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Abstract: Pemafibrate, a novel selective peroxisome proliferator-activated receptor modulator, has
beneficial effects on lipid metabolism. However, its effects on glucose metabolism in individuals
with type 2 diabetes (T2DM) remain to be fully clarified. This was a subanalysis of the PARM-T2D
study, a multicenter prospective observational study on the use of pemafibrate versus conventional
therapy for 52 weeks in subjects with T2DM complicated with hypertriglyceridemia. The subanalysis
included participants who did not change their treatment for diabetes and did not receive insulin or
insulin secretagogues during the study period. Changes in glucose metabolism markers, including
homeostatic model assessment (HOMA2) scores and disposition index, were assessed. A total of
279 participants (141 in the pemafibrate group; 138 in the control group) met the criteria for the
subanalysis. There were no significant changes in HbA1c during the 52-week study period in both
groups. However, the pemafibrate group showed significant improvements versus the control group
for insulin resistance assessed by HOMA2-R (−0.15 versus 0.08; estimated treatment difference
−0.23 (95% confidence interval −0.44, −0.02); p = 0.03) and maintenance of β-cell function assessed
by disposition index (0.015 versus −0.023; estimated treatment difference 0.037 (95% confidence
interval 0.005, 0.069); p = 0.02). Correlation analyses showed that improvements in HOMA2-R
and disposition index were significantly associated with improvements in lipid abnormalities and
γ-glutamyl transpeptidase. In conclusion, pemafibrate reduced insulin resistance and maintained
β-cell function in subjects with T2DM and hypertriglyceridemia, presumably by improving lipid
profiles and lipid-related hepatocyte stress.
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1. Introduction

Type 2 diabetes (T2DM), one of the most important non-communicable diseases, is
caused by complex and multiple triggers including genetic and environmental factors.
Subjects with T2DM are at a markedly higher risk of cardiovascular events compared with
those without diabetes [1], and maintaining fair glycemic control can reduce such risks [2].
In addition, insufficient glycemic control might be related to mortality in subjects with
diabetes [3]. Therefore, the maintenance of physiological blood glucose levels is important
to prevent cardiovascular events and death related to diabetes/hyperglycemia.

Insulin resistance and reduced insulin secretory capacity are core pathophysiological
features of T2DM [4,5]. Insulin resistance occurs before the onset of diabetes. Although
β-cells initially secrete additional insulin to compensate for the relative insulin deficiency,
the β-cell function deteriorates as T2DM progresses [6–8]. Because high insulin demand
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arising from insulin resistance may be one of the underlying reasons for β-cell failure,
treatment strategies that can increase insulin sensitivity are desired.

Dyslipidemia, a frequent complication of T2DM and a risk factor for mortality in
T2DM subjects [3,9], has a close relationship with insulin resistance [10,11]. Among several
therapeutic strategies for dyslipidemia, fibrates effectively reduce serum triglyceride (TG)
and increase serum high-density lipoprotein cholesterol (HDL-C) by activating peroxisome
proliferator-activated receptors (PPARs) [12]. Recently, pemafibrate, a selective PPARα
modulator, was identified as a potent and highly selective agonist for human PPARα [13]. A
phase 3 clinical trial demonstrated the superiority of pemafibrate over fenofibrate for lower-
ing serum TG in patients with dyslipidemia [14]. Pemafibrate also reduced the homeostatic
model assessment (HOMA)-insulin resistance score compared with a placebo in subjects
with T2DM comorbid with hypertriglyceridemia who did not receive insulin sensitiz-
ers [15]. However, its long-term efficacy has not been verified in real-world clinical settings,
wherein patients frequently receive treatment with several anti-diabetic agents, including
biguanides and sodium–glucose cotransporter 2 (SGLT2) inhibitors. Considering such
anti-diabetic agents that are essential for managing diabetes and cardiovascular outcomes
have been used widely [16], clinical trials targeting subjects with T2DM treated with these
insulin sensitizers are warranted. We previously conducted a prospective observational
study evaluating the efficacy and safety of pemafibrate compared with conventional treat-
ments for the improvement in lipid profile and other metabolic parameters in patients with
T2DM complicated with hypertriglyceridemia in real-world clinical practice (PARM-T2D
study). That study revealed the strong efficacy of pemafibrate on improving lipid profiles,
liver and renal functions may lead to improved glucose metabolism [17]. Here, we aimed to
clarify the effects of pemafibrate on glucose metabolism based on our previous PARM-T2D
study assessing the effect of pemafibrate on lipid profiles in subjects with T2DM.

2. Materials and Methods
2.1. Study Design and Participants

This was a secondary analysis of our previous multicenter prospective observational
PARM-T2D study comparing the efficacy and safety of pemafibrate with conventional
therapies [17]. Briefly, 685 patients with T2DM and hypertriglyceridemia aged ≥ 20 years
who were fibrate-naive or taking conventional fibrates were enrolled in the original study.
The major exclusion criteria were as follows: allergy to pemafibrate, pregnant women,
serious liver and renal dysfunction, and other reasons including incompatibility with the
study. In the pemafibrate group, pemafibrate 0.2–0.4 mg/day was initiated in fibrate-
naive patients or switched in patients taking conventional fibrates. In the control group,
patients continued taking their fibrates or were not receiving any medications for hyper-
triglyceridemia. Fasting blood/urine samples and physical assessments were evaluated
at baseline and weeks 12, 24, and 52. As a marker for endogenous insulin secretion, fast-
ing serum C-peptides were measured at baseline and weeks 24 and 52. The changes in
glycated hemoglobin (HbA1c), HOMA2-R, HOMA2-β, and disposition index during the
study period were compared between the pemafibrate group and the control group for
evaluation of glucose metabolism. The HOMA2 scores were generated using HOMA2
Calculator Version 2.2.3 (available from www.dtu.ox.ac.uk/homacalculator/, accessed on
24 August 2022). The disposition index, reflecting the ability of β-cells to compensate for
insulin resistance, was calculated by multiplying HOMA2-S by HOMA2-β as described
elsewhere [18].

The PARM-T2D study was registered with the University Hospital Medical Infor-
mation Network (UMIN) Center Clinical Trials Registry (UMIN000037385). The protocol
was approved by the Institutional Review Board of Hokkaido University Hospital Clini-
cal Research and Medical Innovation Center (018-0440), and the study was performed in
accordance with the principles of the Declaration of Helsinki and its amendments.

The original study was conducted at nine specialized centers for the treatment of
diabetes located in Hokkaido, Japan (PARM-T2D study cohort). The participants were
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treated at each medical center throughout the study period. Patients who were treated with
insulin injection therapy, were taking sulfonylureas or glinides, or changed their treatment
regimens for diabetes were excluded from the secondary analysis to avoid confounding
effects on the indices for glucose metabolism, as recommended in a previous report [19].
Patients with extremely low or high C-peptide levels (≤0.6 or >10.5 ng/mL, respectively)
were also excluded because the HOMA scores could not be calculated in these cases.

2.2. Statistical Analysis

Normally distributed data were expressed as mean ± SD, and non-normally dis-
tributed data were expressed as median (25% percentile, 75% percentile) for continuous
variables or number (proportion) for categorical variables. Differences between the two
groups were compared using an unpaired t-test for continuous variables and a chi-square
test or Fisher’s exact test for categorical variables. Data within the groups were compared
by a paired t-test or the Wilcoxon signed-rank test. Because the efficacy of pemafibrate
on metabolic parameters can be affected by prior use of conventional fibrates, we also
conducted an analysis of covariance (ANCOVA) to adjust for these confounders. To clarify
the clinical features of the patients who received the merits of pemafibrate on glucose
metabolism, we divided participants into two groups (improved group and deteriorated
group) based on the changes of each index reflecting glucose metabolism for 52 weeks. In
addition, correlations between changes in indices for glucose metabolism associated with
pemafibrate and changes in metabolic parameters in the 52-week study period between
were also evaluated by Spearman’s rank correlation analysis. Multivariate analyses were
carried out using multiple linear regression to identify factors independently associated
with the outcomes. Data were analyzed using GraphPad Prism 8.4.2 (GraphPad Software
Inc., San Diego, CA, USA) or JMP Pro 16.0.0 (SAS Inc., Cary, NC, USA). p < 0.05 indicated
statistical significance.

3. Results

A total of 685 patients were enrolled, of whom 650 met the inclusion criteria for the
PARM-T2D study. From this original cohort, 35 participants who did not meet the inclusion
criteria and 268 patients who were not suitable for this subanalysis, mainly because of
changes in medications for comorbidities that can affect glucose metabolism, lack of relevant
data, and/or an interruption in hospital visits, were excluded. Thereafter, 103 patients
who were treated with insulin, sulfonylureas, and/or glinides were excluded based on the
recommendation for use of HOMA-indices [19]. As a result, 279 participants (141 in the
pemafibrate group; 138 in the control group) who were not treated with insulin or insulin
secretagogues and had the full set of relevant data available, including serum C-peptide,
met the criteria for the subanalysis (Figure 1). There were no significant differences in
the baseline characteristics between the two groups, including glycemic control, liver and
kidney function, and serum lipid profiles (Table 1). A breakdown of concomitant dedication
for diabetes showed that no participants were treated with insulin or insulin secretagogues
in this subanalysis. Two-thirds of the subjects were treated with biguanides, and there were
no significant differences in the proportion of baseline treatment with SGLT2 inhibitors and
GLP-1 receptor agonists, which might potently affect insulin resistance and β-cell function
(Table 1). Notably, one-third of the patients were treated with conventional fibrates in
both groups. Fibrates were switched to pemafibrate in the pemafibrate group, whereas
these conventional fibrates were continued in the control group, as shown in the original
study [17].
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Fibrates (n, %) 52 (36.9) 43 (31.2) 0.377 
α-glucosidase inhibitors (n, %) 2 (1.4) 2 (1.5) 1.000 
Biguanides (n, %) 90 (63.8) 87 (63.0) 0.902 
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SGLT2 inhibitors (n, %) 66 (46.8) 49 (35.5) 0.068 
Thiazolidines (n, %) 7 (5.0) 3 (2.2) 0.335 
Sulfonylureas (n, %) 0 0 NA 
Glinides (n, %) 0 0 NA 
Insulin injections (n, %) 0 0 NA 
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Figure 1. Flow diagram for the subanalysis. From the original cohort, subjects who did not meet the
inclusion criteria, changed antihyperglycemic drugs during the study period, discontinued the study,
or were treated with insulin and/or insulin secretagogues were excluded from the subanalysis.

Table 1. Demographic and clinical characteristics of the participants at baseline.

Variables Pemafibrate (n = 141) Control (n = 138) p-Value

Age (years) 60.1 ± 12.3 60.9 ± 11.6 0.573
Female sex (n, %) 45 (31.9) 54 (39.1) 0.214
Body mass index (kg/m2) 27.3 ± 4.1 27.4 ± 4.8 0.932
HbA1c (%) 6.92 ± 0.78 6.83 ± 0.59 0.254
FPG (mg/dL) 135.2 ± 30.3 132.5 ± 26.3 0.423
C-peptide (mg/dL) 2.87 ± 1.32 2.84 ± 1.53 0.840
T-Cho (mg/dL) 185.0 ± 31.7 186.1 ± 32.8 0.732
Triglyceride (mg/dL) 171 (133, 235) 168 (126, 226) 0.708
HDL-C (mg/dL) 52.4 ± 11.9 52.0 ± 13.7 0.780
AST (IU/L) 31.5 ± 15.7 28.2 ± 14.5 0.069
ALT (IU/L) 30 (20, 45) 28 (17, 39) 0.102
γ-GTP (IU/L) 39 (24, 72) 41 (23, 56) 0.349
eGFR (mL/min/1.73 m2) 69.6 ± 18.3 69.7 ± 22.1 0.878
Fibrates (n, %) 52 (36.9) 43 (31.2) 0.377
α-glucosidase inhibitors (n, %) 2 (1.4) 2 (1.5) 1.000
Biguanides (n, %) 90 (63.8) 87 (63.0) 0.902
DPP-4 inhibitors (n, %) 66 (46.8) 65 (47.1) 1.000
GLP-1 receptor agonists (n, %) 7 (5.0) 10 (7.2) 0.463
SGLT2 inhibitors (n, %) 66 (46.8) 49 (35.5) 0.068
Thiazolidines (n, %) 7 (5.0) 3 (2.2) 0.335
Sulfonylureas (n, %) 0 0 NA
Glinides (n, %) 0 0 NA
Insulin injections (n, %) 0 0 NA

Data are shown as the mean ± SD, median (25% percentile, 75% percentile), or number (%). p-values for the
pemafibrate group versus control group were obtained using the Student’s t-test, the Mann–Whitney U-test, or
Fisher’s exact test. HbA1c, glycated hemoglobin; FPG, fasting plasma glucose; T-Cho, total cholesterol; HDL-C,
high-density lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; γ-GTP,
γ-glutamyl transpeptidase; eGFR, estimated glomerular filtration rate, DPP-4, dipeptidyl peptidase-4; GLP-1,
glucagon-like peptide-1; SGLT2, sodium glucose cotransporter 2; NA, not assessed.

After 52 weeks of treatment, HOMA2-R, which mainly reflects insulin resistance
in the liver, showed a significant improvement in the pemafibrate group only (2.11 to
1.92 (pemafibrate) versus 1.99 to 1.94 (control)) (p = 0.017). Regarding β-cell function, there
were no significant changes in HOMA2-β in the two groups (75.0 to 69.4 (pemafibrate)
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versus 75.9 to 71.3 (control)), but the pemafibrate group had a slightly increased disposition
index (p = 0.088), which was significantly different compared with the control group
(+0.02 (pemafibrate) versus −0.01 (control)) (Table 2). These changes were not significant
at 24 weeks. Considering that at baseline each value was slightly different, and glycemic
control and the use of conventional fibrate can affect these indices, we additionally validated
these changes using ANCOVA. These differences between the groups in HOMA2-R and
the disposition index were verified by ANCOVA adjusted for each baseline parameter and
fibrate use (Figure 2). Focusing on insulin resistance, we explored the patient characteristics
associated with the improvement in HOMA2-R after pemafibrate treatment by categorizing
the pemafibrate group into two subgroups: improved group (∆HOMA2-R < 0, n = 83)
and deteriorated group (∆HOMA2-R ≥ 0, n = 58). As shown in Table S1, the improved
group had higher baseline fasting plasma glucose (FPG) (140.1 ± 32.1 mg/dL versus
128.3 ± 26.3 mg/dL), γ-glutamyl transpeptidase (γ-GTP) (45 (31, 84) IU/L versus 34 (22,
56) IU/L), and HOMA2-R (2.30 (1.74, 3.14) versus 1.75 (1.32, 2.37)) compared with the
deteriorated group (p = 0.023, p = 0.007, and p < 0.001, respectively). Similar analysis
focusing on β-cell function assessed by the disposition index revealed that patients who
improved the disposition index showed significantly higher FPG (142.6 ± 34.8 mg/dL
versus 126.8 ± 19.8 mg/dL), HbA1c (7.08 ± 0.88% versus 6.72 ± 0.59%), and HOMA2-R
(2.30 (1.66, 3.09) versus 1.97 (1.39, 2.59)), whereas the baseline disposition index and rate
of fibrate pretreatment were significantly lower in the disposition index improved group
(Table S2). Importantly, the extent of changes in HOMA2-R and the disposition index were
not affected by the regimens of concomitant anti-diabetic agents (Figure S1).

Table 2. Changes in parameters for glycemic control, insulin resistance, and insulin secretion by week.

Week 0 Week 24 Week 52 Mean Change at
Week 52

p-Value between
Groups at
Week 52

HbA1c (%)
PEMA (n = 141) 6.92 ± 0.78 7.03 ± 0.93 6.99 ± 0.81 0.06(−0.04 to 0.16)

0.940
CTRL (n = 138) 6.83 ± 0.59 6.94 ± 0.76 6.89 ± 0.80 0.06(−0.05 to 0.18)

HOMA2-R
PEMA (n = 141) 2.11 (1.53, 2.95) a 2.01 (1.43, 2.77) 1.92 (1.45, 2.66) * −0.20(−0.33 to −0.20)

0.017
CTRL (n = 138) 1.99 (1.47, 2.82) b 1.98 (1.51, 2.74) 1.94 (1.47, 2.87) 0.03(−0.08 to 0.11)

HOMA2-β
PEMA (n = 141) 75.0 (57.2, 95.3) a 69.0 (52.0, 84.8) 69.4 (55.5, 91.7) −3.9(−5.6 to −1.0)

0.451
CTRL (n = 138) 75.9 (59.1, 94.0) b 78.0 (55.9, 100.1) 71.3 (54.4, 93.0) −1.1(−3.0 to 1.5)

Disposition
index

PEMA (n = 141) 0.36 (0.28, 0.46) a 0.35 (0.26, 0.47) 0.36 (0.27, 0.53) 0.02(−0.01 to 0.04)
0.030

CTRL (n = 138) 0.37 (0.27, 0.48) b 0.36 (0.30, 0.47) 0.36 (0.27, 0.47) −0.01(−0.04 to 0.01)

Data are shown as mean ± SD, median (25% percentile, 75% percentile), or mean or median change (95%
confidence interval). * p < 0.05 versus Week 0, paired t-test. a Data were obtained in 132 patients. b Data were
obtained in 133 patients. PEMA, pemafibrate; CTRL, control; HbA1c, glycated hemoglobin; HOMA, homeostatic
model assessment.

Similar to the findings in the original cohort, pemafibrate significantly improved
the lipid profiles and liver dysfunction: an increase in HDL-C by +2.0 (95% confidence
interval (CI): 0.3 to 3.8) mg/dL, and decreases in TG, aspartate aminotransferase, alanine
aminotransferase, and γ-GTP by −46 (−60 to −30) mg/dL, −3.5 (−5.4 to −1.6) IU/L, −6
(−9 to −4) IU/L, and −10 (−14 to −5) IU/mL, respectively (Table S3). Glycemic control
parameters, such as FPG and HbA1c, remained unchanged during the study period in
both the pemafibrate group and the control group (Table 2). Among the various metabolic
parameters, changes in TG, HDL-C, and γ-GTP were positively correlated with change in
HOMA2-R in the pemafibrate group, while negative correlations were found between a
change in the disposition index and changes in body mass index (BMI), TG, and γ-GTP
(Table 3). Multiple regression analyses showed that an increase in HDL-C was significantly
associated with improvement in HOMA2-R (p = 0.002) and changes in TG and BMI were
associated with improvement in the disposition index (p = 0.011 and p = 0.022) in the
pemafibrate group (Table S4).
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Figure 2. Changes in key endpoints from baseline. Changes in glycated hemoglobin (HbA1c),
homeostatic model assessment (HOMA) 2-R, HOMA2-β, and disposition index (DI) during the
52-week study period (pemafibrate group versus control group). Data were adjusted for ANCOVA
(covariates: baseline HbA1c and fibrate use for HbA1c; each baseline value, HbA1c, and fibrate use
for HOMA2-R, HOMA2-β, and DI, respectively). Bars represent adjusted mean ± standard error.
Differences between the two groups are shown as the estimated treatment difference (ETD) (95%
confidence interval). CTRL, control; PEMA, pemafibrate.

Table 3. Relationships between changes in indices for glucose metabolism associated with pemafibrate
and changes in metabolic parameters in the 52-week study period.

∆HOMA-2R ∆DI
Variables ρ p-Value ρ p-Value

∆BMI (kg/m2) 0.119 0.160 −0.018 0.037
∆Triglyceride (mg/dL) 0.265 0.002 −0.258 0.002

∆HDL-C (ng/mL) −0.190 0.002 0.130 0.124
∆AST (IU/L) 0.017 0.838 0.032 0.709
∆ALT (IU/L) 0.148 0.079 −0.142 0.093

∆γ-GTP (IU/L) 0.329 <0.001 −0.335 <0.001
∆eGFR (mL/min/1.73 m2) 0.017 0.838 −0.161 0.058

p-values were obtained by Spearman’s rank correlation analysis. HOMA, homeostatic model assessment; DI,
disposition index; BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; AST, aspartate amino-
transferase; ALT, alanine aminotransferase; γ-GTP, γ-glutamyl transpeptidase; eGFR, estimated glomerular
filtration rate.
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4. Discussion

In this secondary analysis of the prospective observational PARM-T2D trial on the use
of pemafibrate in adults with hyperglycemia complicated with T2DM, administration of
pemafibrate significantly improved insulin resistance as well as β-cell function assessed
by HOMA2-R and the disposition index. A preferable effect of pemafibrate on insulin
resistance was found in a previous pooled meta-analysis involving short-term phase 2 and
3 trials investigating the efficacy of pemafibrate compared with a placebo in patients affected
by dyslipidemia with or without T2DM [20]. The strengths of the present subanalysis were:
(1) targeting the T2DM population only, (2) including participants who were treated with
several insulin sensitizers, reflecting real-world clinical settings, (3) excluding subjects who
changed their anti-diabetic medications during the study period, and (4) having a relatively
long-term study design (52 weeks). In addition, clinical parameters related to improvement
of glucose metabolism indices, which were not examined in previous phase 2 or 3 trials,
were explored.

The efficacy of conventional fibrates for glucose metabolism has been controversial,
particularly in people with T2DM [21–24]. A recent meta-analysis involving 22 randomized
placebo-controlled trials found that fibrate use significantly decreased both FPG and insulin
resistance assessed by HOMA-R, but not HbA1c [25]. Fibrates were suggested to exert this
efficacy through effects on lipid metabolism and anti-inflammatory effects [26]. Pemafibrate
has a potent ability to improve lipid metabolism, even compared with fibrates [17,27], and
has a similar anti-inflammatory mechanism related to fibrates [28]. Another distinct feature
of pemafibrate is its action on hepatic metabolism, which can be explained by increased
levels of fibroblast growth factor 21 (FGF21). FGF21, a hormone primarily expressed by
the liver and adipose tissue, is closely related to hepatic metabolic pathways [29]. Phase 3
clinical trials verified that serum FGF21 was elevated in pemafibrate-treated groups [15],
possibly leading to improved liver function [17,20] as well as improvements in inflamma-
tion and steatosis of the liver [30,31]. In the present subanalysis, the reduction in HOMA2-R
was significantly correlated with improvement of lipid metabolism and reduction of γ-GTP
(Table 3). In addition, patients who had liver dysfunction and higher insulin resistance
showed improvement of HOMA2-R after pemafibrate treatment (Table S1). Considering
the close relationship between liver dysfunction, including nonalcoholic fatty liver disease,
and insulin resistance [32], the potent action of pemafibrate on improving HOMA2-R
appears reasonable.

As well as ameliorating insulin resistance, pemafibrate resulted in preserved β-cell
function assessed by the disposition index compared with the control group in the sub-
analysis. The control group showed a slight decrease in the disposition index during the
52-week study period, compatible with the decline in β-cell function over time [7]. To
date, there has been no direct evidence for the effects of pemafibrate on pancreatic β-cells.
Because there were no improvements in glycemic control parameters and no changes in
the treatment regimens for T2DM, the improvements in insulin resistance and lipotoxi-
city may partially contribute to a reduced burden on β-cells, leading to preservation of
β-cell function [33]. Indeed, reductions in TG and BMI, which can both lead to a β-cell
burden, were significantly correlated with an improved disposition index in the subanaly-
sis. Interestingly, patients having higher insulin resistance and a lower disposition index
benefited from pemafibrate treatment on an improved disposition index, and such efficacy
was obvious in fibrate-naive patients (Table S2). Therefore, fibrate-naive subjects with
T2DM and relatively high FPG and insulin resistance might derive a benefit related to
glucose metabolism when administrated pemafibrate. In this subanalysis, the efficacy
of pemafibrate on HOMA2-R and the disposition index was confirmed at 52 weeks but
not at 24 weeks. However, an improvement in lipid metabolism and liver dysfunction
was observed even at 12 and 24 weeks, as shown in the original PARM-T2D study [17].
Although the precise mechanism is not clear, considering that HOMA2-R reflects insulin
resistance in the liver and the improvement of liver stiffness induced by pemafibrate was
only observed after 48 weeks of treatment compared with a placebo in a phase 2 trial [34],
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it might take time to have an effect on insulin resistance and β-cell protection. To clarify the
interactions between the biological parameters, histological changes, and insulin resistance
in the liver, further clinical investigation, especially in non-alcoholic liver steatosis (NASH)
and/or nonalcoholic fatty liver disease (NAFLD) cases, is needed. The reason for the
discrepancy between the HOMA2-β and disposition index results can be explained by
differences in the formulas used for the calculations. HOMA2-β consists of FPG and fasting
C-peptide. Because fasting C-peptide can be regulated by the presence of insulin resistance,
insulin secretory ability assessment by the disposition index, which takes account of insulin
resistance, would be the more suitable method for our analysis.

The limitations of the original study were described previously [17]. The open-label
observational study design can yield selection bias, and only Japanese patients were
included in the study. In addition, the dose of pemafibrate was decided by the physicians in
charge. The present subanalysis had additional limitations, mainly arising from the study
design for the secondary analysis. Because we selected the patients from the original cohort
using strict criteria to avoid confounders, the sample size was smaller than that of the
original cohort. However, there were no significant differences in the patient background
characteristics between the two groups, and the main effects of pemafibrate, such as
improvements in lipid profiles and liver dysfunction, were similar to those in the original
study. In addition, the subanalysis included patients treated with fibrates. To manage
this issue, we conducted an ANCOVA adjusted for fibrate use and confirmed that the
results were robust. Another potential limitation was the concomitant use of anti-diabetic
medications. Although subjects who changed their treatment regiments during the study
period were excluded from this subanalysis, we do not have information regarding the
period of each anti-diabetic treatment before enrollment in our trial. However, the extent of
changes related to baseline antidiabetic medications in HOMA2-R and the disposition index
were similar. A further randomized controlled trial of pemafibrate in the T2DM population
focusing on glucose metabolism markers is required in the future. In addition, an analysis
with a focus on subjects with NASH/NAFLD complicated with T2DM is desired.

In conclusion, pemafibrate can ameliorate insulin resistance and retain β-cell function
in subjects with T2DM and hypertriglyceridemia, which may be correlated with improved
lipid profiles and lipid-related hepatocyte stress.
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