
 
 

 

 
Pharmaceutics 2023, 15, 2061. https://doi.org/10.3390/pharmaceutics15082061 www.mdpi.com/journal/pharmaceutics 

Review 

Unraveling Therapeutic Opportunities and the Diagnostic  
Potential of microRNAs for Human Lung Cancer 
Osama Sweef 1,2,*, Elsayed Zaabout 3, Ahmed Bakheet 1, Mohamed Halawa 4, Ibrahim Gad 5, Mohamed Akela 6,  
Ehab Tousson 2, Ashraf Abdelghany 7 and Saori Furuta 1,* 

1 Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center,  
Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA 

2 Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt 
3 Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA 
4 Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus,  

Aurora, CO 80045, USA 
5 Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt 
6 Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz  

University, Al-Kharj 11942, Saudi Arabia 
7 Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), 

University of Granada, 18016 Granada, Spain 
* Correspondence: osama.sweef@case.edu (O.S.); saori.furuta@case.edu (S.F.) 

Abstract: Lung cancer is a major public health problem and a leading cause of cancer-related 
deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung 
cancer patients remains low, emphasizing the urgent need for innovative diagnostic and thera-
peutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic 
targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and 
apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or na-
noparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Con-
versely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with in-
creased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the 
current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by 
exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 
1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeu-
tics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and 
innovative diagnostic and therapeutic modalities based on miRNAs. 
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1. Introduction 
Lung cancer is one of the leading causes of cancer-related deaths worldwide, af-

fecting both developed and developing countries. Despite advancements in early detec-
tion and treatment, the prognosis of lung cancer remains poor, with a five-year survival 
rate of less than 20% [1]. The etiology of lung cancer is complex and multifactorial, con-
tributed to by environmental, genetic, and lifestyle factors. Above all, exposure to envi-
ronmental pollutants, such as arsenic and benzopyrene (BaP), accounts for up to 1/10 of 
lung cancer cases [2]. Arsenic is commonly found in groundwater and soil, whereas BaP 
is present in cigarette smoke, diesel exhaust, and other combustion products [3]. Alt-
hough the mechanisms by which these carcinogens induce lung cancer are still not fully 
understood, recent studies have unveiled pivotal contributions by miRNAs. MiRNAs are 
a class of small non-coding RNAs that play important roles in the post-transcriptional 
regulation of gene expression in eukaryotic cells. They are typically 18–25 nucleotides 
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long and are involved in gene silencing, translational repression, and mRNA degradation 
[4]. MiRNAs bind to the 3′ untranslated region (UTR) of target mRNAs and induce their 
degradation or translational inhibition [5]. This regulates the expression of genes in-
volved in a variety of biological processes, such as cell differentiation, proliferation, and 
apoptosis [6]. Dysregulation of discrete sets of miRNAs is implicated in numerous dis-
eases, including cancer, cardiovascular disease, and neurological disorders [7]. New 
studies have indicated that miRNAs have significant functions in the development of 
lung cancer, specifically cases triggered by arsenic and BaP exposure, and could serve as 
viable targets for therapeutic intervention [8]. A set of miRNAs that regulate can-
cer-related signals like cell growth and proliferation have been observed to have varying 
levels of expression in lung cells following exposure to these carcinogens, demonstrating 
their involvement in the formation of cancer in the lungs caused by these toxins [9,10]. In 
this review, we will summarize the roles of miRNAs in lung carcinogenesis, especially in 
cases induced by exposure to arsenic and BaP, and discuss their diagnostic and thera-
peutic potentials. This review will help advance our insight into the role of miRNAs in 
lung cancer and justify their utility in improving patient outcomes. 

2. The Genesis and Amplification of Human Lung Cancer 
2.1. The Pathogenesis of Lung Cancer 

Lung cancer progresses through multiple stages. The first stage, known as initiation, 
involves the occurrence of genetic mutations in normal cells, rendering them more vul-
nerable to the progression of cancer. These initiated cells then accumulate further genetic 
and epigenetic changes and begin to proliferate, forming pre-cancerous lesions termed 
dysplasia [11]. Over time, these pre-cancerous lesions progress to invasive cancer and 
eventually spread to other parts of the body. Lung cancer is divided into two major types: 
non-small cell lung cancer (NSCLC) (85% of cases) and small cell lung cancer (SCLC) 
(15% of cases), depending on the type of affected cells [12]. Recent advances in genomic 
and molecular profiling technologies have provided new insights into the genetic and 
molecular profiles of these two types, contributing to the development of specific tar-
geted therapies [13]. However, lung cancer development is complex and multifactorial 
under the influences of numerous factors, including exposure to environmental carcin-
ogens and lifestyle factors. Above all, tobacco smoke is the major environmental/lifestyle 
factor for lung cancer [14]. In addition, prolonged exposure to high concentrations of 
radon and air pollution, as well as work-related substances and secondhand smoke, in-
creases the risks of lung cancer [15]. Thus, reducing exposure to these carcinogens will 
undoubtedly help to prevent lung cancer development [16]. Furthermore, genetic factors, 
including a family history of lung cancer and specific mutations, as well as gender, age, 
race, and ethnicity, could also influence the predisposition of individuals to the disease 
(Figure 1A) [17]. For example, a large proportion of lung cancers carry mutations in the 
EGFR, ALK, and KRAS genes. However, the mutation patterns can change over time and 
under targeted therapies, allowing them to acquire resistance towards previously effec-
tive treatments [18]. Such difficulty could possibly be circumvented by earlier detection 
and prompt treatment of this formidable disease [19]. 
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Figure 1. Representative diagrams of the causative factors of lung carcinogenesis and influence of 
miRNAs on lung cancer development. (A) A visual representation that shows how genetic and 
environmental factors come together to cause lung cancer. (B) A graphical portrayal of miRNAs 
with their different modulatory functions in lung cancer. 

2.2. Arsenic- and BaP-Induced Human Lung Carcinogenesis 
Environmental exposure to arsenic and BaP serves as the major contributor to lung 

carcinogenesis [20]. Although exposure to each carcinogen increases the risk of lung 
cancer, co-exposure induces synergistic effects [21]. 

Arsenic is a naturally occurring metalloid widely distributed in the environment in 
soil, rocks, and minerals, while also being present in some groundwater sources [22]. 
Chronic exposure to arsenic is linked to lung cancer, skin cancer, bladder cancer, and 
other diseases [23]. Arsenic exists in several forms, including a highly toxic inorganic 
form that causes cancer, skin lesions, and cardiovascular disease [24]. Organic forms of 
arsenic, on the other hand, are less toxic and are typically found in plants and animals. 
Arsenic has been used for a variety of purposes throughout history, including pesticides, 
herbicides, insecticides, and certain industrial processes [25]. However, due to its toxicity, 
the use of arsenic has been restricted or banned in many countries, including the US. The 
mechanism of arsenic-induced lung cancer involves the induction of oxidative stress, 
DNA damage, and genomic instability, leading to gene mutations [26]. 

BaP is a polycyclic aromatic hydrocarbon (PAH) and a potent environmental car-
cinogen [27]. BaP is generated from burning organic materials, for example, the combus-
tion of fossil fuels, tobacco smoking, grilling, or charring meat [28]. BaP is one of the most 
potent carcinogens found in cigarette smoke [29]. Exposure to BaP is linked to lung, skin, 
and bladder cancer. In addition, BaP elicits other harmful effects on human health, in-
cluding respiratory problems, such as asthma and chronic bronchitis, as well as cardio-
vascular diseases [30]. BaP could also exert harmful effects on the ecosystem, particularly 
reproductive problems, developmental abnormalities, and the reduced growth and sur-
vival of aquatic organisms [31]. BaP is particularly harmful because it can easily enter the 
body through inhalation, ingestion, or skin contact. Once inside the body, BaP is con-
verted into highly reactive metabolites that damage DNA and other cellular components 
[32]. The mechanism of BaP-induced lung cancer involves the formation of DNA ad-
ducts, triggering mutations in critical tumor suppressor genes and oncogenes [33]. One of 
the genes affected by BaP exposure is p53, a critical tumor suppressor gene regulating cell 
cycle arrest, DNA repair, and apoptosis. Mutations in p53 are found in many types of 
cancer and are associated with poor prognoses [34]. BaP exposure also causes epigenetic 
changes, such as DNA methylation, which could silence the expression of tumor sup-
pressor genes and promote cancer development. BaP exposure may also activate onco-
genes such as c-Myc, which is a transcription factor that regulates cell proliferation and 
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apoptosis [35]. BaP additionally promotes the expression of growth factors and their re-
ceptors, such as the epidermal growth factor (EGF) and EGF receptor (EGFR), the major 
contributors to lung cancer development [36]. 

As described above, arsenic and BaP induce lung cancer through different mecha-
nisms. Arsenic interferes with DNA damage repair, increases oxidative stress, and pro-
motes cell proliferation. BaP, on the other hand, causes mutations in tumor suppressor 
genes, disrupts cell signaling pathways, and suppresses the immune system [37]. When 
arsenic and BaP are present together, however, their harmful effects are amplified and 
synergized, serving as a profound risk factor for lung cancer [38]. For example, their 
co-existence leads to upregulation of the pro-tumor mitogen-activated protein kinase 
(MAPK) pathway involved in cell growth and survival and cancer development [39]. In 
addition, these carcinogens alter the expression of genes involved in DNA damage re-
pair, cell cycle progression, and apoptosis, further contributing to carcinogenesis [40]. 
Moreover, co-exposure to both carcinogens could impair cellular defense mechanisms 
that otherwise protect lung cells from environmental toxins. For example, arsenic inter-
feres with glutathione, a critical antioxidant that helps neutralize reactive oxygen species 
(ROS) and prevents oxidative damage [41]. BaP, on the other hand, antagonizes aryl hy-
drocarbon receptors (AhRs), which play a key role in detoxifying environmental pollu-
tants. When these defense mechanisms are compromised, lung cells become more vul-
nerable to the harmful effects of arsenic and BaP, further increasing the risk of lung can-
cer. Any preemptive measures, such as reducing exposure to these carcinogens, espe-
cially in occupational settings and areas with high environmental contamination, are es-
sential for reducing the risk of lung cancer [42]. 

3. MiRNA-Based Mechanisms of Lung Carcinogenesis 
Dysregulation of miRNA expression has been implicated in various diseases, in-

cluding cancer. MiRNAs have been shown to play key roles in mediating lung carcino-
genesis in response to environmental carcinogens (Supplementary Table S1) [43]. Recent 
research has demonstrated the potential utility of miRNAs as diagnostic and prognostic 
biomarkers for lung cancer. Moreover, miRNAs have been explored as therapeutic tar-
gets for lung cancer treatment, with promising results from preclinical studies. The tar-
geted delivery of miRNA analogs and anti-miRNA oligonucleotides to cancer cells has 
emerged as a highly promising avenue for therapeutic advancement. 

3.1. MiRNA Biogenesis and Regulatory Roles in Human Lung Cancer 
MiRNA biogenesis is a crucial mechanism for the post-transcriptional regulation of 

gene expression in cells. It involves a series of enzymatic steps that result in the pro-
cessing of primary miRNA transcripts into mature miRNAs, which then bind to target 
mRNAs and regulate their expression. MiRNA biogenesis is a multi-step process that 
involves the transcription of DNA into a primary miRNA (pri-miRNA) molecule by RNA 
polymerase II, followed by the processing of the pri-miRNA in the nucleus by the Drosha 
enzyme and its cofactor DGCR8 to produce a precursor miRNA (pre-miRNA) molecule 
[44]. The pre-miRNA is then exported to the cytoplasm, where it is cleaved by the Dicer 
enzyme to form a miRNA duplex. The duplex is then loaded into the RNA-induced si-
lencing complex (RISC), which includes Argonaute (AGO) proteins [45]. The miRNA 
strand serves as a guide for the RISC complex to bind with target mRNA molecules that 
possess matching sequences. The RISC complex binds with the target mRNA, and this 
interaction can potentially cause degradation of the mRNA or its translational inhibition, 
which ultimately lead to the silencing of the gene [46]. MiRNA biogenesis is tightly reg-
ulated by a complex network of molecular interactions involving multiple protein com-
plexes and regulatory factors. In fact, aberrant expression of key miRNA biogenesis fac-
tors, such as Drosha, DGCR8, Dicer, and Exportin-5, is found in various types of lung 
cancer [47]. In particular, decreased expression of Dicer is often found in lung cancer [48]. 
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Dysregulation of specific sets of miRNAs has indeed been associated with the de-
velopment of lung cancer. The dysregulation of miRNAs involved in cell proliferation, 
apoptosis, and metastasis can contribute to the progression of lung cancer [49]. In lung 
cancer, certain miRNAs that have oncogenic properties, such as miR-21, miR-155, and 
miR-221/222, are found to be elevated [50]. These miRNAs promote cell proliferation and 
metastasis, and they can target tumor suppressor genes like PTEN and PDCD4, leading 
to their downregulation and loss of their tumor-suppressing functions [51]. Furthermore, 
oncogenic miRNAs like miR-21, miR-155, and miR-221/222 have also been associated 
with chemotherapy resistance in lung cancer. They can regulate drug transporters, 
apoptosis, and DNA repair pathways, thereby affecting the efficacy of chemotherapy 
treatment [52]. On the other hand, tumor suppressor miRNAs, such as miR-34, let-7, and 
members of the miR-200 family, are downregulated in lung cancer [53]. These miRNAs 
normally inhibit cell growth and metastasis, but their reduced expression levels in lung 
cancer can contribute to uncontrolled cell growth and metastatic spread. For example, 
miR-34a, which targets oncogenes like c-Met and Notch1, is downregulated in lung can-
cer [54]. Furthermore, several miRNAs, including the miR-200 family and miR-205, have 
been shown to regulate the epithelial–mesenchymal transition (EMT) of lung cancer [55]. 
The EMT is a process in which epithelial cells lose their polarity and cell–cell adhesion 
and gain mesenchymal properties, promoting invasion and metastasis [56]. Other 
miRNAs, including miR-126 and miR-210, have been implicated in regulating the angi-
ogenesis of lung cancer (Figure 1B) [57]. Angiogenesis is the process of forming new 
blood vessels, crucial for tumor growth and metastasis [58]. These dysregulated miRNAs 
also interact with various signaling pathways that are frequently mutated in lung cancer, 
such as the EGFR and KRAS pathways, further highlighting their roles in the disease [59]. 
Identification of dysregulated miRNAs in lung cancer may provide new opportunities 
for the development of miRNA-based therapeutic strategies. 

3.2. MiRNAs Mediate Lung Carcinogenesis by Arsenic and BaP Co-Exposure 
Exposure of lung cells to carcinogens, like arsenic and BaP, could lead not only to 

mutations in oncogenes and tumor suppressor genes, but also to changes in miRNA ex-
pression that facilitate cancer development (Figure 2A, Supplementary Table S2). For in-
stance, pro-tumor miR-21, which targets tumor suppressor genes such as PTEN, PDCD4, 
and RECKS, is elevated in arsenic-exposed lung cells [60]. Conversely, antitumor 
miR-200c is downregulated in arsenic-exposed lung cells to promote the EMT [61]. Fur-
thermore, antitumor miR-31, targeting the JAK/STAT pathway involved in cell prolifera-
tion and survival, is downregulated in BaP-exposed lung cells [62,63]. We will describe 
more details of molecular pathways regulated by miRNAs below. Given the potential 
roles of miRNAs in carcinogen-induced lung cancer, miRNA-based therapies may hold 
promise as a novel approach to treating this disease [64,65]. For example, a group of 
miRNAs, miR-21, miR-155, miR-200c, miR-145, miR-34a, miR-31, and miR-126, are linked 
to lung carcinogenesis whether or not it is induced by arsenic and BaP exposure (Figure 
2A,B). They all regulate the expression of lung cancer-associated genes KRAS, c-Myc, 
SOCS1, SATB2, PTEN, PDCD4, Bcl-2, TGFBR2, ZEB1, Cyclin D1, ZEB2, RECK, EGFL7, 
and KLF4 (Figure 2C,D). Thus, modulation of the miRNA–cancer driver gene axis may 
represent a potential therapeutic approach for lung cancer. In fact, miRNA mimics have 
been utilized to restore the expression of tumor suppressor miRNAs, while miRNA in-
hibitors have been used to target oncogenic miRNAs [66]. Additionally, miR-
NA-targeting nanoparticles or exosomes have been developed as more targeted and ef-
ficient miRNA delivery systems [67]. 
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Figure 2. Representative diagrams of the miRNAs that have been associated with human lung 
cancer and their corresponding targets. (A) The implicated miRNAs in human lung cancer pro-
gression; those labeled in blue are involved in lung cancer induced by arsenic and BaP exposure. 
(B) The shared miRNAs that play a role in lung cancer and are also involved in the development of 
lung cancer caused by exposure to arsenic and BaP. (C) The target genes responsible for the pro-
gression of lung cancer and those that are also responsible for the development of lung cancer 
triggered by exposure to arsenic and BaP. (D) Representative diagram for miRNAs and their gene 
targets in lung cancer tissue. The miRNAs linked to lung cancer are depicted in red, whereas those 
associated with lung cancer induced by arsenic and BaP are indicated in blue. The genes that are 
targeted by these miRNAs are visually represented in green. 

4. Deciphering the Molecular Signaling Pathways of MiRNAs in Lung Cancer 
To develop miRNA-targeted therapeutics, it is essential to know which signaling 

pathways regulate miRNAs. In lung cancer, a group of oncogenes or tumor suppressor 
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genes are dysregulated, leading to aberrant expression of the downstream miRNAs. The 
dysregulated genes and pathways upstream of miRNAs include the epidermal growth 
factor receptor (EGFR), KRAS, PI3K-Akt-mTOR, Wnt, Notch, Hedgehog, TGF-β, 
JAK/STAT, NF-κB, and Hippo pathways. These genes are commonly upregulated in lung 
cancer and promote cell proliferation, invasion, survival, and therapeutic resistance 
(Figure 3, Supplementary Table S3). The genes/pathways are regulated by miRNAs in-
cluding miR-21, miR-31, miR-34a, miR-155, and miR-221/222 [68,69], and they are in-
volved in the apoptosis, cell proliferation, angiogenesis, and metastasis of cancer cells. 

 
Figure 3. Illustrating network of the signaling mechanisms in lung cancer through miR-
NA-mediated regulation. The image shows the signaling pathways that are involved in lung can-
cer, including Wnt, TGF-β, Notch, Hedgehog, PI3K/Akt, MAPK/ERK, JAK/STAT, NF-κB, Hippo, 
and Tp53. Each of these signaling pathways is regulated by many miRNAs. Four specific miRNAs, 
namely miR-21, miR-150, miR-155, and miR-34, are known to have a significant impact on the reg-
ulation and progression of lung cancer, and they will be focused on by miRNA therapeutics. 

5. Different Types and Mechanisms of MiRNA-Based Therapies for Lung Cancer 
MiRNA-based therapies utilize different approaches, including inhibiting oncogenic 

miRNAs, restoring tumor suppressor miRNAs, modulating the immune response, and 
sensitizing cancer cells to chemotherapy and radiation therapy. These strategies demon-
strate the versatility of miRNA-based therapies in targeting cancer and hold promise for 
improving treatment outcomes. 

5.1. Inhibition of Oncogenic MiRNAs 
Oncogenic miRNAs have been implicated in the progression of tumorigenesis by 

suppressing the expression of tumor suppressor genes. Consequently, targeting onco-
genic miRNAs has emerged as a promising therapeutic strategy for the treatment of lung 
cancer. MiRNA-based therapeutics, such as anti-miRNA oligonucleotides (AMOs), 
locked nucleic acids (LNA), and antisense oligonucleotides (ASOs), have been developed 
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to inhibit the function of these oncogenic miRNAs. Another approach, known as miRNA 
sponges, has also been explored for sequestering miRNAs and inhibiting their activity. 
Notably, studies focusing on AMOs specifically designed to target miR-21, an oncogenic 
miRNA, have demonstrated their effectiveness in restraining lung cancer cell prolifera-
tion and inducing apoptosis [70]. 

5.2. Restoration of Tumor Suppressor MiRNAs 
Tumor suppressor miRNAs play a pivotal role in impeding tumor growth and me-

tastasis. In the context of lung cancer, a notable observation is the downregulation of 
tumor suppressor miRNAs. Hence, an enticing strategy for treating lung cancer involves 
the restoration of these miRNAs. By reinstating tumor suppressor miRNAs, it is antici-
pated that the inhibition of tumor growth and suppression of metastasis can be achieved 
[71]. MiRNA therapeutics, such as miRNA mimics, can restore the function of tumor 
suppressor miRNAs by binding to their target genes and inhibiting their expression. For 
example, a miR-34a mimic has been shown to inhibit lung cancer cell growth and induce 
apoptosis by targeting multiple oncogenic genes [71]. 

5.3. Modulation of Immune Response 
MiRNAs have been implicated in the regulation of immune cell functions, suggesting 

their potential involvement in the modulation of antitumor immune responses. Dysregu-
lation of these miRNAs can lead to impaired immune responses against tumors. MiR-
NA-based therapeutics, including miRNA antagonists and mimics, offer a promising ap-
proach to modulate the expression of immune-related miRNAs. For instance, studies have 
demonstrated that the use of a miR-155 antagonist can enhance the antitumor immune re-
sponse in lung cancer by increasing the expression of key immune mediators, such as in-
terferon-γ and interleukin-2. This highlights the potential of targeting specific miRNAs to 
manipulate immune-related pathways and improve antitumor immunity [72]. 

5.4. Sensitization to Chemotherapy and Radiation Therapy 
MiRNAs could also play roles in the regulation of resistance to chemotherapy and 

radiation therapy, and dysregulation of these miRNAs could confer therapeutic re-
sistance. MiRNA therapeutics, such as miRNA inhibitors, can modulate the expression of 
drug-resistance-related miRNAs and sensitize lung cancer cells to cancer treatments. For 
example, a miR-221 inhibitor has been shown to target multiple drug-resistance-related 
genes and sensitize lung cancer cells to chemotherapy [73]. 

6. MiRNA Therapeutics and Delivery Methods 
Over the past decade, an extensive array of therapeutics based on miRNAs has been 

meticulously crafted and extensively explored in preclinical settings. MiRNA-based 
treatments have demonstrated compelling efficacy in animal models, effectively re-
stricting metastasis and offering promising prospects for combating cancer spread (Fig-
ure 4A,B). The development of effective delivery systems is a critical aspect of miRNA 
therapeutics. Various delivery methods have been developed and tested, including li-
pid-based delivery, viral vectors, exosomes, aptamers, peptide-based delivery, and elec-
troporation (Figure 5). Lipid-based nanoparticles have been shown to be effective in de-
livering miRNA therapeutics to target cells and can be designed to selectively target 
specific tissues and organs. The use of nanocarriers for delivering miRNA therapeutics 
offers a potential solution to address off-target effects and toxicity concerns. By encap-
sulating miRNAs in nanocarriers, targeted delivery to lung cancer cells can be achieved. 
Through the incorporation of targeting ligands on the nanocarrier surface, specific 
binding to lung cancer cell receptors can be achieved, minimizing exposure to normal 
tissues and reducing off-target effects. Additionally, nanocarriers provide protection for 
miRNAs, improving their stability and bioavailability. Controlled release mechanisms 
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ensure sustained and localized delivery to the tumor site. Nanocarriers can also be de-
signed to possess other advantageous properties, such as enhanced cellular uptake and 
triggered release, further optimizing the therapeutic potential of miRNA-based treat-
ments for lung cancer [74]. 

 
Figure 4. A detailed model illustrating the biogenesis of miRNAs and demonstrating the effec-
tiveness of miRNA-based therapies for managing lung metastases. (A) The biogenesis of miRNAs 
involves transcription by RNA polymerase II, processing by Drosha and Dicer enzymes, and in-
corporation into the RNA-induced silencing complex (RISC) to regulate gene expression at both the 
cellular and animal levels through oncology-directed miRNA replacement therapy. (B) Experi-
mental animals have been used to test the efficacy of miRNA-based treatments in restricting me-
tastasis, with studies conducted to assess the ability of these therapies to prevent the spread of 
cancer to other parts of the body. 

 
Figure 5. An illustrated guide to the diagnostic and therapeutic potential of miRNAs and methods 
for delivering miRNA therapeutics. MiRNAs can be extracted from circulating miRNAs, circulat-
ing tumor cells, primary tumor cells, and tumor lung tissue and analyzed for their expression pat-
terns. These miRNA profiles can then be used to develop non-invasive diagnostic tools for cancer 
detection and monitoring and to guide personalized treatment strategies. The delivery methods 
include lipid-based nanoparticles, viral vectors, exosomes, aptamers, peptide-based delivery, and 
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electroporation. Each method has its own advantages and limitations, and the choice of delivery 
method depends on factors such as the type of miRNA therapeutic and the target tissue. 

Viral vectors, such as adenoviruses and lentiviruses, can also be used as delivery 
vehicles for miRNA therapeutics [75]. Exosomes, small vesicles that are naturally pro-
duced by cells, have shown promise as delivery vehicles for miRNA therapeutics due to 
their ability to target specific cells and tissues [76]. Aptamers, small molecules that can 
specifically bind to target cells, have also been investigated for their potential as delivery 
vehicles for miRNA therapeutics [77]. Peptide-based delivery methods have been de-
veloped to target specific cell types or tissues and have been shown to be effective in de-
livering miRNA therapeutics to these targets [78]. Electroporation, which involves the 
use of an electric field to introduce miRNA molecules into cells, has also been explored as 
a method for delivering miRNA therapeutics to specific tissues [79]. While each delivery 
method has its own advantages and limitations, continued research in this area is neces-
sary to optimize delivery systems and maximize the therapeutic potential of miR-
NA-based therapies. MiRNA therapeutics encompasses two distinct categories aimed at 
manipulating the expression of specific miRNAs: miRNA mimics and miRNA inhibitors. 
MiRNA mimics serve to enhance the expression of a particular miRNA, while miRNA 
inhibitors work to decrease its expression (Figure 4A). 

6.1. MiRNA Mimics 
MiRNA mimics are synthetic RNA molecules that mimic the function of endoge-

nous miRNAs. They are designed to increase the expression of a specific miRNA that is 
downregulated in cancer cells, thereby restoring its tumor-suppressive function [80]. 
MiRNA mimics are typically chemically modified to enhance their stability and reduce 
off-target effects. One of the most widely used miRNA mimics is miR-34a, which is 
downregulated in lung cancer and functions as a tumor suppressor by regulating multi-
ple oncogenic pathways [81]. Several preclinical studies have shown that systemic de-
livery of miR-34a mimics can inhibit lung tumor growth and metastasis in mouse models 
[82]. Another example of miRNA mimics is miR-16, which is downregulated in lung 
cancer and targets multiple oncogenes [83]. Delivery of miR-16 mimics has been shown 
to induce apoptosis and inhibit lung cancer cell proliferation [84]. 

6.2. MiRNA Inhibitors 
MiRNA inhibitors, also known as antagomirs or anti-miRNAs, are synthetic RNA 

molecules that inhibit the function of endogenous miRNAs. They are designed to target 
and bind to the mature miRNA, thereby preventing its interaction with target mRNAs 
[85]. MiRNA inhibitors are also chemically modified to enhance their stability and reduce 
off-target effects. One of the most studied miRNA inhibitors is the miR-21 inhibitor, 
which targets a miRNA that is overexpressed in lung cancer and promotes tumor growth 
and metastasis [86]. In preclinical studies, systemic delivery of miR-21 inhibitors has been 
shown to inhibit lung tumor growth and sensitize cancer cells to chemotherapy [87,88]. 
Another example of miRNA inhibitors is the miR-155 inhibitor; miR-155 is upregulated 
in lung cancer and promotes tumor growth and immune evasion [89]. Delivery of 
miR-155 inhibitors has been shown to suppress lung tumor growth and enhance anti-
tumor immune responses [90]. 

6.3. Delivery Methods for MiRNA Therapeutics 
The success of miRNA therapeutics depends on their efficient delivery to the target 

tissues and cells. The delivery methods for miRNA therapeutics can be broadly classified 
into viral and non-viral vectors [91]. 
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6.3.1. Viral Vectors 
Viral vectors are the most used delivery vehicles for miRNA therapeutics. They in-

clude retroviruses, lentiviruses, adenoviruses, and adeno-associated viruses (AAVs). 
These vectors are engineered to express the desired miRNA mimic or inhibitor and are 
capable of efficient transduction of both dividing and non-dividing cells (Figure 5). Sev-
eral preclinical and clinical studies have shown the efficacy of viral-vector-based delivery 
of miRNA therapeutics for lung cancer treatment [92,93]. For example, a phase I clinical 
trial tested the safety and efficacy of intravenous delivery of a lentiviral vector expressing 
miR-16 in patients with advanced NSCLC. The results showed that the treatment was 
well-tolerated and resulted in stable disease in some patients [94]. 

6.3.2. Non-Viral Vectors 
Non-viral vectors for miRNA delivery are an attractive alternative to viral vectors 

because they are generally safer, less immunogenic, and more easily customizable. They 
include lipid-based nanoparticles, polymers, and inorganic nanoparticles. Non-viral 
vectors can be designed to encapsulate miRNA mimics or inhibitors and deliver them to 
the target cells through various mechanisms, such as endocytosis and membrane fusion 
[95,96]. Lipid-based nanoparticles are the most extensively studied non-viral vectors for 
miRNA delivery. They consist of a cationic lipid core and a polyethylene glycol (PEG) 
shell, which enhance their stability and reduce their immunogenicity [97]. Several pre-
clinical studies have shown the efficacy of lipid-based nanoparticles in delivering miR-
NA therapeutics to lung cancer cells [98,99]. For example, a recent study demonstrated 
that the intravenous delivery of lipid-based nanoparticles containing miR-34a mimics can 
inhibit lung tumor growth and metastasis in a mouse model of NSCLC [100]. 

Polymers are another type of non-viral vector for miRNA delivery. They can be de-
signed to have chemical and physical properties suitable for optimal stability, biocompati-
bility, and release kinetics. Polyethyleneimine (PEI) is one of the most used polymers for 
miRNA delivery because of its high cationic charge and ability to condense miRNAs into 
nanoparticles [101,102]. Several preclinical studies have shown the efficacy of PEI-based 
nanoparticles in delivering miRNA therapeutics to lung cancer cells [103,104]. Inorganic 
nanoparticles, such as gold nanoparticles and magnetic nanoparticles, are also being ex-
plored as non-viral vectors for miRNA delivery. They have unique physicochemical prop-
erties, such as high surface areas and magnetic responsiveness, making them applicable for 
magnetic-resonance-guided miRNA delivery to lung cancer cells [105,106]. 

7. Clinical Trials of MiRNA Therapeutics in Lung Cancer Treatment 
There has been a surge in new lung cancer therapies utilizing miRNAs to alter the 

activity of lung cancer cells. Such interest stems from the effectiveness, reduced toxicity, 
and improved specificity of miRNA-based therapies compared to traditional cancer 
treatments. The safety and efficacy of each miRNA-based cancer therapy has been tested 
through clinical trials. Here, we summarize some of the recent clinical trials investigating 
the use of miRNA therapeutics in lung cancer treatment. 

A phase I clinical trial evaluating the miR-34a mimic, MRX34, in patients with ad-
vanced solid tumors, including lung cancer, yielded compelling results. This ground-
breaking study demonstrated the safety and efficacy of MRX34, as it was well tolerated 
by the patients. Encouragingly, a significant number of patients experienced positive 
outcomes, with two achieving a partial response and five stabilizing their diseases [107]. 
A Phase I/II clinical trial assessing MRX34’s safety and efficacy in patients with unresec-
table primary liver cancer or liver metastases, including cases originating from lung 
cancer, yielded promising results. The trial confirmed MRX34′s safety profile and pro-
vided evidence of its antitumor activity. Notably, three out of twenty-four patients 
achieved a partial response, while eight patients experienced disease stabilization. An-
other Phase I/IIa clinical trial evaluated the safety and efficacy of MRX34 in combination 
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with the immune checkpoint inhibitor pembrolizumab in patients with advanced solid 
tumors, including NSCLC. The trial demonstrated that the combination therapy was safe 
and well-tolerated, with evidence of antitumor activity in some patients, including those 
who had previously progressed on immunotherapy. Specifically, out of seventeen pa-
tients, two patients achieved a partial response and six patients showed disease stabili-
zation [108]. 

MiR-16 mimic TargomiRs was also tested in a phase I clinical trial for safety and 
pharmacokinetics in patients with advanced solid tumors, including lung cancer. The 
trial showed that TargomiRs was safe and well-tolerated, with no dose-limiting toxicities 
observed. In addition, TargomiRs demonstrated evidence of antitumor activity in some 
patients, with one patient achieving a partial response and four patients achieving dis-
ease stabilization [109]. Another Phase I/IIa clinical trial also evaluated the safety and ef-
ficacy of TargomiRs in combination with the chemotherapy drug docetaxel in patients 
with advanced NSCLC. The trial demonstrated that the combination therapy was 
well-tolerated and showed evidence of antitumor activity, with seven out of twelve pa-
tients achieving partial response or stable disease conditions [110]. These findings sug-
gest that MRX34 and TargomiRs may hold promise as potential therapeutic options for 
lung cancer patients [111]. Combining miRNA therapeutics with immunotherapy or 
chemotherapy may enhance their antitumor effects. 

8. Potential Benefits and Limitations of MiRNA Therapeutics in Lung Cancer Treatment 
MiRNA therapeutics offers a potential new treatment modality for lung cancer, with 

several potential benefits over traditional therapies. However, there are also several lim-
itations and challenges that must be overcome before these therapies can be widely 
adopted in clinics. 

8.1. Potential Benefits of MiRNA Therapeutics in Lung Cancer Treatment 
(I) Targeted Carriers: In miRNA therapeutics, lung cancer treatment involves the 

utilization of specific carriers to deliver miRNA molecules directly to cancer cells. These 
carriers, such as liposomes, nanoparticles, or viral vectors, are engineered to protect and 
transport therapeutic miRNAs to their intended targets within the cancerous tissue. By 
incorporating miRNAs into these carriers, their stability and bioavailability are en-
hanced, allowing for efficient delivery and cellular uptake. This targeted approach ena-
bles the miRNAs to selectively modulate the expression of cancer-associated genes, 
thereby exerting precise and potent antitumor effects while minimizing damage to 
healthy cells [112]. (II) Reduced Toxicity: The utilization of miRNA therapeutics presents 
a promising approach to mitigate toxicity and minimize side effects through a reduction 
in off-target effects. By specifically targeting the intended miRNAs, these therapeutic in-
terventions can significantly minimize the likelihood of unintended impacts on other 
genes, thereby enhancing the safety profile of the treatment [113]. (III) Personalized 
Therapy: Personalized therapy holds great promise in the realm of miRNA-based treat-
ments. The expression profiles of miRNAs exhibit significant variation among individu-
als, thereby highlighting the potential for targeted therapies aimed at specific miRNAs. 
By tailoring treatment strategies to address the unique miRNA landscape of each pa-
tient’s tumor, personalized therapies can be developed, offering more effective and pre-
cise interventions for improved patient outcomes. [114]. (IV) Combination Therapy: 
MiRNA therapeutics can be combined with other therapies, such as chemotherapy, ra-
diation therapy, or immunotherapy, to enhance their antitumor effects. Such combinato-
rial therapy could potentially lead to improved outcomes in lung cancer patients [115]. 
(V) Overcoming Drug Resistance: MiRNA therapeutics hold significant potential in 
overcoming drug resistance, a major challenge in the treatment of lung cancer. By tar-
geting dysregulated miRNAs, these interventions can modulate multiple genes and sig-
naling pathways involved in resistance mechanisms. They can restore sensitivity to 
chemotherapy or targeted therapies by reversing the epithelial–mesenchymal transition, 
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modifying drug efflux, and sensitizing resistant cells through the regulation of key genes 
and pathways. Additionally, miRNA-based therapies can be combined with existing 
treatments to enhance efficacy and counteract drug resistance by targeting cancer cells 
through multiple pathways [116]. 

8.2. Limitations and Challenges of MiRNA Therapeutics in Lung Cancer Treatment 
(I) Delivery challenges: One of the major challenges for miRNA therapeutics is the 

difficulty of delivering miRNAs to tumor cells. MiRNA therapeutics are often delivered 
via nanoparticles or other delivery systems, which could be a little complex due to sev-
eral reasons. Firstly, miRNAs are fragile molecules that can easily degrade in the harsh 
environment of the body. To protect them, specialized delivery systems such as nano-
particles are employed, which require careful design and optimization. Additionally, the 
delivery systems must be able to efficiently navigate through various biological barriers, 
such as the extracellular matrix, blood vessels, and cellular membranes, to reach the tu-
mor cells [117]. (II) Off-Target Effects: Despite the specific design of miRNA therapeutics 
to target miRNAs, there remains a potential for these miRNAs to affect a diverse range of 
genes. This introduces the risk of off-target effects and toxicity in normal tissues. 
Off-target effects pose a concern in miRNA therapeutics as they have the potential to af-
fect a broad range of genes, which may result in unintended consequences and toxicity in 
healthy tissues. However, the use of nanoparticles offers a promising strategy to mitigate 
these off-target effects. By encapsulating and delivering miRNA therapeutics within 
nanoparticles, their release can be tightly controlled, allowing for targeted delivery to 
specific cells or tissues of interest. This localized delivery approach reduces the likelihood 
of off-target effects in normal tissues, as the nanoparticles help to enhance the specificity 
and precision of miRNA therapeutics, maximizing their therapeutic potential while 
minimizing unintended impacts [118]. (III) Destruction by Immune Cells: Exogenous 
miRNAs face the risk of immune-cell-mediated elimination, as they have the potential to 
trigger an immune response, resulting in their destruction. This immune response can 
limit the efficacy and stability of exogenous miRNAs. Therefore, it is important to con-
sider the immune response as a potential obstacle when utilizing exogenous miRNAs for 
therapeutic purposes [119]. (IV) Regulatory Challenges: MiRNA therapeutics is a rela-
tively new class of therapeutics, and there remain regulatory hurdles to be overcome 
before they can be widely utilized in clinics. These challenges include issues related to 
manufacturing, quality control, and regulatory approval [120]. (V) Limited Clinical Data: 
Despite recent clinical trials of miRNA-based therapeutics for lung cancer, there is not 
enough evidence for their safety and effectiveness. To date, most clinical trials have fo-
cused on evaluating the safety and tolerability of miRNA-based therapies, and only a few 
have assessed their therapeutic efficacy. Thus, further clinical studies are awaited to 
validate the utility of miRNA-based therapies and their potential in lung cancer treat-
ment [121]. 

9. Diagnostic Potential of MiRNA Signatures in Lung Carcinogenesis 
In recent years, the convergence of artificial intelligence (AI) and miRNA therapeu-

tics has shown promising potential in the field of lung cancer diagnosis and classification. 
AI algorithms have been developed to analyze miRNA expression patterns obtained 
from patient samples, enabling the identification of specific miRNA signatures associated 
with different subtypes or stages of lung cancer. By leveraging machine learning tech-
niques, these algorithms can effectively classify lung cancer cases based on their miRNA 
profiles, providing valuable insights into disease prognosis and personalized treatment 
strategies [122]. The integration of AI with miRNA therapeutics offers a powerful ap-
proach for the precise targeting of dysregulated miRNAs, potentially leading to more 
effective and tailored treatments for lung cancer patients. Such advancements hold great 
promise for improving both the accuracy of diagnosis and the development of innovative 
therapeutic interventions [123]. 
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Several miRNAs have been identified as displaying aberrant expression patterns 
that actively contribute to the advancement of lung cancer, thereby fostering malignancy 
[124]. Notably, miR-21, miR-155, and miR-34a frequently exhibit upregulated levels in 
lung cancer, while miR-126 and miR-145 manifest downregulation [125]. The dysregula-
tion of these miRNAs in the context of lung cancer holds great potential for their utiliza-
tion as biomarkers, imparting invaluable benefits in the realms of diagnosis, prognosis, 
and therapeutic monitoring [126]. MiRNA signatures may be used to differentiate lung 
cancer from non-cancerous lung lesions, such as chronic obstructive pulmonary disease 
(COPD) and pneumonia. For example, certain miRNA signatures (miR-17-5p, miR-21, 
miR-27a, and miR-222) could distinguish lung adenocarcinomas from healthy lung tis-
sues with high sensitivity and specificity [127]. MiRNA signatures could also be used to 
predict the prognosis and therapeutic response of lung cancer patients. For example, a 
miRNA signature consisting of miR-221, miR-222, and miR-146a has been associated 
with poor survival in NSCLC patients [128]. Another study has identified a miRNA sig-
nature (miR-210, miR-192, and miR-21) that could predict the chemotherapy response of 
NSCLC patients [129]. 

9.1. Analysis of MiRNAs in Bodily Fluid for the Better Staging of Lung Cancer Progression 
Timely detection and diagnosis of lung cancer play a vital role in enhancing survival 

rates and enabling optimal treatment outcomes. The assessment of miRNAs in bodily flu-
ids like plasma, serum, and bronchoalveolar lavage fluid (BALF) is an emerging and 
promising approach for improved staging of lung cancer progression [130]. Aberrant ex-
pression of certain miRNAs has been identified in lung cancer, playing a role in its pro-
gression. Specifically, miR-21, miR-155, and miR-34a are often found to be upregulated, 
while miR-126 and miR-145 are frequently downregulated in lung cancer cases. Analyzing 
these miRNAs in bodily fluids could offer valuable insights into the staging of lung cancer 
and its progression, providing important information for clinical assessment [131]. 

Elevated levels of specific miRNAs, namely miR-210, miR-21, and miR-155, were 
found to be significantly higher in the serum of patients diagnosed with advanced lung 
cancer when compared to individuals with early-stage disease or healthy controls [132]. 
Similarly, increased levels of miR-155, miR-210, and miR-21 were observed in the plasma 
of patients with advanced-stage NSCLC compared to those with early-stage disease or 
healthy controls [133]. In the BALF of patients with metastatic lung cancer, the levels of 
miR-148a and miR-152 were found to be notably reduced compared to individuals with 
localized disease or healthy controls, indicating their potential as biomarkers for distin-
guishing between different stages of lung cancer [134]. Another study focused on iden-
tifying a miRNA signature associated with lymph node metastasis in NSCLC patients. 
The inclusion of miR-210, miR-21, miR-486-5p, and miR-375 in the signature holds 
promise as a predictive marker for lymph node involvement in NSCLC patients with 
lymph node metastasis [135]. These findings highlight the significance of miRNA levels 
in aiding clinicians with accurate diagnosis and effective management strategies for this 
specific patient population [136]. 

9.2. Potential of MiRNA Analyses of Bodily Fluid for Early Detection 
Analysis of miRNAs in bodily fluid, such as serum, plasma, and BALF has emerged as a 

promising approach for the early detection of lung cancer. The levels of miR-205 and miR-21 
were significantly higher in the serum of patients with early-stage lung cancer than in pa-
tients with benign lung nodules or healthy controls [137]. Similarly, the miRNA signature 
(miR-21, miR-210, and miR-155) in plasma distinguished between lung cancer patients and 
healthy controls with high accuracy, even at the earliest stages of the disease [138]. 

Analysis of miRNAs in bodily fluids has significant potential for the identification of 
subtype-specific biomarkers in lung cancer. Specifically, a unique miRNA signature 
comprising miR-29a, miR-let-7f, miR-23a, and miR-27a has been observed in BALF, 
demonstrating high accuracy in distinguishing between different subtypes of non-small 
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cell lung cancer (NSCLC) [139]. Likewise, the presence of specific miRNAs in serum, such 
as miR-19a, miR-92a, and miR-29c, has been found to correlate with the EGFR mutation 
status in NSCLC patients [140]. Furthermore, miRNAs present in bodily fluids offer 
valuable insights into disease progression and treatment response. Notably, elevated 
levels of a miRNA signature consisting of miR-1225-5p, miR-328, and miR-548 in serum 
have been associated with tumor progression and survival in NSCLC patients [141]. 
Conversely, a decrease in plasma levels of miR-126 is linked to chemotherapy resistance 
in NSCLC patients [142]. 

10. Conclusions and Future Perspectives 
In conclusion, miRNAs play crucial roles in the development and progression of 

lung cancer by regulating dysregulated signaling pathways and responding to environ-
mental carcinogens such as arsenic and BaP. MiR-21 has been found to promote cell pro-
liferation and angiogenesis in response to arsenic exposure, while miR-34a inhibits cell 
growth and induces apoptosis. Similarly, miR-21 and miR-31 are upregulated in response 
to BaP exposure, promoting cell proliferation, invasion, and the EMT. Certain miRNAs 
have demonstrated potential as targets for lung cancer treatment, such as miR-34a and 
miR-150, which have been delivered to lung cancer cells through liposomes and nano-
particles and have effectively suppressed tumor growth by reducing the activity of spe-
cific genes involved in cancer advancement. However, miR-21 and miR-155 are often 
overproduced in lung cancer and have been linked to heightened cell proliferation, in-
vasion, and chemotherapy resistance. Further research is needed to better understand the 
roles of miRNAs in lung cancer and to develop more effective miRNA-based therapies. 
Additionally, improving the delivery and efficacy of miRNA-based therapies is crucial, 
while new strategies such as nanoparticle-based delivery systems and combination 
therapies are being explored. Furthermore, the use of extracellular miRNAs as bi-
omarkers for lung cancer diagnosis and prognosis is a promising area of research and 
could be utilized to improve early detection and personalized treatment. 
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