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Abstract: Given the limitations of conventional invasive vaccines, such as the requirement for a cold
chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive
vaccines have gained significant attention. Although numerous approaches for formulating and
administrating non-invasive vaccines have emerged, each of them faces its own challenges associated
with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have
created novel supplementary materials and delivery systems. The goal of this review article is to
provide vaccine formulation researchers with the most up-to-date information on vaccine formulation
and the immunological mechanisms available, to identify the technical challenges associated with the
commercialization of non-invasive vaccines, and to guide future research and development efforts.
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1. Introduction

Vaccine administration methods can be categorized into invasive, minimally invasive,
and non-invasive administration, and conventional vaccine administration primarily relies
on invasive administration (e.g., intramuscular, subcutaneous, and intradermal) to maxi-
mize vaccine bioavailability through site-specific administration. However, such methods
of administration have inherent limitations that compromise their utility (Figure 1). Firstly,
liquid formulations used in these methods necessitate a cold chain system, making them
susceptible to accidental freezing [1,2]. Certain temperature ranges can drastically reduce
the shelf life of vaccines, with examples including the Pfizer-BioNTech (<6 months at −60
to −90 ◦C and <2 h at 8–30 ◦C), ModernaTX (<30 days at 2–8 ◦C and <12 h at 8–25 ◦C), and
Oxford-AstraZeneca (<6 months at 2–8 ◦C and <2 h at 8–25 ◦C) SARS-CoV-2 vaccines [3].
mRNA vaccines are especially easily affected by changes in liquid formulation (i.e., pH,
buffers, temperature, amount of oxygen, etc.), which can lead to the degradation of the
vaccines through hydrolysis [4].

Second, the use of needle-based delivery of liquid vaccines also presents technical and
safety concerns. The variability in adipose tissue thickness among individuals necessitates
adjusting the needle length based on body weight and sex. For instance, a needle length
of 1 inch is recommended for individuals weighing less than 70 kg, 1–1.25 inches for men
weighing 70–118 kg and women weighing 70–90 kg, and 1.5 inches for men weighing over
118 kg and women weighing over 90 kg [2,5]. Achieving accurate administration requires
specialized personnel and proper setups, posing challenges for vaccination in isolated
communities and developing countries with limited resources and personnel. Furthermore,
needle-based administration carries the risk of needlestick injuries and the transmission
of bloodborne pathogens to the injection site (e.g., hepatitis B, hepatitis C, and human
immunodeficiency virus (HIV)) [6].
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Figure 1. Schematic illustration of limitations of invasive vaccines. 

Third, invasive vaccines primarily elicit systemic immune responses in the lower res-
piratory tract, unlike natural infections that stimulate robust, both systemic and mucosal 
immunities [7,8]. While systemic immune responses can provide disease-attenuating or 
disease-preventing immunity through the production of immunoglobulin G (IgG) [7], the 
limited mucosal immunity in the lower respiratory tract can hinder the elimination of 
pathogens in the early stages, potentially exacerbating disease severity. On the other hand, 
minimally invasive and non-invasive vaccines can achieve mucosal vaccination that initi-
ates both robust systemic and mucosal immunities, thereby efficiently preventing patho-
gens from developing severe disease [9,10]. 

Invasive vaccines have demonstrated high stability and safety when administered 
correctly, leading to their predominant use in present-day vaccine delivery. However, due 
to the aforementioned limitations, there is a growing demand for the development of al-
ternative vaccines, and minimally invasive and non-invasive vaccines have been actively 
researched as promising candidates. The scope of this manuscript primarily revolves 
around non-invasive vaccines, which have undergone more comprehensive studies and 
research compared to minimally invasive vaccines. This review aims to shed light on the 
advantages and challenges of non-invasive vaccine approaches, along with conventional 
invasive counterparts, while providing valuable insights into their formulation strategies. 

2. Types of Vaccines and Their Formulation 
Since Louis Pasteur’s groundbreaking conceptualization of vaccination, significant 

advancements have been made in the development of vaccines in terms of their stability 
and effectiveness [11]. To date, seven types of vaccines have been developed: live attenu-
ated, inactivated, replicating viral vector, non-replicating viral vector, DNA, RNA, and 
subunit vaccines. Each vaccine type leverages distinct immunological mechanisms to trig-
ger adaptive immunity upon administration [12]. Replicable vaccines, including live at-
tenuated vaccines, replicating viral vector vaccines, and replicating nucleic acid vaccines, 
enter host cells and replicate virulent molecules, which are subsequently taken up by 
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Third, invasive vaccines primarily elicit systemic immune responses in the lower
respiratory tract, unlike natural infections that stimulate robust, both systemic and mucosal
immunities [7,8]. While systemic immune responses can provide disease-attenuating or
disease-preventing immunity through the production of immunoglobulin G (IgG) [7],
the limited mucosal immunity in the lower respiratory tract can hinder the elimination
of pathogens in the early stages, potentially exacerbating disease severity. On the other
hand, minimally invasive and non-invasive vaccines can achieve mucosal vaccination
that initiates both robust systemic and mucosal immunities, thereby efficiently preventing
pathogens from developing severe disease [9,10].

Invasive vaccines have demonstrated high stability and safety when administered
correctly, leading to their predominant use in present-day vaccine delivery. However,
due to the aforementioned limitations, there is a growing demand for the development of
alternative vaccines, and minimally invasive and non-invasive vaccines have been actively
researched as promising candidates. The scope of this manuscript primarily revolves
around non-invasive vaccines, which have undergone more comprehensive studies and
research compared to minimally invasive vaccines. This review aims to shed light on the
advantages and challenges of non-invasive vaccine approaches, along with conventional
invasive counterparts, while providing valuable insights into their formulation strategies.

2. Types of Vaccines and Their Formulation

Since Louis Pasteur’s groundbreaking conceptualization of vaccination, significant
advancements have been made in the development of vaccines in terms of their stability and
effectiveness [11]. To date, seven types of vaccines have been developed: live attenuated,
inactivated, replicating viral vector, non-replicating viral vector, DNA, RNA, and subunit
vaccines. Each vaccine type leverages distinct immunological mechanisms to trigger
adaptive immunity upon administration [12]. Replicable vaccines, including live attenuated
vaccines, replicating viral vector vaccines, and replicating nucleic acid vaccines, enter host
cells and replicate virulent molecules, which are subsequently taken up by dendritic cells
(DCs). In contrast, non-replicable vaccines, such as non-replicating viral vector vaccines,
inactivated vaccines, subunit vaccines, and non-replicating nucleic acid vaccines, are
directly phagocytosed by DCs [12,13]. Replicable vaccines are characterized by prolonged
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immunogenicity compared to non-replicable vaccines due to their ability to replicate.
Whole-particle-based vaccines, such as live attenuated and inactivated vaccines, exhibit
the highest immunogenicity compared to other types of vaccines due to the presence of
immunostimulant molecules within the particles, effectively inducing immunity similar to
that of natural infections [14–18].

Following the phagocytosis, DCs carrying vaccine particles migrate to the draining
lymph node, where they present peptides derived from the vaccine antigens on the major
histocompatibility complex (MHC) class II or MHC class I molecules. MHC II activation
stimulates CD4+ T cells (T helper cells), including T helper (Th) 1 cells and Th2 cells [19].
Th1 cells play a role in cell-mediated immunity by secreting interferon-gamma (IFN-γ), a
proinflammatory cytokine that eliminates external pathogenic particles [20,21]. Th1 cells
also activate CD8+ T cells (cytotoxic T cells) by interacting with MHC I [22]. This interaction
leads to the production of granzymes, which induce apoptosis, and the pore-forming
protein perforin, which physically damages the target cell membrane, allowing granzymes
to enter the cell [23]. In contrast, Th2 cells initiate humoral immunity by producing
interleukin-4 (IL-4), IL-5, and IL-13, which promote the proliferation and maturation of
B cells. Additionally, Th2 cells produce anti-inflammatory IL-10, which modulates the
inflammatory responses of Th1 cells (Figure 2) [20,21].
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2.1. Live Attenuated Vaccines

Live attenuated vaccines (LAVs) consist of live bacteria or virus particles that have
been weakened but retain the ability to initiate immune responses. The production of live
attenuated vaccines involves either natural or engineered mutations. In natural produc-
tion, bacteria or viruses are subjected to multiple passages through different species in a
process known as serial passage exposure experiments (SPEs) [24,25]. For example, weak-
ened Theileria annulata loses its virulence against its original host, cattle, after undergoing
50–100 passages of in vitro culturing [26]. This loss of virulence is attributed to alterations
or selections in gene expression triggered by environmental changes. In the case of viruses,
genetic modifications can occur even more rapidly. For example, nucleopolyhedrosis
viruses (NPVs) have been shown to lose virulence against three out of their six original
hosts after eight passages in Pseudoplusia includens [27].

Engineered mutation involves the use of transposon mutagenesis, which facilitates
the translocation of repetitive DNA sequences to the host cell nucleus, thereby introducing
random mutations in the host gene [28]. Another method, gamma rays, is commonly
employed to induce DNA strand breaks and oxidative stress in viruses, leading to single
base substitutions. However, such mutagenesis techniques often raise safety concerns,
including the potential re-emergence of virulence upon repeated exposures to the same host
or the restoration of mutated gene sites [24]. Historical examples of virulence re-emergence
include the poliovirus vaccine in 1964, the yellow fever vaccine in 2008, and the rotavirus
vaccine in 2009 [29]. As a result, research has been focused on developing methods to
prevent pathogens from regaining virulence.
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One strategy to minimize the re-emergence of virulence is to selectively choose variants
with high genetic fidelity for vaccine development [30]. Another approach is multi-region
replacement, often combined with gene targeting methods, which involves increasing
the number of mutated regions to decrease the probability of mutations reverting to
their original state. For example, codon deoptimization replaces conventional codons
with synonymous codons, resulting in the same level of immune responses with reduced
virulence and re-emergence [30]. Studies have shown that after achieving 97% codon
replacement in the contiguous capsid region of polioviruses, the transmission rate in host
cells decreased by more than 10-fold [31]. Undesirable mutations can be minimized using
small interfering RNA (siRNA) and microRNA (miRNA), which target specific genes for
degradation and repress the translation of respective proteins. Zinc finger (ZF) domains,
which are protein motifs with finger-like protrusions that bind to DNA, can also be utilized
to target specific genetic sites. ZF domains are typically engineered to express multiple
types of domains, such as restriction enzymes, to suppress gene transcription or replication
origin-competing domains to reduce virus replication [30].

2.2. Inactivated Vaccines

Inactivated vaccines offer a high level of safety compared to live attenuated vaccines,
as they are free of concerns regarding virulence reversion and transmission [29]. However,
these vaccines tend to have relatively low immunogenicity compared to live attenuated
vaccines [29]. Therefore, the design of inactivated vaccines must consider two key factors:
complete pathogen inactivation and epitope conservation. Meeting the aforementioned
requirements requires a comprehensive study of various virus behaviors, including aggre-
gation, protein crosslinking, protein denaturation, and degradation [32].

Delrue (2012) has described the mechanism and chemical reactions involved in differ-
ent inactivation treatments, such as formaldehyde, glutaraldehyde, 2,2′-dethiodipyridine,
β-propiolactone (BPL), binary ethylene imine, pH, temperature, gamma irradiation, and
ultraviolet light [32]. Among these treatments, formaldehyde and β-propiolactone (BPL)
have been most commonly used in vaccine development for many years [29]. Formalde-
hyde primarily acts by deforming the adenine residues of genes and amino acids through
monohydroxymethylation (NH-CH2OH), which creates a methylene spacer (-CH2-) that
bridges two independent molecules. On the other hand, BPL primarily alkylates the
guanine residues of genes, thereby disrupting the reading of sequences [32]. Unlike
formaldehyde, BPL treatments preserve the intact epitopes of antigens, leading to greater
immunogenicity [29]. Currently, three inactivated vaccines for SARS-CoV-2 have received
FDA approval [33]. All three vaccines (Coronavac—Sinovac, Covaxin (BBV152)—Bharat
Biotech International, and COVID-19 vaccine (Vero cell)—Sinopharm) employ BPL for the
inactivation of the whole SARS-CoV-2 virus [34–36]. However, inactivated vaccines face
limitations, as they may exhibit poor clearance of unnecessary viral molecules from the
human body, which could interact with and harm host cells. Additionally, the process
of culturing whole viruses is considered time-consuming compared to gene-based vac-
cines that can be rapidly amplified [19]. Consequently, there has been a significant shift
in the industry towards simpler vaccine forms, such as recombinant DNA and protein
subunits [37].

2.3. Replicating and Non-Replicating Viral Vector Vaccines

Replicating and non-replicating viral vector vaccines have been developed to minimize
the insertion of pathogenic molecules into the human body. These vaccines utilize different
types of vectors to deliver the desired viral genes. Replicating viral vector vaccines employ
various vectors such as adenovirus, measles virus, poxviruses, and vesicular stomatitis
virus, while non-replicating viral vector vaccines use adenovirus, adeno-associated virus,
alphavirus, herpesvirus, and poxviruses [17]. The selection of these vectors is based on
their genetic safety, high immunogenicity, and low likelihood of pre-existing immunity
in hosts [38].
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The main distinction between replicating and non-replicating viral vectors lies in their
ability to replicate genes within hosts, and non-replicating viral vectors are engineered to
lack gene-replicating sites [39]. As an example, non-replicating adenovirus vectors (such
as adenovirus serotype 5, 26, 35) have undergone modifications where the replicating site,
Early region 1 (E1), is removed and replaced with an expression cassette that contains
a highly active promoter responsible for expressing the inserted foreign gene [40,41].
Similarly, vesicular stomatitis virus (VSV) vectors lack the glycoprotein (G) responsible
for attaching to host cells, rendering them unable to infect host cells [38]. Integrase-
defective lentiviral vectors (IDLVs) serve as another example of non-replicating viral
vectors that lack genes inducing pathogenicity, including replicating genes such as Tat,
Rev, Nef, Vif, Vpr, Vpu, Vpx, dUTPase, and open reading frames (ORFs) [42]. However,
non-replicating viral vectors require relatively high doses or frequent revaccination due
to their inability to replicate [38]. Furthermore, these vectors have the potential to induce
mutagenesis in wild-type viruses [43]. In contrast, replicating viral vectors can generate
long-lasting immunity even with smaller doses due to their replicability. The replicating
viral vectors elicit immune responses similar to natural infections, triggering the production
of cytokines and other stimulatory factors that can act as adjuvants [38]. As a result,
extensive research has been dedicated to developing replicating viral vector vaccines against
diverse viruses (e.g., influenza, HIV, hepatitis B virus) [44]. However, replicating viral
vector vaccines raise immune-related safety concerns, particularly in immunocompromised
patients. Additionally, the presence of gene-replicating sites in these vectors limits their
capacity to accommodate the insertion of small-sized genes (e.g., 7–9 kb for non-replicating
adenovirus vectors and 3–4 kb for replicating adenovirus vectors) [17].

2.4. DNA Vaccines

The production of DNA vaccines mostly involves genetic modifications of plasmids
derived from Escherichia coli. Subsequently, the modified plasmids are cultivated under
fermentation conditions in an anaerobic condition using glycerol, yeast extract, and MgSO4
as carbon, nitrogen, and trace metal sources, respectively. The replicated plasmids can be
used directly as genetic vectors after undergoing lysis and purification [45,46]. Convention-
ally, non-live and non-replicating plasmids have been considered prototypical platforms
for DNA vaccines; however, due to their low immunogenicity, replicating DNA vaccines
have been considered a potential alternative. In general, replicating DNA vaccines are
manufactured by combining eukaryotic promoters (e.g., human cytomegalovirus (CMV)
immediate promoters and enhancers) and replicon sequences of alphaviruses [14,47,48].
Furthermore, incorporating additional gene inserts, such as adjuvant coding sequences,
has been attempted to enhance the immunogenicity of DNA vaccines [49]. For example,
incorporating unmethylated CpG motifs into a DNA vaccine has been shown to function
as a type of pathogen-associated molecular pattern (PAMP), which can be utilized to boost
vaccine-initiated immune responses [50].

Currently, two types of DNA vaccines have been developed: circular vaccines (i.e.,
minicircle, minivector, miniknot, etc.) and linear vaccines, including immunological-
defined gene expression (MIDGE), Micro-Linear vector (MiLV), and DoggyboneTM DNA,
which are covalently closed (Figure 3). In the case of minicircle (mc) DNA, recombinases are
used to separate a plasmid into an mc DNA molecule (containing the genes of interest) and
a miniplasmid (containing the bacterial plasmid backbone). This is followed by degradation
of the miniplasmid using restriction enzymes [45,51]. Studies have shown that mc DNA
exhibits a significantly higher transfection rate (68%) compared to the parental plasmid
(34%) due to its smaller size (3.8 kbp) in contrast to the parental plasmid (8.2 kbp) [52].
Minivector DNA is a single-stranded and supercoiled structure of less than 2 kbp in size
and less than 4 nm in diameter, and is produced through treatments with recombinases
(site-specific cleavage) and topoisomerase IV (separation of the daughter DNA) [53,54].
The size difference between the miniplasmid and minivector contributes to the ease of the
separation process, contributing to the high purity of the minivector DNA [53]. A miniknot
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is an mc DNA strand treated with topoisomerase II, which enhances its physical strength
to prevent linearization during processing. However, the use of miniknots is still in a
hypothetical stage.
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The MIDGE (2.9 kbp) and MiLV (1.7 kb) vaccines are produced in a similar manner,
but they utilize different parental plasmids. This process entails the cleavage of sites
containing the genes of interest using a restriction enzyme, followed by the ligation of
the sticky ends of the cleaved sites with hairpin oligodeoxynucleotides to stabilize the
structure [43,55,56]. The DoggyboneTM (2.6 kbp) vaccine is also created using plasmids.
In this process, plasmids are initially denatured by NaOH, resulting in the production of
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single-stranded DNA that acts as a template for rolling circle amplification. The amplified
single-stranded DNA is then polymerized to form a double-stranded DNA concatemer.
This concatemer is subsequently treated with Te1N protelomerase, which recognizes the
telomeric ends (Tel-L and Tel-R) and cleaves the linear DNA while covalently closing it.
This step removes the bacterial plasmid backbone from the sites containing the genes
of interest [57,58]. However, the yield of mc DNA (0.1–8.84 mg/L) is generally much
lower compared to conventional plasmids (2.2 g/L of fermentation), and other engineered
plasmids are also expected to have lower yields due to physical loss and size reduction
during processing [51]. Additionally, although DNA vaccines have exhibited satisfactory
immunogenicity in small animals such as rodents, there is a need for improvement when it
comes to large animals and humans [59].

2.5. mRNA Vaccine

During the initial stages of nucleic acid-based vaccine development, DNA was con-
sidered a preferable option to RNA due to its stability and potential for mass production.
However, DNA vaccines have shown limited potency in humans and potential risks of
integration of inserted DNA into the host genome [15]. In contrast, mRNA vaccines provide
certain advantages over DNA vaccines as there is no concern about integration into the
host genome. Additionally, since mRNA vaccines are not required to cross the nuclear
membrane to initiate the translation process, they tend to have higher immunogenicity
than DNA vaccines [60]. Consequently, numerous trials have been conducted to develop
mRNA vaccines, encompassing both non-replicating and replicating mRNA variants.

Conventionally, to achieve mass production of mRNA vaccines, mRNA is initially ex-
tracted from pathogen particles and converted into complementary DNA (cDNA) through
a process called reverse transcription. The cDNA is subsequently inserted into a plasmid
and linearized using restriction enzymes to create a 3′ end sequence to achieve similar
structure to the original mRNA, followed by transcription of the cDNA in host cells [61].
Nowadays, in vitro transcription is also widely used in mRNA mass production, with a
simpler procedure that consists of the insertion of the target gene into DNA templates
followed by RNA amplification [62]. The transcribed mRNA contains specific components.
These components include a 5′ cap, which regulates translation along with the poly(A)
tail, a 5′ untranslated region that regulates mRNA translation, an open reading frame that
represents the gene of interest, a 3′ untranslated region that regulates mRNA translation,
and a poly(A) tail that enhances the stability of the mRNA [63–65].

Replicating RNA vaccines are primarily developed from alphaviruses. For this, the
nsP1-4 genes from alphaviruses are extracted and incorporated into conventional non-
replicating RNA. Once inside the host cells, these genes are translated into nsP1-4 proteins,
which then assemble into an RNA-dependent RNA polymerase (RdRp) complex. This
RdRp complex initiates the replication process for RNA, allowing for the amplification of
the target gene [66,67].

In terms of immunogenicity, replicating mRNA vaccines are preferred over non-
replicating mRNA vaccines. This preference arises from the fact that replicating mRNA
vaccines can replicate and maintain replication sites, thereby potentially enhancing their
immunogenicity [66].

mRNA vaccines necessitate the use of delivery vehicles due to their electronegativity
and large molecular weight (105–106 Da). The negative charge of mRNA, stemming from
its phosphate residues, causes repulsion with the anionic phospholipids in the lipid bilayer
membrane of host cells [68,69]. Furthermore, mRNA is three to four times larger than other
molecules that can easily enter host cells, such as small interfering RNAs (14 kDa) and
antisense oligonucleotides (4–10 kDa) [70].
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To address this requirement, lipid nanoparticles and polymeric nanoparticles have
been extensively investigated as potential delivery vehicles for mRNA. Specifically, cationic
lipids have commonly been used for lipid nanoparticles due to their capacity to readily
interact with negatively charged mRNA. However, their use has been linked to liver
damage and inflammation resulting from interactions with molecules in the body [68].
To tackle this issue, ionizable lipids have been developed. These lipids carry a positive
charge under acidic conditions but become neutral at physiological pH [71]. This ionizable
property allows them to associate with mRNA under acidic conditions while reducing
toxicity in host cells at neutral pH. To date, five different types of ionizable lipids have
been developed: unsaturated ionizable lipids, multi-tail ionizable lipids, ionizable polymer–
lipids, biodegradable ionizable lipids, and branch-tail ionizable lipids [71].

Lipid nanoparticles are typically formulated with various types of lipids, including
cholesterol, polyethylene glycol (PEG) lipid, and phospholipids, in varying composition
ratios. Each component has a distinct purpose. For instance, cholesterol enhances the
integrity and rigidity of the particles, while PEG lipid reduces particle aggregation and
enhances interaction with ligands on target cells [72]. The properties of phospholipids are
determined by lipid saturation. For example, 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC), which consists of saturated lipids, forms a stable lamellar shape that maintains
excellent stability over time. In contrast, unsaturated lipids like 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) and dioleoylphosphatidylcholine (DOPE) undergo a transition
from a lamellar shape to an inverted conical shape at room temperature due to their lower
phase transition temperature, enhancing the efficiency of cargo release from the vehicle [73].

In addition to lipids, polymeric materials have undergone extensive research for
efficient delivery of nucleic acids. Cationic polymers such as poly(lysine), poly(ethylene
imine) (PEI), and poly(amidoamine) dendrimers exhibit high transfection efficiency but
can be cytotoxic as lipid nanoparticles. Therefore, degradable materials like water-soluble
lipopolymer (WSLP) are often combined with cationic polymers to reduce toxicity and
prevent accumulation [74,75]. Chitosan, known for its biocompatibility, biodegradability,
and low cost, is another promising candidate for mRNA delivery. However, its efficacy
is not as pronounced as PEI due to its insolubility at physiological pH [76]. To achieve
high transfection efficiency and low toxicity, biodegradable polyesters containing cationic
side chains have been synthesized, including poly(L-lactide-co-L-lysine), poly(serine ester),
poly(4-hydroxy-L-proline ester), and poly [R-(4-aminobutyl)-L-glycolic acid] [74].

2.6. Subunit Vaccine

Subunit vaccines have been developed to address safety concerns related to whole-
particle-based vaccines. These vaccines can be categorized as protein, polysaccharide,
conjugate, virus-like particle (VLP), and toxoid vaccines [29,77]. The production of protein-
based subunit vaccines involves the harvest and purification of antigens from bacteria
using recombinant DNA encoding the target protein. This is often followed by coupling
with carriers (i.e., liposome, polymeric nanoparticles, etc.) to enhance the antigen’s sta-
bility against environmental changes in the body, such as pH variations and enzymatic
activity [77].

Polysaccharide vaccines are derived from bacterial polysaccharide capsules and pri-
marily induce B cell immune responses [78]. However, these vaccines are unable to elicit
T cell immune responses as polysaccharides are considered T-independent antigens [79].
To enhance immunogenicity and promote long-term immunity, polysaccharide vaccines
are often combined with immunogenic carrier proteins and form conjugate vaccines [80].
Currently, there are five licensed immunogenic carrier proteins: genetically modified cross-
reacting material (CRM), tetanus (T) toxoid, diphtheria (D) toxoid, outer membrane protein
complex (OMPC), and Haemophilus influenzae protein D (HiD) [81]. CRM is a toxin iso-
lated from Corynebacterium diphtheriae and is often modified through mutations to reduce
toxicity [82]. T and D toxoids are detoxified toxins obtained from Clostridium tetani and
Corynebacterium diphtheriae, respectively, through formaldehyde treatment [83,84]. OMPC
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and HiD are non-toxic proteins derived from the outer membrane of Neisseria meningitidis
serogroup B and Haemophilus influenzae, respectively [81,85].

VLPs are composed of self-assembling virus capsid proteins derived from various sys-
tems, such as bacteria, yeast, insect cells, plant cells, mammalian cells, and cell-free cultures.
These extracted proteins can either self-assemble into single-protein VLPs, combine with
other proteins to form multi-protein VLPs, or incorporate antigenic materials to enhance
immune responses (chimeric VLPs). Since VLPs mimic the structure of pathogens and
contain antigens themselves, they can stimulate immune responses, inducing both humoral
and cell-mediated immunity, similar to natural infections [86,87].

The production of toxoid vaccines involves harvesting and purifying exotoxins, fol-
lowed by their inactivation using heat, formaldehyde, or iodoacetamide [88,89]. Subse-
quently, protein subunits comprising major domains are used instead of full-length pro-
teins to avoid potential immunostimulatory effects caused by activated CD4+ T cells and
macrophages [90]. Toxoid vaccines are effective against pathogens that utilize toxins as their
primary infection mechanism, as they stimulate the production of anti-toxoid antibodies
that can neutralize pathogenic toxins [90].

Different subunit vaccines can be employed to effectively control infections depending
on the type of pathogen. For instance, in the case of SARS-CoV and MERS-CoV, subunit
vaccines have targeted the spike (S) proteins, which play a crucial role in infection by bind-
ing to host receptors [91–93]. As another example, the majority of research for influenza
virus subunit vaccines has been performed with the HA protein, due to its high immuno-
genicity and conservability. As a result, several HA protein vaccines, including Fluvirin
(1998), Agriflu (2009), and Flucelvax (2012), have been developed and FDA-approved [94].
Apart from HA proteins, another class of membrane proteins known as the extracellular
domain of matrix protein 2 (M2e) has been explored for subunit vaccine development
against influenza viruses [95]. M2e proteins are highly conserved and abundant in the
cell membrane across all influenza A virus subtypes, providing cross-protective immunity
when included in vaccines. However, M2e proteins have low immunogenicity and often
require additional highly immunogenic carriers or adjuvants, posing challenges to the
development of M2e vaccines beyond their current research stage [95]. In contrast, HA
proteins are known to be more immunogenic than M2e proteins, making them an even
more appealing candidate for subunit vaccines [96].

2.7. Adjuvants

Adjuvants are commonly used alongside vaccines to enhance their performance,
including rapid response, long-lasting memory, and reduction in dose [97]. While whole-
particle-based vaccines usually do not require adjuvants due to the presence of inherent
adjuvant molecules, such as lipopolysaccharide, flagellin, and cytosine-phosphate-guanine,
adjuvants are primarily used with subunit vaccines, as well as some DNA and mRNA
vaccines [98]. Delivery vehicles with adjuvanticity have garnered attention as a promising
type of adjuvant due to their versatility and ability to be combined with various molecules,
such as other adjuvants, anchor proteins, and stabilizers. These delivery vehicles not only
facilitate the transportation of the vaccine contents to targeted cells with controlled drug
release but also enhance immune responses through a number of mechanisms.

Different types of delivery vehicles with adjuvanticity are currently under develop-
ment, as shown in Table 1. Oil-in-water (O/W) emulsions are extensively studied adjuvants,
characterized by a simple composition of tween and/or span, as well as a straightforward
production process [99]. However, O/W emulsions have limitations, such as low thermal
stability and relatively large particle sizes (<50–500 µm in diameter), which restrict their
usage [100,101]. Conversely, inorganic micro/nanoparticles offer high thermal stability
and can be flexibly shaped into many different forms. The drug release of inorganic mi-
cro/nanoparticles can be regulated by adjusting the amount of reactive moieties involved
in degradation processes, such as hydrolysis (silica nanoparticles) and pH sensitivity
(calcium phosphate nanoparticles) [102]. In comparison to other types of inorganic mi-
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cro/nanoparticles, gold nanoparticles are known to be inert, enabling them to form stable
functionalizations or have multi-layer coatings to enhance the bioavailability and immune
responses of vaccines [103]. Nevertheless, long-term safety concerns persist with these
vehicles due to their high stability [104].

Table 1. Nano- and micro-sized carriers with adjuvanticity.

Carriers/
Adjuvants Type Immune Responses Limitations Status

Lipid-based
carriers

Immune-stimulating
complexes (ISCOM)

• Activation of CD8
T cells [105]

• Th1 and Th2
activation [106]

• High dose of saponin is
required to
manufacture
(immunoreactive) [106]

• Limitation in
encapsulation of non-
membrane-derived
antigens [106]

In clinical stage [107]

Liposome • Th1 and Th2
activation [108]

• Limitations in the
selection of lipid due to
rigidity [109]

In use in the vaccine
industry;
Pfizer/BioNTech and
Moderna (SARS-CoV-2)
[110]

Bilosome • Th1 activation
[111]

• High stability but low
immunogenicity [112] In preclinical stage [113]

Archaeosomes

• Activation of CD8
T cells [114]

• Th1 and Th2
activation [115]

• Mechanism-of-action-
and safety-related
research should be
performed [115]

In preclinical stage [116]

Virosomes

• Activation of CD8
T cells [114,117]

• Th1 and Th2
activation
[115,117]

• Rapid disintegration in
the blood [118]

In use in the vaccine
industry; Epaxal® and
Inflexal®V (influenza
vaccine) [119,120]

Protein-based
carriers

Gelatin

• Activation of CD8
T cells [121]

• Th1 and Th2
activation [122]

• Large particle size
• Rapid degradation

[123]
In clinical stage [124]

Albumin

• Activation of CD8
T cells [125]

• Th1 activation
[126]

• Potential immunogenic
reaction [127]

FDA-approved [123]

Zein
• Th1 and Th2

activation [128] • Low stability [129] In preclinical stage [128]



Pharmaceutics 2023, 15, 2114 11 of 39

Table 1. Cont.

Carriers/
Adjuvants Type Immune Responses Limitations Status

Emulsion

MF59
(oil-in-water
emulsion)

• Activation of CD8
T cells [130]

• Th2 activation
[130]

• Limitation in drug
release control

In use in the vaccine
industry; Fluad®,
Focetria®, and Celtura®

(influenza vaccine) [130]

AS03
(oil-in-water
emulsion)

• Th1 and Th2
activation [131]

• Limitation in drug
release control

In use in the vaccine
industry; Pandemrix and
Arepanrix (influenza
vaccin) [132]

AF03
(oil-in-water
emulsion)

• Th1 and Th2
activation [133]

• Lower immune
response compared to
AS03 [133]

In use in the vaccine
industry; Humenza™
(influenza vaccine) [134]

Polymer

Poly(lactic-co-
glycolic
acid)

• Activation of CD8
T cells [135]

• Th1 and Th2
activation (Th2
dominant) [136]

• Slow and non-tunable
degradation rate [137]

• Degradation into acidic
byproduct
(inflammation) [138]

FDA-approved

Poly(lactic acid)

• Activation of CD8
T cells

• Th1 and Th2
activation [139]

• Degradation into acidic
byproduct
(inflammation) [140]

FDA-approved

Chitosan
• Th1 and Th2

activation [141]
• Reduction in CD8 T cell

response [142] FDA-approved

Dextran (acetalated)

• Activation of CD8
T cells [137]

• Th1 and Th2
activation [137]

• Fast and tunable
degradation rate [137]

• Degradation into
pH-neutral byproduct
[137,138]

FDA-approved

Inorganic

Calcium phosphate
nanoparticles

• Activation of CD8
T cells [102]

• Th1 and Th2
activation [143]

• Low antigen loading
capacity and rapid
aggregation [102]

FDA-approved

Silica nanoparticles

• Activation of CD8
T cells [144]

• Th1 and Th2
activation [144]

• Hemolysis through
interaction of silanol
groups and the
phospholipids of the
red blood cells [145]

In clinical stage [146]

Gold nanoparticles

• Activation of CD8
T cells [147]

• Th1 and Th2
activation [148]

• Poor biodegradability
[149] FDA-approved

In comparison to inorganic nanoparticles, protein-based nanoparticles (PNPs), com-
monly derived from animal and plant sources, have garnered attention due to their superior
biodegradability, biocompatibility, and safety profiles. PNPs have demonstrated several
other advantages, such as a convenient and affordable manufacturing process (attributed
to the abundant presence of proteins in nature) and the possibility of modification for
controlled delivery and specific targeting [150–152]. Some of the most commonly explored
protein candidates for PNPs include human serum albumin, gelatin, and zein, while dif-
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ferent PNPs exhibit different stability and immunogenicity profiles [123,153]. However,
PNPs are also known for relative disadvantages, including challenges in controlling size
and vaccine dose [153].

Lipid-based micro/nanoparticles are currently used as delivery vehicles for vari-
ous types of commercial vaccines. These vehicles can encapsulate both hydrophilic and
lipophilic particles due to their bilayer lipid structure [154]. They demonstrate high deliv-
ery efficiency, primarily because of their positive charge, which promotes their interaction
with negatively charged antigen-presenting cells (APCs) [109]. However, it is important
to note that this positive charge of lipid-based vehicles can also have side effects, such as
destabilization of cell membranes by interacting with negatively charged proteins on the
cell membrane [155].

Among the synthetic polymers used for vaccine delivery, poly(lactic-co-glycolic acid)
(PLGA) and poly(lactic acid) (PLA) have found widespread application in vaccine delivery
systems [156]. PLA exhibits a slower degradation rate compared to poly(glycolic acid)
(PGA) due to the presence of a methyl group in its backbone, imparting hydrophobicity
and reducing hydrolysis reactions [157]. Additionally, PLGA, the combined form of PLA
and PGA, allows controlled drug release by adjusting the proportion of each polymer [158].
However, these synthetic polymers are limited by acidic byproducts, which can cause
inflammation. In contrast, biopolymers are naturally occurring materials with relatively
low toxicity. For example, acetalated dextran has been extensively used as a biopolymer in
vaccine delivery systems due to its biocompatibility and the ease of modulating degradation
time by adjusting the proportions of acyclic acetals (lower stability) and cyclic acetals
(higher stability) to modulate degradation time [159].

2.8. Future Prospective

Whole-particle-based vaccines offer distinct advantages, such as strong immunogenic-
ity and the ability to induce immune responses similar to natural infections. However,
their production process is considered time-consuming and energy-intensive, making them
cost-ineffective. Additionally, these vaccines can be immunostimulatory as they involve the
injection of external materials. To address these challenges, gene- or protein-particle-based
vaccines have emerged as alternative options. However, these vaccines often lack sufficient
immunogenicity and transfection efficiency [86]. As a result, they are often encapsulated or
coupled with self-adjuvating delivery vehicles. Nonetheless, these vehicles face limitations
in terms of toxicity, stability, and low immunogenicity.

To overcome these limitations, new technologies have been developed, including
various forms of nanomaterials such as hydrogel nanoparticles, carbon nanotubes, and den-
drimers [86,160,161]. Moreover, various nanomaterials have demonstrated high efficiency
in drug delivery, showing potential for inducing both humoral and cell-mediated immune
responses and overcoming the limitations of conventional delivery vehicles [162–165]. For
instance, hydrogel nanoparticles and carbon nanotubes can bind to bioactive molecules
for long periods, resulting in sustained immunity [161]. As another example, cationic
dendrimers, which form complexes with nucleic acids, do not destabilize cell membranes
like lipid-based vehicles. Furthermore, due to their small sizes (1–10 nm), they can be
encapsulated in other types of vehicles for additional functionalization [155].

To ensure the successful development of novel self-adjuvating carriers, several require-
ments need to be met, including stability, non-toxicity, biodegradability, immunogenicity,
and controlled drug release. Commercializing these innovative technologies requires con-
ducting pre-clinical and clinical research to evaluate their safety profiles. Overall, these
emerging advancements in vaccine research are expected to bring about a positive trans-
formation in vaccine development, offering safer and more effective treatment options for
disease outbreaks.
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3. Administration of Non-Invasive Vaccines

Non-invasive vaccines have gained significant recognition due to the drawbacks
associated with conventional needle- and liquid-based vaccines, such as the need for
cold chain storage, challenges of self-administration, issues with thermal and long-term
stability, risks of needle-mediated infections, and needlestick injuries. Among the major
non-invasive vaccine systems, oral, intranasal, and transcutaneous administration have
been extensively investigated. These non-invasive approaches offer solutions to various
limitations of invasive vaccines. However, the effectiveness of non-invasive vaccines
is hindered by their limited bioavailability, as biological barriers prevent their efficient
absorption into the body. To overcome this issue and enhance the bioavailability of non-
invasive vaccines, diverse formulations tailored to specific administration routes have
been developed.

3.1. Oral Administration

Oral vaccination has demonstrated its effectiveness in stimulating both mucosal and
systemic immune responses by inducing the production of IgA and IgG antibodies [166].
The immune responses are mainly initiated in the intestine, where the majority of vaccine
uptake and drug absorption occur [167,168]. The intestine consists of several layers, includ-
ing the mucus layer, water layer, epithelial layer, basement membrane/Peyer’s patches,
and lymph nodes [169]. The epithelial layer is composed of enterocytes, goblet cells, and
microfold cells (M cells), which are joined together by tight junctions that prevent the move-
ment of molecules through paracellular and transcellular routes [169–171]. Enterocytes,
the most abundant cells in the intestinal epithelium (constituting up to 80% of the local
cell population), transport antibodies through transcytosis using the neonatal Fc receptor
(FcRn) and form antibody–antigen complexes [172,173]. Goblet cells produce mucin, the
main component of the mucus layer, which provides physical protection against the uptake
of pathogenic particles [174]. M cells play a crucial role in initiating immune responses
by phagocytosing large particles and endocytosing small particles through specialized
receptors like pattern recognition receptors (PRRs) [170,171]. Pathogen particles phagocy-
tosed by M cells are subsequently taken up by dendritic cells (DC cells) in Peyer’s patches,
leading to the activation of cellular and humoral immunity through the differentiation of
T cells and B cells (Figure 4) [175].
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Despite the advantageous characteristics of oral immunization, such as stability, inde-
pendence from cold chain requirements, and ease of administration and storage, there are
technical challenges in controlling the behavior of orally administered vaccines. Factors
such as the varying pH levels of gastrointestinal fluids (e.g., stomach: 0.8–5, duodenum: ~7,
jejunum: ≥7, ileum: ≥7, and colon: 7–8), osmolality, surface tension, viscosity, temperature,
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volume, hydrodynamics, composition, gastric emptying rate and force, intestinal transit
time, and flow rate can impact the performance of orally administered vaccines [167,176].
Additionally, the presence of mucosal barriers and biomolecules, such as digestive enzymes,
limits the bioavailability and immunogenicity of oral vaccines [77]. This low efficiency
necessitates higher vaccine doses, which can eventually lead to immune tolerance in the
host. Moreover, the primary approach for oral vaccines involves the use of heat-killed or
attenuated pathogens, which makes it difficult to effectively activate the immune system
due to poor penetration of the mucus layer. There is also a risk of attenuated pathogens re-
gaining their toxicity, as exemplified by the oral polio vaccine (OPV) outbreak that occurred
in several countries in 2000, including Egypt, Haiti, the Philippines, and the Dominican
Republic. Extensive research has been conducted to address these limitations and optimize
the administration of oral vaccines [177].

3.1.1. pH Sensitivity

Enhancing the bioavailability of oral vaccines requires them to withstand the low-pH
environment of the stomach. To improve vaccine stability, researchers have developed
anionic coatings that remain stable under acidic conditions. These coatings consist of
anionic polymers containing carboxylic acid groups, which remain unionized in the stom-
ach’s low pH but become ionized in the higher pH of the intestine [178]. One example
is Eudragit®, anionic polymers composed of poly(methacrylic acid-co-acrylates) with dif-
ferent chemical compositions [179]. The pH sensitivity of these polymers can be adjusted
by varying the number of active carboxylic groups; higher levels of carboxylic groups
result in increased sensitivity to low pH. For instance, Eudragit L100 (EL100) contains
48.3% active carboxylic groups and dissolves above pH 6, while Eudragit S100 (ES100),
with 29.2% active groups, dissolves above pH 7 [179]. pH sensitivity can also be modified
by using ethyl acrylate instead of methyl methacrylate in the polymer formulation, as seen
with Eudragit L100-55 (EL100-55), which dissolves at lower pH (>pH 5.5) [180]. Cellulose-
based materials, such as hydroxypropyl methylcellulose phthalate (HPMC-P), cellulose
acetate phthalate (CAP), hydroxypropyl methylcellulose acetate succinate (HPMC-AS),
and cellulose acetate trimellitate (CAT), have also been explored [181]. Among these,
HPMC-P and CAP are most commonly used for enteric coatings and their pH-responsive
behavior is based on the carboxylic acid residues that remain unionized in the stomach
but become ionized in the intestine [182]. However, HPMC-P coating processes involving
organic solvents raise concerns about toxicity and safety. Moreover, HPMC-P and CAP
have limited thermal stability, restricting their application in capsule production [183].
Lastly, alginate, derived from brown algae, such as Laminaria hyperborea, Laminaria digitata,
Laminaria japonica, Ascophyllum nodosum, and Macrocystis pyrifera, has been extensively used
to produce coating polymers due to its biocompatibility, low toxicity, and affordability.
Alginate’s anionic property also enables it to resist gastric fluid, making it a promising
candidate for coating oral vaccines [184,185].

3.1.2. Mucoadhesive Interaction

Increasing the bioavailability of oral vaccines requires enhancing mucoadhesion,
which prolongs the retention time in the intestine [186–189]. To improve mucoadhesion,
it is important to understand the behavior of different mucoadhesive materials. The
mucoadhesive materials typically have hydrophilic functional groups (e.g., hydroxyl and
carboxyl groups), a large molecular weight, high surface-to-volume ratio, and low cross-
linking density to maximize interactions with intestinal mucus [190]. Among various
natural and synthetic mucoadhesive enhancers, chitosan and carbomer have been widely
studied [191].

Chitosan, a natural cationic polymer, interacts with negatively charged sialic groups
in mucin through electrostatic attraction. Based on the mucoadhesive effects of chitosan,
different chitosan-based conjugates (i.e., chitosan–cysteine, chitosan–glutathione, chitosan–
thioglycolic acid, etc.) have been developed for vaccine delivery [187,189]. However,



Pharmaceutics 2023, 15, 2114 15 of 39

chitosan has limitations such as high solubility in the stomach. To address this issue,
chitosan is often conjugated with alginate for coating purposes. The carboxyl groups
of alginate interact with the amino groups of chitosan, resulting in strong electrostatic
attraction. This alginate–chitosan complex shrinks and forms a gel in the low gastric pH,
releasing drugs in the neutral pH of the intestine, enabling targeted drug delivery to the
colon [192]. A similar study has also been performed with BSA to develop the alginate–
chitosan complex as a vaccine delivery carrier, which has demonstrated the efficiency of
the complex at a low pH [193].

Carbomer, a carboxyvinyl polymer containing large amounts of carboxylic groups
(56–68%), forms hydrogen bonds with sialic acid and sulfate groups present on mucin
glycoproteins’ oligosaccharide chains, thereby increasing mucoadhesive effects [194,195].
Carbopol® 971P, 974P, and 934P are mucoadhesive polymers developed based on carbomer,
and their mucoadhesive effects are further improved by combining them with cysteine,
which interacts with mucus glycoproteins [196].

Nowadays, nanofibers have also gained attention due to their favorable properties
such as high surface-to-volume ratio, high porosity, solubility enhancement, controlled
cargo release, and the ability to target various sites (e.g., buccal, vaginal, oral, sublingual,
transdermal, gastric, intestinal, colonic, and ocular mucosa). However, across different
types of polymers, mucoadhesive effects have intrinsic limitations, including the relatively
short adherence time (less than 4–5 h) for cells to absorb vaccines and the challenge of
vaccine penetration through the mucus layer [197,198].

3.1.3. Intestinal Permeability

To improve the bioavailability of oral vaccines, it is important to enhance their in-
testinal permeability due to the presence of the mucus layer that acts as a physical bar-
rier [197,199]. This can be achieved through the use of small-sized particles, non-reactive
coatings, or permeation enhancers (Figure 5). Nanoparticles have been extensively used for
this purpose because of their ability to easily couple with functional groups and penetrate
the mucus layer. It has been reported that anionic nanoparticles themselves have shown
a relaxation effect on tight junctions, thereby enhancing the permeability, possibly due to
interactions between the nanoparticles and integrin proteins on epithelial cells and the
activation of myosin light chain kinase (MLCK) [200]. Furthermore, there have been studies
demonstrating the size effect of particles on the penetration of the mucus layer, showing
that large particles (1190 nm) experience a 30-fold reduction in particle penetration rate
than small particles (510 nm) due to steric obstruction and capture by the mucus mesh
(mucus mesh spacing ≥500 nm) [201,202].

Non-reactive nanoparticles can be created by functionalizing them with poly(ethylene
glycol) (PEG) and Pluronic F127 to enhance their permeability. In particular, the devel-
opment of low-molecular-weight PEG coating was inspired by the penetration of viruses
through human mucus, reducing hydrophobic and electrostatic interactions between
nanoparticles and the mucus layer through a hydrophilic and neutral-charged coating [203].
PEG has been successfully coupled with various types of nanoparticles (e.g., PLGA, poly
sebacic acid (PSA), polyethylenimine (PEI), poly-l-lysine (PLL)) and has demonstrated
efficient penetration [204]. Pluronic F127, a triblock copolymer surfactant with alternating
hydrophilic and hydrophobic structures, exhibits a unique arrangement that minimizes
its interaction with the mucus layer. Furthermore, its neutral charge allows it to avoid
interactions with negatively charged mucins [205]. It has been reported that Pluronic
F127-coated particles show an 80-fold increase in penetration rate compared to uncoated
particles [186].
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Chemical or enzymatic treatments, such as disulfide-breaking agents or mucolytic
enzymes, have been also performed to enhance the intestinal permeability. Such permeation
enhancers are typically incorporated inside or immobilized on nanoparticles to selectively
affect certain regions of the mucus layer to maintain the functions of mucus layer against
pathogens in non-treated areas [186]. N-acetyl-l-cysteine (NAC) is an example of a disulfide-
breaking agent that breaks the disulfide bonds of cysteine groups in mucin using free sulfur
groups [206,207]. Cleaving these bonds reduces the elasticity and viscosity of mucus,
thereby increasing drug permeability through the epithelial layer [204]. Additionally, it
is speculated that NAC may enhance the uptake of antigens by loosening the mucus
layer at Peyer’s patches, where antigen uptake primarily occurs [174]. Other mucolytic
enzymes, such as trypsin, papain, bromelain, and recombinant human DNase (rhDNase),
can also contribute to reducing the viscosity of mucus by cleaving the cross-links in mucus
glycoproteins [204,206].

3.2. Intranasal Administration

Intranasal vaccination offers several advantages, including easy accessibility, the po-
tential for herd immunization, and the ability to initiate both mucosal and systemic immune
responses, making it a favorable administration route for vaccines [208]. Similar to the
Peyer’s patches in the intestinal tract, the nasal-associated lymphoid tissues (NALTs) play
a significant role in inducing immunity through intranasal vaccination in rodents. NALTs
are regions rich in immune cells (such as T cells, B cells, dendritic cells, macrophages,
and M cells) where active immune responses occur [209]. The key difference between the
Peyer’s patches and NALTs is that the formation of NALT is triggered after exposure to
pathogens, whereas Peyer’s patches develop before birth. Similar to the NALTs of rodents,
Waldeyer’s rings play a major role in human immune responses upon intranasal adminis-
tration. Waldeyer’s rings, including the pharyngeal tonsil, tubal tonsils, palatine tonsils,
and lingual tonsils, firstly transfer pathogens to DC cells, initiating mucosal immunity
through the differentiation and proliferation of T cells [209,210]. Like oral vaccination, in-
tranasal vaccination faces challenges from the mucus layer, which can result in mucociliary
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clearance of vaccine particles and hinder the vaccination process. Therefore, numerous
methods have been investigated to enhance the immune response during intranasal vacci-
nation, such as improving mucoadhesive interaction and intestinal permeability, as well as
incorporating adjuvants.

3.2.1. Liquid Formulation

Currently, intranasal vaccines are predominantly administered in liquid form due to
their effective cell penetration. Liquid formulations allow for even distribution of vaccine
components, such as adjuvants and stabilizers [211]. Developing a liquid formulation
involves considering the properties of the liquid phase (e.g., osmolarity, pH, viscosity, and
surface tension), the delivery devices, and the inclusion of stabilizers. In terms of osmolarity,
isotonic solutions (~290 osmol/L) are commonly used to achieve optimal osmolarity, as
hypotonic solutions are poorly absorbed and hypertonic solutions can cause cell shrinkage
upon diffusion [211]. The pH of liquid formulations should be maintained between 4.5
and 6.5 to avoid irritation, considering that the nasal mucus layer has a pH of 5.5–6.5; it
has also been observed that lysozymes in the intranasal system are inactivated at neutral
pH, which can increase the risk of microbial infection [212,213]. Increasing the viscosity of
nasal mucus is another approach to enhance the immunogenicity of vaccines by prolonging
their retention time in the nasal cavity and increasing the dosing volume of the nasal
spray over conventional dosing volume (50–140 µL) [214–216]. However, it must be noted
that high mucosal viscosity may impede effective diffusion and spreading of the vaccines.
Surface tension is another critical factor affecting the behavior of liquid vaccines. Most
intranasal vaccines have lower surface tension (30.3–44.9 dynes/cm) than the nasal mucus
layer (<56 dynes/cm). [217] The low surface tension of vaccines primarily facilitates better
bioavailability by maximizing their spread within the nasal cavity [218].

To enhance the delivery efficiency of intranasal formulations, various devices have
been developed, ranging from manual dropping-based devices to multifunctional de-
vices with filters and automatic systems that prevent particle deposition in the lungs and
ensure reproducibility [219]. Examples of devices used for liquid formulations include
AccuSpray (FluMist), Classic Mexican Nebulizer (Measles), Aerovax and OptiMist (in-
fluenza), ViaNase (Alzheimer’s), and MAD and CPSI Cartridge Pump System (adenovirus-
based vaccine) [209]. Among the different intranasal vaccination methods and devices,
AccuSpray (FluMist) is the only one approved by the FDA for human use in the United
States [220].

Due to the low stability of liquid formulations, stabilizers are often incorporated.
For instance, FluMist contains monosodium glutamate, hydrolyzed porcine gelatin, and
sucrose [221]. Other commonly used stabilizers in intranasal vaccines include lactose, sor-
bitol, porcine gelatin, arginine, and tricine [222]. These stabilizers can also be used during
lyophilization to reduce the glass transition temperature and decrease the lyophilization
time [223]. Moreover, sugars such as lactose and sucrose do not form sharp ice crystals,
unlike water, providing physical protection to vaccines at low temperatures [224].

3.2.2. Powder Formulation

Powder formulations can resolve limitations of liquid formulations, such as short
residence time in the nasal cavity, low stability in terms of chemical and microbiological
factors, short shelf-life, and the requirement for cold chain systems [209,225]. Dry powder
vaccines are primarily manufactured using two methods: spray-drying and freeze-drying.
Spray-drying starts with a liquid vaccine being sprayed into a drying chamber, followed by
powder separation in a gas stream. On the other hand, freeze-drying involves freezing a
liquid vaccine using liquid nitrogen and then subjecting it to lyophilization [226]. In terms
of formulation process, dry powder vaccines share many similarities with conventional
injectable vaccines, as well as antigens and adjuvants. However, one difference is that dry
powder vaccines often incorporate bulking agents, stabilizers, and mucoadhesive materials
to enhance nasal deposition [227]. Bulking agents play an important role as a vaccine
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carrier, facilitating the attainment of appropriate particle sizes to improve vaccine efficiency.
For instance, lactose and mannitol, both FDA-approved inactive ingredients for nasal or
respiratory use, are frequently chosen as carriers [228]. For a stabilizer of vaccines, mild
formaldehyde has also been extensively used as it interacts with the residues of various
antigens, such as the N-terminus of amino acids and side chains (i.e., arginine, cysteine,
histidine, etc.) [227,229].

Dry powder vaccines are typically administered using medical devices like the µcoTM
system and Opt-powder (influenza), Aktiv-Dry PuffHaler® and BD solvent® (measles),
and Combitips Plus Syringe (meningococcal) [209]. While there are several advantageous
aspects of powder formulations over liquid counterparts, limitations still exist due to
limited research on powder formulation delivery systems and the behavior of dry powder
vaccines upon contact with the nasal cavity [211,225]. This is evident considering that there
are no FDA-approved dry powder vaccines currently available.

3.3. Transcutaneous Administration

Transcutaneous immunization (TCI) is a topical vaccination strategy that primarily
stimulates systemic immunity, also inducing a moderate level of mucosal immunity with
the assistance of an adjuvant [230]. TCI specifically targets epidermal cells, located in
the middle layer of the skin, which also includes keratinocytes (KCs) and Langerhans
cells (LCs). KCs are the predominant cells in the epidermis and play a role in recognizing
pathogens through Toll-like receptors (TLRs), triggering innate and adaptive immune
responses. LCs, a type of dendritic cells, capture a significant portion of TCI particles and
recognize them through the major histocompatibility complex (MHC), activating adaptive
immune responses [231]. However, for TCI to be effective, it is necessary to penetrate the
stratum corneum, the outer layer of the skin consisting of 10–20 layers of dead skin cells
that act as a barrier against external substances [232]. Consequently, research has focused
on exploring physical and chemical methods to enhance the penetration of the stratum
corneum in order to achieve successful TCI.

3.3.1. Physical Delivery Systems

To enhance the penetration of vaccines through the stratum corneum, various meth-
ods have been employed, including ultrasound, electroporation, jet injectors, laser-based
technologies, and microneedles [233]. Ultrasound can be utilized to create cavities in the
stratum corneum, increasing vaccine permeability. This process involves the pressure
gradient generated by ultrasound, enlarging air pockets in the fibrous tissue to allow the
diffusion of vaccines through the cavities [234,235]. Electroporation, on the other hand,
involves applying short high-voltage pulses to the cell membrane, temporarily damaging it
and creating transient hydrophilic pores that enhance membrane permeability [236]. How-
ever, both ultrasound and electroporation require large machines and trained personnel to
operate them. As an alternative, jet injectors, which are compact and easy to handle, have
been used. These injectors use high-pressure liquid to deliver vaccines through the stra-
tum corneum [237,238]. Despite the increasing accessibility, jet injectors have drawbacks
including pain, bleeding, and edema [232].

Currently, diverse laser-based technologies (e.g., laser ablation, fractional laser technol-
ogy, and ablative fractional laser technology) have also been developed to enhance stratum
corneum penetration for vaccine delivery. Laser ablation is a conventional technology used
to remove the entire surface of the skin, whereas fractional laser creates micro-columns in
the skin, leaving the surrounding areas intact to minimize skin damage and accelerate the
healing process [239]. Ablative fractional laser (AFL) is a method that combines the laser
ablation and fractional laser technologies, minimizing skin damage and enhancing vaccine
permeability by ablating the stratum corneum and forming skin microchannels [240].
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Among the available transcutaneous immunization (TCI) methods, microneedles have
gained acceptance due to their ease of use, accessibility, and independence from patches.
Microneedles are minimally invasive and pain-free, involving small needles that penetrate
the stratum corneum [241]. There are five categories of microneedles based on their
structures: solid, coated, hollow, dissolving, and hydrogel-forming microneedles [242–244].
Solid microneedles are used to create microchannels in the skin, allowing for vaccine
penetration [245]. To date, a variety of materials have been considered candidates for
the production of solid microneedles (e.g., silicon, polysilicon, silicon dioxide, silicon
nitride, PGA) [246]. While solid microneedles offer easy manufacturing and high dose
delivery, they are hindered by a slower rate of diffusion when compared to other types of
microneedles [247,248].

Coated microneedles contain vaccines applied to the needle, enabling diffusion into
the epidermis upon injection. However, one limitation is that the coating may cause coated
particle loss during manufacturing and handling [241,249]. As another option, hollow
microneedles resemble conventional needle injection-based vaccination, with vaccines con-
tained in the bore of the needle. These microneedles also provide the highest level of particle
delivery but can experience blockage by tissues upon contact, although repositioning the
bore to the side can address this issue [241,244].

Dissolving microneedles are made of water-soluble materials that penetrate and dis-
solve in the skin simultaneously. For these microneedles, vaccines and the microneedle
matrix undergo a mixing process upon manufacturing. Among various candidates for
the matrix of dissolving needles (e.g., sodium carboxymethylcellulose, poly(vinylalcohol),
poly(vinylpyrrolidone), methylvinylether-co-maleic anhydride), sodium hyaluronate is
most commonly used due to its biodegradability and mechanical strength [250,251]. Re-
markably, dissolving microneedles have shown high diffusion efficiency within a patch
wearing time of just several minutes, while it could be up to several hours for solid mi-
croneedles [247].

Lastly, hydrogel-forming microneedles have emerged as a promising option for their
biocompatibility and controllable degradability [252]. These microneedles are equipped
with hydrogel, capitalizing on its three-dimensional structure that allows for a significant
capacity to carry vaccines; however, there is a possibility that vaccines can become trapped
within the patch and they require a longer diffusion time of up to several hours [247,253,254].
The mechanism of hydrogel-forming microneedles relies on the absorption of interstitial
skin fluid, which causes the hydrogel to swell and burst, triggering the release of the
vaccines from the microneedle [254,255]. The vaccine-release behavior of the hydrogel is
directly influenced by the swelling property of the matrix polymer and can be modulated
by adjusting the amount of crosslinkers; increasing the percentage of crosslinkers results
in a reduced swelling rate in the skin [252,254]. Last but not least, achieving optimal
performance with hydrogel-forming microneedles requires maintaining their hardness in a
dry state, while ensuring rapid swelling in the skin [255].

The efficiency of microneedle-based vaccines can be enhanced by using different types
of nanoparticles with various strengths. For instance, polymeric nanoparticles offer con-
trolled release and targeted delivery, while lipid-based nanoparticles provide enhanced
solubility. Furthermore, inorganic nanoparticles are known to allow controlled release and
have consistent pore structures, whereas protein-based nanoparticles enable controlled
release and targeted delivery [256,257]. Currently, lipid-based carriers and polymeric carri-
ers (i.e., poly(vinyl pyrrolidone) (PVP), Poly(vinyl alcohol) (PVA), PLGA, polypropylene
sulfide, chitosan, etc.) have been the primary focus of research for vaccine delivery. These
carriers have demonstrated enhanced immune responses without requiring the addition of
adjuvants [242].
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3.3.2. Chemical Enhancers

Various chemical substances, including water, dimethylsulphoxide (DMSO), acids,
essential oils, and surfactants, have been investigated as potential enhancers for transcuta-
neous delivery [258]. These enhancers act to improve the permeability of vaccines through
the skin by targeting different components of the stratum corneum: hydrophilic space
(intercellular transport), hydrophilic lipid heads (transcellular transport), and hydrophobic
lipid chains (transcellular transport) [259]. The hydrophilic space can accommodate sol-
vents (e.g., propylene glycol, ethanol, pyrrolidines, dimethyl sulfoxide) through chemical
treatment, allowing the delivery of vaccines and drugs in the stratum corneum, followed
by their transport to the epidermis by a chemical gradient [259,260].

Water can interact with the hydrophilic heads of the bilipid membrane, increasing the
fluidity and permeability of the stratum corneum, and this favorable property has led to
the development of hydro patches used for vaccine penetration through the skin [232,261].
In a similar manner, DMSO ((CH3)2SO) can also effectively enhance the permeability of the
stratum corneum; the oxygen atom present in the sulfoxide group of DMSO interacts with
the hydrophilic heads of the bilipid membrane, causing a disruption of the hydrogen bonds
between lipid heads. This process leads to a transformation of the gel-like structure in the
ceramide bilayer of the stratum corneum into a liquid–crystalline structure [262]. On the
other hand, lipophilic agents represented by azone, terpenes, and oleic acids disrupt the
structure of lipid tails in the stratum corneum, expanding the membrane and facilitating
vaccine diffusion [263]. However, these hydrophilic and lipophilic chemical enhancers
have limitations in terms of efficiency and safety. Firstly, as the particle delivery into the
epidermis is primarily mediated by chemical potential, the effectiveness of these agents
diminishes as the concentration gradient decreases. This necessitates the application of
mechanical force to enhance the efficiency of delivery. Furthermore, chemical molecules
have the potential to affect tissue integrity and cause various forms of irritation, including
local inflammation, erythema, swelling, dermatitis, and other related conditions [258,264].

3.4. Adjuvants

Currently, the majority of FDA-approved non-invasive vaccines utilize whole pathogen
particles, such as Adenovirus Type 4 and Type 7 vaccines, VAXCHORA, ROTARIX, RotaTeq,
Vivotif, and FluMist [220,265–269]. These vaccines typically do not require additional
adjuvants, as the parts of the vaccines (e.g., lipopolysaccharide, flagellin, and cytosine-
phosphate-guanine) have inherent adjuvanticity [98]. Regardless, there have been attempts
to incorporate adjuvants into delivery systems to overcome the low bioavailability of non-
invasive vaccinations (Table 2). Among the available adjuvants, aluminum-based adjuvants,
including aluminum hydroxide and aluminum phosphate, have been the most widely
used for over 80 years with invasive vaccines [270]. These adjuvants enhance immune
responses by promoting antigen uptake by dendritic cells [271]. However, aluminum-
based adjuvants have demonstrated lower immunogenicity for non-invasive vaccines
compared to other adjuvants, likely due to their large particle size, which interferes with
diffusion [272–274]. Consequently, efforts have been made to identify suitable adjuvants
for non-invasive vaccines.
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Table 2. Adjuvants for oral vaccines.

Adjuvant Type Vaccine Name Vaccine Type Target Disease Status

Toxin-based
adjuvant

Heat-labile
enterotoxin (LT) - • Inactivated vaccine

[275]
Helicobacter pylori In clinical

Double-mutant
heat-labile toxin
(dmLT)

ETEC vaccine
(ACE527) [276]

• Live attenuated vaccine
Enterotoxigenic
Escherichia coli
(ETEC)

In clinical

ETVAX [277] • Inactivated vaccine
Enterotoxigenic
Escherichia coli
(ETEC)

In clinical

-

• Inactivated vaccine
[278]

• Subunit vaccine
[279,280]

Helicobacter pylori In preclinical

- • Subunit vaccine [281] Clostridium difficile In preclinical

- • Subunit vaccine [278] Clostridium tetani In preclinical

- • Subunit vaccine [282] Hepatitis B virus In preclinical

- • Live attenuated vaccine
[283]

Salmonella enteritidis In preclinical

Multiple-mutated
cholera toxin
(mmCT)

- • Inactivated vaccine
[284]

Helicobacter pylori In preclinical

-

• Inactivated bacteria
(Vibrio cholerae) [285]

• Subunit vaccine
(influenza virus) [285]

Vibrio cholerae and
influenza virus In preclinical

Recombinant cholera
toxin B subunit
(rCTB)

Dukoral [286] • Inactivated vaccine Vibrio cholerae Prequalified by
WHO

- • Live bacteria [287] Helicobacter pylori In preclinical

Cholera-toxin-
derived adjuvant
(CTA1DD)

CTA1-3M2e-DD
[288] • Subunit vaccine Influenza virus In preclinical

Polysaccharide-
based
adjuvant

Chitosan - • Inactivated vaccine
[289]

Helicobacter pylori In preclinical

β-glucans

- • Inactivated vaccine
[290]

Influenza virus In clinical

- • Subunit vaccine [291] Salmonella Typhi In preclinical

- • Inactivated vaccine
[292]

Bacillus anthracis In preclinical

Arabinoxylan (AX) - • Inactivated vaccine
[290]

Influenza virus In clinical

Bacterial
exopolysaccharide
(EPS)

- • Inactivated vaccine
[290]

Influenza virus In clinical
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Table 2. Cont.

Adjuvant Type Vaccine Name Vaccine Type Target Disease Status

Lipid-based
adjuvant

α-galactosyl
ceramide

- • Subunit vaccine [293]
Human
immunodeficiency
virus

In preclinical

- • Inactivated vaccine
[294]

Vibrio cholerae In preclinical

- • Inactivated vaccine
[295]

Helicobacter pylori In preclinical

One alternative that has been studied is toxin-based adjuvants, such as cholera toxin
(CT) and heat-labile enterotoxin (LT). However, their high toxicity raises concerns regarding
their use. To mitigate this, mutations at specific amino acid sites of CT and LT have been
introduced, resulting in improved efficiency and safety (e.g., double-mutant LT (dmLT)
and multiple-mutated CT (mmCT)) [296]. These adjuvants are reported to specifically
enhance the interleukin-17 (IL-17) response, thereby activating antigen-specific T helper
cell responses [285,296].

In addition to toxin-based adjuvants, adjuvants based on other biological molecules
(e.g., such as polysaccharides, lipids, proteins, and genes) have also been investigated.
Polysaccharide-based adjuvants are primarily used to enhance the activity of immune cells,
such as macrophages, and induce cytokine-mediated immune responses (e.g., IL-1 and
-2 (mannatide), IL-5 and -6 (Advax™), IL-4 and -13 (chitin)) [297–302]. Nucleotide-based
adjuvants (e.g., synthetic double-stranded RNA polyriboinosinic acid-polyribocytidylic
acid [poly (I:C)], cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), and cyclic
guanosine monophosphate-adenosine monophosphate (2′3′-cGAMP or cGAMP)) are, on
the other hand, target-specific molecules. For instance, poly (1:C), CpG ODN, and cGAMP
specifically interact with Toll-like receptor (TLR) 3, TLR9, and stimulator of interferon genes
(STING) receptors, respectively, activating inflammatory cytokines and type 1 interferon,
eventually stimulating both innate and adaptive immune responses [301–306].

Lipid-based adjuvants (e.g., liposomes, lipid nanoparticles, emulsions, and immune-
stimulating complexes (ISCOMs)) are often employed as vaccine carriers with adjuvantic-
ity, capable of incorporating other additives, as well as facilitating interactions between
vaccines and dendritic cells (DCs) [307]. Protein-based adjuvants (e.g., flagellin, poly(γ-
glutamic acid), and proteosome), meanwhile, function as ligands for receptors (TLR5, TLR4,
and TLR2, respectively) [308–310]. Their interactions activate helper T cells and cytotoxic T
cells, thus stimulating adaptive immunity [311].

Despite the advantages offered by adjuvants, only a few have received FDA approval,
including aluminum salts, adjuvant System 04 (AS04), oil-in-water emulsion, CpG 1018,
and Quillaja saponaria 21 (QS-21) [312]. This delayed progress in developing vaccine
adjuvants is primarily attributed to their reactogenicity and potential interactions with
vaccines [313]. Consequently, in order to advance the development of vaccine adjuvants,
extensive research into their interaction mechanisms with vaccines and the human body
is essential, along with thorough preclinical and clinical studies aimed at establishing the
safety profiles of emerging adjuvants.

3.5. Future Perspectives

Researchers have highlighted the numerous advantages of non-invasive vaccines
compared to their invasive counterparts. One significant advantage is the potential to
increase vaccination rates by eliminating needle-related fears and phobias that affect a
substantial portion of children, adolescents (20–50%), and young adults (20–30%) [314].
Additionally, non-invasive vaccines are cost-effective by eliminating the need for cold
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chain systems, specialized facilities, and experienced personnel. Furthermore, disease-
specific immunization can be achieved by developing and commercializing non-invasive
vaccines. As shown in Tables 2–4, each administration method targets different diseases:
intestine diseases (oral vaccines), respiratory diseases (intranasal vaccines), and outmost
skin diseases (transcutaneous). Such an approach concentrates and maximizes immune
responses at targeted sites. Additionally, in this sense, combination treatments of different
non-invasive vaccines hold the potential for multi-site targeting. However, there is still a
scarcity of approved non-invasive vaccines, as well as pre-clinical and clinical trials focused
on non-invasive vaccines [24,29,77,315]. Therefore, further research endeavors should be
directed towards addressing the challenges of non-invasive vaccines, optimizing their
formulations and administration methods, in order to expand their usage and pave the
way for effective global immunization against future disease outbreaks.

Table 3. Adjuvants for intranasal vaccines.

Adjuvant Type Vaccine Name Vaccine Type Target Disease Status

Toxin-based
adjuvant

Heat-labile enterotoxin (LT)

Nasalflu (Berna
Biotech) [316] Inactivated vaccine Influenza virus In clinical

- Inactivated vaccine
[317] Influenza virus In clinical

Enzymatic A1 domain of LT
(LTA1) - Subunit vaccine [318] Influenza virus In preclinical

Cholera-toxin-derived
adjuvant (CTA1DD)

- Inactivated vaccine
[319] Influenza virus In clinical

- Inactivated vaccine
[320]

Human respiratory
syncytial virus
(hRSV)

In preclinical

- Subunit vaccine [321] Mycobacterium
tuberculosis In preclinical

- Subunit vaccine
[322,323] Influenza virus In preclinical

Cholera toxin B subunit (CTB)

- Live attenuated
vaccine [323] Influenza virus In preclinical

- Subunit vaccine [324] Influenza virus In preclinical

Polysaccharide-
based
adjuvant

RS09 (Ala-Pro-Pro-His-Ala-
Leu-Ser) - Viral vector vaccine

[325]

Human
immunodeficiency
virus

In preclinical

Mannatide (polyactin A) - Inactivated vaccine
[326] Influenza virus In preclinical

Advax™ - Live attenuated [327] Influenza virus In preclinical

Chitosan

- Non-viral vector
vaccine [328]

Enterohemorrhagic
Escherichia coli
(EHEC) O157:H7

In preclinical

- Inactivated vaccine
[329] Influenza virus In preclinical

- Subunit vaccine
[330,331] Influenza virus In preclinical

- Subunit vaccine [332] Hepatitis B virus In preclinical

Chitin
- Live attenuated [323] Influenza virus In preclinical

- Subunit vaccine [333] Influenza virus In preclinical
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Table 3. Cont.

Adjuvant Type Vaccine Name Vaccine Type Target Disease Status

Nucleotide-based
adjuvant, synthetic
adjuvant

Synthetic double-stranded
RNA polyriboinosinic
acid-polyribocytidylic acid
[poly (I:C)]

- Live attenuated
vaccine [323] Influenza virus In preclinical

- Inactivated vaccine
[334] Influenza virus In preclinical

Cytosine-phosphate-guanine
oligodeoxynucleotide (CpG
ODN)

- Subunit vaccine [335] Influenza virus In preclinical

- Inactivated vaccine
[336] Enterovirus In preclinical

- Subunit vaccine [337] SARS-CoV-2 In preclinical

- Non-viral vector
vaccine [338]

Pseudomonas
aeruginosa In preclinical

- Non-viral vector
vaccine [339] Escherichia coli In preclinical

Cyclic guanosine
monophosphate-adenosine
monophosphate (2′3′-cGAMP
or cGAMP)

- Subunit vaccine [340] SARS-CoV-2 In preclinical

Aluminum-based
adjuvant

Alhydrogel® (aluminum
oxyhydroxide gel)

- Subunit vaccine [341] SARS-CoV-2 In preclinical

Lipid-based
adjuvant

Endocine™ (lipids monoolein
and oleic acid) - Subunit vaccine [342] Influenza virus In preclinical

Protein-based
adjuvant

Flagellin

- Inactivated vaccine
[343] SARS-CoV-2 In preclinical

- Inactivated vaccine
[344] Influenza virus In preclinical

Poly(γ-glutamic acid) - Inactivated vaccine
[334] Influenza virus In preclinical

Proteosome

- Subunit vaccine [273] SARS-CoV-2 In preclinical

- Inactivated vaccine
[345] Influenza virus In preclinical

ProtollinTM - Subunit vaccine [310] Influenza virus In preclinical

Table 4. Adjuvants for transcutaneous vaccines.

Adjuvant Type Vaccine
Name Vaccine Type Target Disease Administration Method Status

Toxin derivates

Double-mutant
heat-labile toxin
(dmLT)

- Subunit vaccine
[346]

Nontypeable
Haemophilus
influenzae
(NTHI)

Hydration (sterile,
pyrogen-free 0.9% sodium
chloride)

In preclinical

Single-mutant
heat-labile
enterotoxin

- Subunit vaccine
[347]

Enterotoxigenic
Escherichia coli
(ETEC)

Hydration and abrasion (70%
isopropyl alcohol, glycerol
10%, and 10 swipes of medical
grade sandpaper)

In clinical

- Subunit vaccine
[348]

Corynebacterium
diphtheriae Hydration (sterile PBS) In preclinical

- Subunit vaccine
[349] Clostridium tetani Hydration In preclinical

Cholera toxin
(CT)

- Subunit vaccine
[272]

Corynebacterium
diphtheriae

Hollow microneedle
(pre-treatment purpose) In preclinical

- Inactivated
vaccine [350] Influenza virus Hydration (saline-soaked

gauze) In preclinical

Cholera toxin B
subunit (CTB) - Subunit vaccine

[351]
hepatitis B
virus

Solid microneedle and
hydrogel patch In preclinical
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Table 4. Cont.

Adjuvant Type Vaccine
Name Vaccine Type Target Disease Administration Method Status

Polysaccharide-
based
adjuvant

Chitosan - Subunit vaccine
[352]

Corynebacterium
diphtheriae

Hollow microneedle (pre- or
post-treatment purpose) In preclinical

Nucleotide-
based adjuvant,
synthetic
adjuvant

Synthetic
double-stranded
RNA
polyriboinosinic
acid-
polyribocytidylic
acid [poly (I:C)]

- Subunit vaccine
[353] Influenza virus Coated microneedle In preclinical

Cytosine-
phosphate-
guanine
oligodeoxynu-
cleotide (CpG
ODN)

- Subunit vaccine
[354] Clostridium tetani Hydration (PBS-drenched

wound plaster) In preclinical

- Subunit vaccine
[272]

Corynebacterium
diphtheriae

Hollow microneedle
(pre-treatment purpose) In preclinical

- Non-viral vector
vaccine [355]

Chlamydia
muridarum Hydration (sterile PBS) In preclinical

- Subunit vaccine
[356]

Human immun-
odeficiency
virus

Hydration (saline-drenched
gauze) In preclinical

- Subunit vaccine
[357]

Foot-and-mouth
disease
virus

Hydration In preclinical

Immune-
stimulating
complexes
(ISCOMs)

Quil A - Subunit vaccine
[272]

Corynebacterium
diphtheriae

Hollow microneedle
(pre-treatment purpose) In preclinical

4. Conclusions

Despite the evident benefits of non-invasive vaccines, their commercialization has
encountered physiological barriers that impede the efficient delivery of vaccines to im-
munological cells, such as antigen-presenting cells (APCs). Each non-invasive vaccine faces
specific challenges that restrict their bioavailability. For example, oral administration is hin-
dered by gastrointestinal fluids and mucosal layers, intranasal administration is hindered
by mucosal layers, and transcutaneous administration is hindered by the stratum corneum.
Therefore, to enhance the immunogenicity of non-invasive vaccines, the formulation of the
vaccine should carefully consider limitations associated with each route of administration.
Additionally, various supplementary materials can be employed in vaccine formulation
to enhance bioavailability, such as pH-sensitive polymers, mucus-penetrating polymers,
and microneedles for addressing gastrointestinal fluids, mucosal layers, and the stratum
corneum, respectively.

To optimize the immunogenicity of vaccines and minimize their immune-toxicity,
careful selection of vaccine types and adjuvants is also essential, as different combinations
of these components can lead to varying immune responses and clinical outcomes. For
instance, for non-invasive administration with low immunogenicity, adjuvants are often
combined with whole-particle-based vaccines to boost their effectiveness. On the other
hand, in the case of invasive administration, whole-particle-based vaccines are typically
not paired with adjuvants due to their inherent high immunogenicity, whereas adjuvants
are mostly used with subunit vaccines due to their lower immunogenicity.

Adjuvants serve not only as immune enhancers but also as carriers for vaccines. These
carriers can be further functionalized with other types of adjuvants to bolster immune
responses or coupled with anchor proteins and stabilizers for improved performance.
Nevertheless, careful consideration must be given to the selection of adjuvants to be paired
with vaccines, and their toxicity should be thoroughly assessed through pre-clinical and
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clinical tests prior to clinical application. Only with such precautions in practice will the
development of effective, safe non-invasive vaccines be achieved.
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