of AA [26]. Several studies have reported that
indomethacin may inhibit COX-1 by complexing iron ions in the enzyme [27,28]. Thus, we
investigated the inhibitory effect of indobufen on COX-1 with the participation of iron ions,
magnesium ions, EDTA, and imidazole. We assumed that the heme group is the target of
the interaction between indobufen and COX-1. As shown in Figure 6A(I), compared with
the blank indobufen group, the inhibitory effect of indobufen on COX-1 was enhanced by
adding iron ions to the system, and the effect showed a concentration-dependent property.
Unlike the addition of iron ions, the inhibitory effect of indobufen on COX-1 (Figure 6A(II))
was not affected by the addition of magnesium ions to the system. However, it can be seen
in Figure 6A(III,IV) that the inhibition of indobufen was weakened by adding two iron-
chelating agents. Additionally, this protective effect presented a concentration-dependent
property. Our experiments verify that iron ions and iron-chelating agents could interact
with the heme group or iron ions in it to affect the inhibitory effect of indobufen. In contrast,
magnesium ions have no effect on this process, which indicates that indobufen may interact
with COX-1 through the heme group.
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Figure 5. (A) The assessment of reversible inhibition via COX-1 kinetics. The data are plotted in [E]
versus v format: (a) indobufen group; (b) ibuprofen group; (c) aspirin group. (B) The assessment of
the reversible inhibition type via COX-1 kinetics. The data are plotted in 1/v versus 1/[s] format:
(a) indobufen group; (b) ibuprofen group.
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4. Discussion

Indobufen is effective in antiplatelet aggregate and anticoagulate. Indobufen can
inhibit ADP-induced platelet aggregation, in addition to AA-induced platelet aggrega-
tion (COX-1 pathway). In addition, indobufen can effectively inhibit the production of
coagulation factor IIa, and the production of coagulation factor Xa is also suppressed
at high doses. Therefore, indobufen not only inhibits platelet aggregation through the
COX-1 and ADP-induced platelet aggregation pathways, but also shows obvious effects
on anticoagulation.

The incidence of gastrointestinal irritation and adverse reactions was significantly
lower in the low-dose and medium-dose indobufen groups than in the aspirin group, but
higher in the high-dose indobufen group than in the aspirin group. This may be because
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aspirin irreversibly inhibits COX-1 in cells of the gastrointestinal tract and significantly
reduces the prostaglandins of the gastric mucosa. We experimentally verified that the
inhibitory effect of indobufen on COX-1 was reversible and non-competitive, and thus, the
level of prostaglandins in the gastrointestinal cells was higher in the indobufen group than
in the aspirin group.

Non-competitive inhibitors do not interact directly with the catalytic active center
of the enzyme, but exert their inhibitory effect by acting on other groups in the enzyme,
such as prosthetic groups. The heme group is a critical prosthetic group in the process
of COX-1-catalyzed AA generation to form PG, and the iron ions in heme play a role
in electron transfer during AA oxidation. Our experiments confirm that indobufen may
interact with COX-1 through the heme group.

5. Conclusions

In summary, our research indicates that indobufen possesses stronger antiplatelet
effects compared to aspirin. This may be attributed to the ability of indobufen to exert its
antiplatelet aggregation effects through multiple pathways. Unlike aspirin, which does
not exhibit significant inhibitory effects on ADP-induced platelet activation, indobufen
does show such effects. This action may offer an alternative treatment for patients who
demonstrate low responsiveness to aspirin in clinical practice. Previously conducted studies
have demonstrated that aspirin resistance or low responsiveness increases the risk of major
adverse events such as death, myocardial infarction, and cerebrovascular accidents by more
than threefold compared to the risk experienced by aspirin-sensitive individuals [29].

Furthermore, indobufen exhibits anticoagulant activity by reducing coagulation factors
IIa and Xa. Investigating and elucidating the anticoagulant mechanism of indobufen are
beneficial for its application in patients with nephrotic syndrome and atrial fibrillation.
Patients with nephrotic syndrome present a prothrombotic state, significantly increasing the
risk of venous and arterial thrombosis [30]. Atrial fibrillation also predisposes patients to a
higher incidence of thromboembolic events, increasing the risk of stroke 4 to 5 times [31].
Anticoagulant therapy significantly reduces the thrombotic risk in patients with nephrotic
syndrome and atrial fibrillation.

Simultaneously, through the gastric ulcer index and gastric mucosal section confirma-
tion, in clinical settings, it was demonstrated that indobufen induced less gastrointestinal
irritation than aspirin. The increased propensity of aspirin to cause gastrointestinal irri-
tation primarily arises from its irreversible inhibition of COX-1 in gastrointestinal cells
and its significant reduction in gastric-mucosa-protective prostaglandin PGI2 compared to
indobufen. This suggests that indobufen exhibits minimal gastrointestinal reactions and a
lower bleeding risk, making it an optimized treatment option for individuals at high risk of
gastrointestinal injury and bleeding. Ge Junbo et al. conducted the OPTION study, which
focused on coronary heart disease patients receiving drug-eluting stent implantation and
testing negative for myoglobin. Their study revealed that indobufen significantly reduced
the one-year net adverse clinical event risk by 27% compared to aspirin, mainly due to the
substantial reduction in bleeding risk without increasing the risk of ischemia [32].

In patients with acute ischemic stroke, indobufen significantly reduced the rate of
platelet aggregation and was comparable to aspirin in the overall clinical response rate,
while exhibiting fewer gastrointestinal bleeding events, especially in patients with a his-
tory of gastrointestinal ulcers [33]. These findings demonstrate the efficacy and safety of
indobufen in patients with coronary heart disease and ischemic stroke.

Our research also confirms that the inhibitory effect of indobufen on COX-1 is re-
versible. This feature allows for the restoration of platelet function within 24 h after
discontinuation of the medication, thereby reducing the bleeding risk during antiplatelet
therapy in clinical practice. Even in cases where bleeding occurs, it is easier to control [12].
Particularly for patients requiring discontinuation of antiplatelet therapy before high-risk
thrombotic procedures, the extended discontinuation period of 3–7 days for aspirin signifi-
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cantly increases the risk of ischemic events. Indobufen effectively mitigates this issue [34].
Furthermore, the heme moiety may serve as a target for indobufen’s inhibition of COX-1.

We believe that our research has certain clinical implications. Indobufen exhibits
both antiplatelet and anticoagulant effects, while causing minimal gastrointestinal damage
and carrying a lower risk of bleeding compared to aspirin. It possesses higher safety
profiles and may serve as a new treatment option in clinical practice for the prevention and
management of coronary heart disease and stroke.
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