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Abstract: Cancer immunotherapy can significantly prevent tumor growth and metastasis by activat-
ing the autoimmune system without destroying normal cells. Although cancer immunotherapy has
made some achievements in clinical cancer treatment, it is still restricted by systemic immunotoxicity,
immune cell dysfunction, cancer heterogeneity, and the immunosuppressive tumor microenviron-
ment (ITME). Biomimetic cell-derived nanoparticles are attracting considerable interest due to their
better biocompatibility and lower immunogenicity. Moreover, biomimetic cell-derived nanoparticles
can achieve different preferred biological effects due to their inherent abundant source cell-relevant
functions. This review summarizes the latest developments in biomimetic cell-derived nanopar-
ticles for cancer immunotherapy, discusses the applications of each biomimetic system in cancer
immunotherapy, and analyzes the challenges for clinical transformation.

Keywords: biomimetic nanoparticles; cell-membrane cloaking; cancer immunotherapy; drug delivery
system; nanotechnology

1. Introduction

Cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive
cellular immunotherapy (ACT), cancer vaccines, and cytokine immunotherapy, is an effec-
tive treatment method that recognizes and kills cancer cells by activating the autoimmune
system [1]. Although cancer immunotherapy has made some achievements in clinical
cancer treatment, it is still restricted by systemic immunotoxicity, immune cell dysfunction,
cancer heterogeneity, and the ITME [2,3]. In addition, how to accurately deliver therapeutic
agents to tumors for enhanced immune responses and reduced systemic immunotoxicity is
one of the urgent issues to be solved.

In the past decades, nanoparticles have gradually emerged as promising drug delivery
carriers for chemotherapy, photothermal therapy (PTT), gene therapy, and immunother-
apy due to their good design flexibility, reduction of side effects, and improvement of
in vivo efficacy [4–7]. However, owing to the complexity of the blood environment in vivo,
nanoparticles with high immunogenicity can be easily identified and removed by the
mononuclear phagocytic system [8,9]. Engineered nanoparticles show promise for improv-
ing the biodistribution and metabolism of nanoparticles. For instance, coating nanoparticles
with PEG can prolong their circulation half-life in the blood [10,11]. Nevertheless, long-term
repeated PEGylated nanoparticles treatment can, in turn, accelerate their clearance and trig-
ger more intense immunogenic stimulation [12,13]. Therefore, more effective solutions are
needed. To address these issues, the application of biomimetic cell-derived nanoparticles is
a promising strategy [14–16].
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In the field of cancer diagnosis and therapy, nanoparticles coated with cell mem-
branes combine the biological functions of cell membranes with the drug-loading capa-
bility of engineered core nanoparticles, thereby providing a series of unique advantages
(Figure 1), including improved biological interface properties, lower immunogenicity, bet-
ter biocompatibility, longer circulation, more efficient drug delivery, and elevated active-
targeting [17–20]. Therefore, biomimetic cell-derived nanoparticles have been applied to
the precision delivery of theranostic agents or to directly improve the therapeutic efficacy
of cancer immunotherapy.
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In this review, we underline the unique advantages of biomimetic cell-derived nanopar-
ticles, summarize the latest developments in biomimetic cell-derived nanoparticles for
cancer immunotherapy, and analyze the challenges of clinical translation of biomimetic
cell-derived nanoparticles.

2. Biomimetic Cell-Derived Nanoparticles

Biomimetic cell-derived nanoparticles are synthetic nanoparticles camouflaged with
natural or engineered cell membrane materials to trick the immune system and enhance tu-
mor targeting [21,22]. The structure of biomimetic cell-derived nanoparticles is a core–shell
structure, where the core is the nanoparticles delivering the therapeutic agents to the target
site and the shell is the membrane materials extracted from different cells. These resulting
biomimetic nanoparticles combine the physical and chemical properties of nanoparticles
with the intrinsic properties of natural cell membranes, possessing the capacity to evade the
immune system, prolong blood circulation, and actively target diagnostic and therapeutic
agents to the targeted sites [17–20]. In 2011, Hu et al. constructed erythrocyte membrane-
camouflaged nanoparticles by co-extruding PLGA polymeric nanoparticles and erythrocyte
membrane-derived vesicles [23]. This is the first report of nanoparticles derived from
cell membranes. Since then, researchers have designed various biomimetic cell-derived
nanoparticles to their meet desired functions, and flexibly combined different types of
nanoparticles with different sources of biomimetic membrane materials [24–27], such as
cancer cell membranes, white blood cell or leukocyte membranes, stem cell membranes,
platelet membranes, and bacteria membranes. The biomimetic cell-derived nanoparti-
cles have been widely recognized for a variety of applications in drug delivery, disease
diagnosis, immune modulation, and disease treatment [28–30].
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2.1. Unique Function of Biomimetic Cell-Derived Nanoparticles

Biomimetic cell-derived nanoparticles inherit abundant important biological functions
related to their source cells, including “self” labeling, biological targeting, cross-talk with
the immune system, and region-specific homing. Most of these important functions are
attributed to specific proteins or molecules on the surface of cell membranes.

2.1.1. Erythrocyte Membranes

Erythrocytes can prolong the systemic circulation time of wrapped nanoparticles due
to some special membrane proteins [31], and the most important biomarker is CD47. Briefly,
signal-regulatory protein alpha (SIRPα) on the surface of phagocytes interacts with CD47
expressed by erythrocytes, which disguises the immune cells as self and prevents immune
phagocytes from phagocytizing erythrocytes [32]. In addition, CD59, C8 binding protein
(C8bp), and complement receptor 1 (CR1) on the surface of erythrocytes have a role in
defending against complement system attack [33]. Therefore, nanoparticles coated with
erythrocyte membranes have a prolonged circulation half-life and are less immunogenic.
Nevertheless, erythrocyte membranes have no tumor-targeting properties. To remedy
this deficiency, researchers further utilize tumor-targeting ligands/peptides to modify
erythrocyte membranes or construct erythrocyte membrane-based hybrid membranes to
realize tumor targeting [34–37].

2.1.2. Immune Cell Membranes

Tumors are chronic inflammatory tissues that attract and recruit immune cells by
secreting a variety of chemokines and cytokines [38,39]. Therefore, the adhesive property
of immune cells can be exploited to actively target drugs for cancer treatment [40].

Dendritic cells (DCs) are professional antigen presenting cells (APCs). Thus, ma-
ture DC membrane-wrapped nanoparticles can thoroughly inherit the antigen-presenting
function of DCs [41]. With this advantage, mature dendritic cell membrane-wrapped
nanoparticles can specifically activate T cells due to the peptide/major histocompatibility
complex (MHC) complexes on the surface of biomimetic nanoparticles [42]. In addition,
costimulatory molecules and adhesion molecules on DC membranes, including integrins,
CD44, CD40, and ICAM-3, can facilitate the interaction between T cells and DCs [43].

Macrophages can accumulate in the tumor microenvironment owing to some adhesion
molecules and specific receptors, such as intercellular adhesion molecule-1, C-C chemokine
receptor 2, and vascular cell adhesion molecule-1 (VCAM-1) [43]. In addition, macrophages
can achieve active tumor targeting owing to the interaction between α4 integrins on
macrophage membranes and VCAM-1 on tumor cell membranes [44].

T cells or cytotoxic T cells are also a subtype of leukocytes that can kill tumor cells. T
cells have various properties, such as searching for antigens in the systemic circulation,
activating cytolysis by recognizing a single peptide, and producing interferon-γ (IFN-γ,
a cytokine with multiple antitumor properties), which make them attractive mediators
of antitumor immunity [45,46]. Additionally, cytotoxic T cells can promote tumor cell
apoptosis mediated by granule and receptors [47]. In addition, TCR complexes expressed
on T cells can specifically bind to tumor-associated antigens with high affinity, which makes
T cells more specific in tumor-targeting [48,49].

Natural killer (NK) cells play an important role in the recognition and killing of tumor
cells owing to their innate capacity to monitor the abnormal expression of stress proteins
and MHC-I [50]. Although NK cells lack tumor antigen-specific receptors on their surface,
they have some alternative receptors that can recognize tumor cells, such as DNAM-1,
NKG2D, and NKp46 [51,52]. Therefore, NK cell membrane-wrapped nanoparticles possess
good tumor-targeting ability.

2.1.3. Platelet Membranes

Similar to erythrocytes, platelet cell membrane-wrapped nanoparticles also have a
prolonged blood circulation time and are less immunogenic due to their reduced immuno-
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genicity. Firstly, CD47 expressed on the surface of platelets can inhibit the uptake of platelet
cell membrane-wrapped nanoparticles by macrophages [53]. Moreover, CD55 and CD59
expressed on the surface of platelet membranes, along with CD47, can avoid immune
complement system attack [54,55]. In addition, P-selectin is overexpressed on the surface of
platelets, which allows platelet membrane-derived nanoparticles to specifically bind to the
CD44 receptors expressed on tumor cells [56]. Thus, nanoparticles can achieve aggressive
tumor targeting and long circulation capability through platelet membrane coating.

2.1.4. Cancer Cell Membranes

Cancer cell membrane-camouflaged nanoparticles can enable immune escaping, pro-
long systemic circulation, and target homotypic tumors owing to a series of membrane
proteins expressed by cancer cells [57,58]. CD47 on the tumor cell surface plays an important
role in immune escape, especially in 4T1, MDA-MB-231, and MCF-7 [59–62]. Thomsen–
Friedenreich antigen, E-cadherin, Galectin-3, N-cadherin, and epithelial cell adhesion
molecules on the surface of tumor cells are essential for homologous targeting and adhe-
sion [63–65]. Therefore, the application of cancer cell membranes for nanoparticle surface
coating has the unique advantages of inherent immune escaping and homologous targeting
and adhesion.

2.1.5. Stem Cell Membranes

Stem cell membranes are easy to isolate and have a various of molecular recognition
sites, which can be used in biomimetic nanoparticles [66,67]. Chemokine receptors on
mesenchymal stem cell membranes respond to ligand molecules on tumor cells, promoting
the migration of mesenchymal stem cells to the tumor [68]. Moreover, P-selectin, E-selectin,
and TGF-β expressed on the membrane of mesenchymal stem cells also influence the
tumor tropism of mesenchymal stem cells [68,69]. Therefore, mesenchymal stem cell
membrane-wrapped nanoparticles have also attracted increasing attention owing to their
good biocompatibility, prolonged circulation time, and tumor targeting.

2.1.6. Bacteria Membranes

In the 1890s, William Coley used toxins made from attenuated bacteria to activate the
anti-tumor immune system [70]. This is the first report of bacteria being used in cancer im-
munotherapy. Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are
composed of lipid bilayers and inherit various parent bacteria-derived components, such
as enzymes, bacteria antigens, adhesins, and a variety of pathogen-associated molecular
patterns (PAMPs) [71–73]. Among them, bacteria-derived antigens and PAMPs play a vital
role in inducing the humoral and cellular anti-tumor immune responses [74,75]. Taking the
advantages of OMVs, researchers have attempted to construct bacterial membrane-derived
nanoparticles for cancer immunotherapy [76].

2.1.7. Extracellular Vesicles

Extracellular vesicles (EVs) are a group of nanoscale membrane-bound vesicles se-
creted by almost all eukaryotic cells [77,78]. The surface of EVs is rich in a variety of
transmembrane proteins, such as ICAM-1, integrin, and tetraspanin, which give EVs the
ability to target specific tissues or cells [79]. In addition, compared with traditional drug
delivery platforms, EVs have excellent biocompatibility, low immunogenicity, phagocytosis
avoidance, controllable biological characteristics, and the potential to cross natural barriers
such as the blood–brain barrier [80]. Especially, EVs with immunomodulatory capacities,
such as DC-derived EVs, NK-derived EVs, and T cell-derived EVs, can be used as effective
therapeutics for cancer immunotherapy [81,82].

2.1.8. Hybrid Cell Membranes

Compared with single-cell membranes, hybrid cell membranes not only retain the
physical and chemical characteristics of nanoparticles, but also endow nanoparticles with
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the biological functions of two or more derived cells, which makes biomimetic cell-derived
nanoparticles more attractive [83]. Hybrid cell membrane-camouflaged nanoparticles can
enhance the flexibility of nanoparticle functionality and thereby achieve better anti-tumor
effects [84–87].

2.2. Fabrication of Biomimetic Cell-Derived Nanoparticles

The fabrication of biomimetic cell-derived nanoparticles mainly includes: (1) isolation
and construction of parent cell membrane-derived vesicles and (2) fusion of the parent cell
membrane with nanoparticle cores (Figure 2).
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2.2.1. Isolation and Preparation of Parent Cell Membrane-Derived Vesicles

The isolation of cell membranes should be gentle in order to obtain biologically active
membrane vesicles and usually involves cell lysis and membrane purification. Anucleated
cells, such as platelets and erythrocytes, are isolated from whole blood by centrifugation.
After that, the collected cells are lysed via repeated freeze–thaw or hypotonic treatment.
Purified membranes are obtained by removing soluble proteins by centrifugation. Finally,
the purified membranes are extruded through a polycarbonate porous membrane to gain
parent cell membrane-derived vesicles [23,54,55]. Bacteria are coated with cell membranes
and peptidoglycans, making membrane extraction more difficult. Luckily, Gram-negative
bacteria can naturally produce OMVs, which can be directly separated from their culture
via ultrafiltration [88,89]. Compared with anucleated cells, the extraction and purification
of parent membranes from eukaryotic cells, such as stem cells and leukocytes, is more
complicated. First, we have to collect source cells from the tissue, blood, or culture medium.
Then, a variety of methods are used for cytolysis, including hypotonic solution treatment,
repeated freeze–thaw, and/or mechanical rupture. Additionally, the obtained membranes
are purified by discontinuous sucrose gradient centrifugation to remove nuclei, intracellular
vesicles, and intracellular biomacromolecules [90,91].

2.2.2. Fusion of Parent Cell Membrane-Derived Vesicles with Nanoparticle Cores

Membrane extrusion and ultrasonic and microfluidic electroporation are commonly
used methods to facilitate the coating of parent cell membrane-derived vesicles onto
nanoparticle cores [2,14]. Mechanical extrusion is one of the commonly used methods
reported in the literature. Briefly, the membrane vesicles and nanoparticles are extruded
through the polycarbonate porous membrane with progressively smaller pore sizes. The
fusion of vesicles and particles is achieved by applying mechanical forces to facilitate the
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passage of nanoparticles through the lipid bilayer of the membrane vesicles [92]. This
approach can largely ensure the bioactivity of membrane proteins. Nevertheless, it is a time-
consuming process [93]. Ultrasound is another effective method. When the nanoparticles
and membrane vesicles are mixed together, the membranes surrounding the nanoparticles
are reassembled by sonication. Compared to the extrusion method, this method is time-
saving. However, the parameters of the ultrasound apparatus, including power, frequency,
and duration, need to be optimized to guarantee fusion efficiency while avoiding protein
inactivation. Microfluidic electroporation can also be utilized for coating different types
of nanoparticles. Electromagnetic energy forms holes in cell membranes by a microfluidic
chip, thereby promoting membrane vesicles to wrap nanoparticle cores [94]. In this process,
the parameters also need to be optimized, such as pulse voltage, flow rate, and duration.
The biomimetic cell-derived nanodrugs constructed by this method are completely coated,
uniformly distributed, and highly reproducible. However, this technology comes at a
high cost. In contrast to nanoparticle-templated membrane coating, Zhang and his col-
leagues reported a simple method to synthesize cell membrane-wrapped nanogels by cell
membrane-templated polymerization [95]. Unlike the previously mentioned approaches,
this new strategy uses membrane vesicles to ‘guide’ the growth of nanoparticle cores,
thereby surmounting the “coatability” limitation of nanoparticles, as well as adding ele-
vated controllability for the application of biomimetic cell-derived nanoparticles. The key
challenge for this technique is how to efficiently and precisely inhibit the polymerization
reaction outside the vesicles while maintaining the reaction activity inside the vesicles.

3. Application of Biomimetic Cell-Derived Nanoparticles in Cancer Immunotherapy

Considering the outstanding advantages, biomimetic cell-derived nanoparticles have
been extensively investigated for cancer immunotherapy. For example, they can be used
to deliver immunotherapeutic drugs and immune adjuvants to tumors or improve the
effectiveness of cancer immunotherapy by reversing the ITME. In the following, we present
the application of various biomimetic cell-derived nanoparticles in ICIs, ACT, cancer
vaccines, modulating of the ITME, and combination therapy.

3.1. Immune Checkpoint Inhibitors

Immune checkpoint inhibitors (ICIs), such as programmed death ligand 1/programmed
death protein 1 (PD-L1/PD-1) inhibitors, have shown efficacy in anti-cancer immune re-
sponses in various cancers [96,97]. However, the clinical use of ICIs is largely limited
because only 10 to 30% of cancer patients respond positively to ICIs [98]. To improve
the efficiency of ICIs, biomimetic cell-derived nanodrug delivery systems may have great
potential.

Recent studies have found that some cancer cells release a mass of exosomes (named
TEXs), which carry a large number of PD-L1s on their surface [99]. Moreover, exosomes
expressing PD-L1 can competitively bind and exhaust PD-L1 Ab (aPD-L1), leading to drug
resistance to aPD-L1 [100,101]. Thus, suppression of exosomes secreted by tumor cells can
be a powerful anti-cancer strategy to improve the effectiveness of current aPD-L1. Herein,
Yan and colleagues developed self-adaptive platelet cell membrane-wrapped nanoparticles
to enable cascaded delivery of exosome-inhibiting siRNA (siRab) and aPD-L1, resulting in
a robust anti-tumor immune response [102]. In their study, siRab effectively suppressed the
production of TEXs, alleviated immunosuppression, and enhanced cytotoxic T lymphocyte
infiltration to facilitate the on-demand release of aPD-L1 by biomimetic nanoparticles.
As a result, the competitive exhaustion of aPD-L1 by TEXs was restrained. Additionally,
siRab-mediated reversal of ITME combined with aPD-L1-based immunotherapy induced a
robust anti-tumor response and immune memory.

Cancer cells secrete small extracellular vesicles (sEVs) to promote tumor progression,
but conversely, immune cells secrete sEVs to prevent tumor progression [103–105]. Re-
searchers have found that sEVs secreted by immune cells play a crucial role in anti-cancer
immune responses by participating in the interaction between innate immunity and adap-
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tive immunity [103,106]. Herein, Jung and colleagues generated interleukin-2-anchored
T cell sEVs (IL2-sEVs) by attaching IL2 to the surface of T cells [107]. In their study, self-
stimulation of T cells by IL2 altered the microRNA (miRNA) profile of T cell-derived sEVs.
Among them, miR-223-3p and miR-181a-3p distinctly inhibited the sEV secretion and PD-L1
expression in melanoma cells, leading to an elevated immune response. Moreover, IL2-sEVs
notably enhanced the therapeutic efficacy of aPD-L1 by reducing PD-L1 expression in vivo
(Figure 3).
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Figure 3. IL2-sEVs to enhance the anti-cancer efficacy of aPD-L1. (a) The construction of IL2-sEVs.
(b) IL2-sEVs altered the miRNA profile of T cell-derived sEVs. (c) IL2-sEVs down-regulated PD-
L1 levels in melanoma cells. (d) IL2-sEVs inhibited sEV secretion. (e,f) IL2-sEVs enhanced the
therapeutic efficacy of aPD-L1. (g) Qualitative analysis of PD-L1 in tumor tissues after combined
aPD-L1 treatment. ns: no significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Reproduced
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License [107].
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The accumulation of hypoxia-inducible factor-1α (HIF-1α) in the hypoxic tumor mi-
croenvironment has been confirmed to activate the downstream CD73–adenosine (CD73-
ADO) pathway and lead to effector T cell exhaustion [108], which is a key disadvantage for
the poor clinical efficacy of ICIs treatment [109]. Therefore, it is of great value to alleviate
tumor hypoxia and block the CD73-ADO pathway to enhance the therapeutic effect of
ICIs. Herein, Yuan and colleagues constructed cancer cell membrane-wrapped and matrix
metallopeptidase-sensitive nanoparticles (CSG@B16F10) to co-deliver oxygen-generating
agent catalase (CAT) and CD73siRNA, thus alleviating hypoxia and reshaping T cell ex-
haustion caused by the CD73-ADO pathway [110]. In their study, CAT improved cancer
hypoxia by producing abundant endogenous oxygen, while CD73siRNA efficiently inhib-
ited the expression of the target gene, synergistically down-regulating the level of CD73
and promoting the T cell-specific immune response. Moreover, CSG@B16F10 significantly
enhanced the tumor immunotherapy efficacy and response rate of aPD-L1 by alleviating
hypoxia and reversing the immunosuppressive microenvironment in vivo.

In another study, Li and colleagues also designed an intelligent biomimetic drug
delivery system (mEHGZ) to convert an immunosuppressive microenvironment to an
immunoresponsive one, which ultimately enhanced the sensitivity of aPD-L1 immunother-
apy [111]. Different from alleviating tumor hypoxia, mEHGZ mainly amplified the genera-
tion of immunogenic cell death (ICD) by triggering a cascade reaction for reactive oxygen
species (ROS) production, thereby enhancing the sensitivity of immunosuppressed tumors
to aPD-L1. After cellular uptake of mEHGZ, a Fenton reaction was triggered by released
hemin and glucose oxidase to facilitate ROS generation and increase endoplasmic reticulum
stress, which collectively amplified the ICD effect. Furthermore, the induced powerful ICD
effect promoted DC maturation and cytotoxic T lymphocyte infiltration, thereby activat-
ing the ITME. mEHGZ combined with aPD-L1 significantly inhibited tumor progression
and lung metastasis in vivo, indicating that a robust ICD could substantially improve the
efficacy of aPD-L1.

Additionally, a summary of biomimetic cell-derived nanoparticles applied in ICIs is
displayed in Table 1.

Table 1. Application of biomimetic cell-derived nanoparticles in ICIs.

Cell Membrane Core Nanoparticle Characteristics of the
Core Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Platelet membrane

Rab27 siRNA
(siRab) polycationic
nanocomplexes and

aPD-L1 nanogels

Desired siRNA
encapsulation and

cell-transfection abilities,
good biocompatibility,

rapid clearance by
macrophages

siRab and aPD-L1 B16F10 cells,
leading tumor

siRab silenced Rab27a,
inhibited exosome
secretion, relieved

immunosuppression, and
sensitized ICI.

[102]

T cell-derived sEVs -- -- Membrane-bound
IL2

B16F10 and
B16F10-luc-g5 cells,

leading tumor

IL2-sEVs inhibited sEV
secretion and PD-L1

expression by cancer cells
through altering the
miRNA profile of T

cell-derived sEVs, and,
consequently,
sensitized ICI.

[107]

Cancer cell
membrane

Gelatin
nanoparticles

Good biocompatibility,
matrix metallopeptidase

(MMP)-sensitive, low
passive targeting
efficiency, rapid

clearance by
macrophages

CAT and CD73
siRNA

B16F10 cells,
homologous

targeting

CAT relieved tumor
hypoxia, while CD73
siRNA silenced CD73

protein and promoted T
cell-specific immune

response, which
synergically sensitized ICI.

[110]
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Table 1. Cont.

Cell Membrane Core Nanoparticle Characteristics of the
Core Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Calreticulin
over-expressed

cancer cell
membrane

Zeolitic imidazolate
framework (ZIF-8)

nanoparticles

Large surface area,
pH-induced

biodegradability, low
passive targeting

efficiency

Epirubicin (EPI),
glucose oxidase

(Gox) and hemin

4T1 cells,
homologous

targeting

The biomimetic delivery
system displayed an
amplified ICD and
activated the tumor

immune
microenvironment,

boosting the therapeutic
efficacy of ICI.

[111]

Cancer cell
membrane

Thermosensitive
lipid nanoparticles

Thermosensitive,
controlled drug release,
good biocompatibility,
low passive targeting

efficiency

PD-1/PD-L1
inhibitor BMS202

and IR780

4T1 and MCF-7
cells, homologous

targeting, and
multiple

mouse models

The biomimetic delivery
system inhibited
cancer-associated
fibroblasts (CAFs),

increased the penetration
of TILs, blocked the

pathway of PD-1/PD-L1,
and then sensitized ICI.

[112]

Bacterial outer
membrane -- -- Membrane-bound

PD1 ectodomain

B16F10 and CT26
cells, multiple
mouse models

The biomimetic delivery
system could effectively
block the PD-1/PD-L1

pathway, protect T cells,
and sensitize ICI.

[113]

HEK 293T cell
membrane

IR820-
dihydroartemisinin
(DHA) complexes

pH-sensitive, excellent
biodegradability,

sonodynamic therapy
(SDT) nanoplatform, low

passive targeting
efficiency, rapid

clearance by
macrophages

IR820 and DHA Hep1–6 cells, one of
the major tumors

DHA-mediated
chemo-dynamic therapy

and IR820-induced
sonodynamic therapy

synergistically achieved a
robust ICD effect and

sensitized ICI.

[114]

Erythrocyte
membrane Liposomes

Good biocompatibility
and biodegradability,

pH-sensitive, low
passive targeting
efficiency, rapid

clearance by
macrophages

Paclitaxel (PTX) PC-3 cells, one of
the major tumors

The biomimetic delivery
system reinforced active
tumor-targeting behavior

and sensitized ICI.

[115]

Cancer cell
membrane

Mesoporous
organosilica

nanoparticles
(MONs)

Good biocompatibility,
large surface area,

X-ray-induced
biodegradability, low

passive targeting
efficiency

Doxorubicin (DOX)
4T1 cells,

homologous
targeting

The biomimetic delivery
system exhibited enhanced

DOX-mediated ICD and
sensitized ICI.

[116]

Cancer cell
membrane

Polymeric
nanoparticles

Redox-responsive, good
biocompatibility, low

passive targeting
efficiency

Toyocamycin (Toy)
and generation 3

phosphorus
dendrimer-copper

(II) complexes
(1G3-Cu)

B16F10 cells,
homologous

targeting

Toy-triggered
amplification of ER stress

and 1G3-Cu-mediated
mitochondrial dysfunction

synergistically induced
significant ICD, which
thereby sensitized ICI.

[117]

aPD-L1
over-expressed
HEK 293T cell

membrane
anchored with a

cleavable peptide
by matrix

metallopeptidase 2
(MMP2)

Barium titanate
(BTO) nanoparticles

Piezocatalysis materials,
generating a cascade of
redox reactions under
US, rapid clearance by

macrophages

BTO and
membrane-bound

aPD-L1

B16F10 cells,
leading tumor

The membrane-bound
aPD-L1 could effectively
block the PD-1/PD-L1

pathway, while the
encapsulated BTO could
achieve a piezocatalysis
effect and induce tumor
antigen release, which

synergistically improved
ICI therapy.

[118]

Cancer cell-derived
EVs with PD-L1

knockout
Liposomes

Good biocompatibility
and biodegradability,
low passive targeting

efficiency, rapid
clearance by
macrophages

DOX
4T1 cells,

homologous
targeting

The biomimetic delivery
system up-regulated the

expression of PD-L1 in the
tumor and amplified the
ICD mediated by DOX,

which thereby
sensitized ICI.

[119]

Mature dendritic
cell membrane

Redox-responsive
nanoparticles

Redox-responsive, low
passive targeting
efficiency, rapid

clearance by
macrophages

Oxaliplatin (OXA)
prodrugs

CT26 cells,
homologous

targeting

The biomimetic delivery
system effectively

sensitized the TME to ICI
by immunogenic

chemotherapy and tumor
antigen-specific
immunotherapy.

[120]
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Table 1. Cont.

Cell Membrane Core Nanoparticle Characteristics of the
Core Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Platelet membrane Magnetic
nanoparticles

Good biocompatibility,
effective ferroptosis,
magnetic targeting,
rapid clearance by

macrophages

Sulfasalazine (SAS) 4T1 cells, classic
tumor model

The biomimetic delivery
system-mediated

ferroptosis elicited an
effective immune response

and sensitized ICI.

[121]

Erythrocyte
membrane

Oligomeric Au
(I)-PMIV complexes

Good biocompatibility,
effective,

self-assembling, low
passive targeting
efficiency, rapid

clearance by
macrophages

PMIV (a peptide
that can degrade
MDM2/MDMX)

NCI-H1650 cells,
LUAD-patient-

derived xenograft
mice model, and
LUAD-PDX mice
model, multiple
mouse models

The biomimetic delivery
system potently restored

p53 and p73, and
sensitized ICI.

[122]

HEK 293T cell
membrane

expressing CD64
-- --

Membrane-bound
aPD-L1 and

cyclophosphamide

B16F10-luci cells,
leading tumor

The biomimetic delivery
system restrained the Tregs

and invigorated
Ki67+CD8+ T cells, then
improved ICI therapy.

[123]

3.2. Adoptive Cellular Immunotherapy

Adoptive cellular immunotherapy (ACT) refers to the in vivo transfusion of immune
effector cells activated in vitro to activate the patients’ tumor-specific immune responses or
to directly kill tumors. Despite the great potential of ACT to activate the anti-tumor immune
responses, its clinical application is severely hampered by disadvantages such as off-target
effects, poor infiltration, T-cell exhaustion, in vitro expansion and engineering, severe side
effects, and great costs [124–126]. Therefore, there is a high demand for the construction
of ACT mimics that can conquer the challenges mentioned above using some effective
methods, and biomimetic cell-derived nanodrug delivery systems may be a good option.

Kang and colleagues constructed T cell-wrapped nanoparticles (TCMNPs) as a mimicry
of CTLs to reactivate the exhausted T cells induced by the ITME [127]. Similar to CTLs,
TCMNPs actively targeted tumors via adhesion proteins and directly eliminated tumor cells
by releasing dacarbazine and triggering Fas-ligand-induced apoptosis. Unlike CTLs, TCM-
NPs were free from immunosuppressive cytokines and PD-L1 on cancer cells by blocking
TGF-β1 and PD-L1 via TGF-β1 receptors or PD-1 proteins on TCMNPs, which ultimately
restored the cytotoxic functions of exhausted T cells. Indeed, the significant inhibitory effect
of TCMNPs on melanoma was attributed to the synergistic effect of chemotherapy, TGF-β
blocking, and the PD-1/PD-L1 signaling blockade. In another study, Hong and colleagues
constructed CD8+ T cell-derived exosomes (TCNVs) that also effectively prevented T-cell
exhaustion and reversed ITME in the same way as TCMNPs [128]. Furthermore, TCNVs
directly induced apoptosis via the delivery of granzyme B to tumor cells.

Compared with T cell-based adoptive immunotherapy, NK cells can directly kill tumor
cells without causing graft-versus-host disease due to immunocompatibility, making them
suitable for a variety of allogeneic and situations [129]. Nevertheless, the number of NK cells
in the blood is relatively small, and the cytotoxic effect is relatively weak, which cannot meet
the needs of current clinical treatment [130]. Herein, Wu and colleagues designed cancer cell
membrane-wrapped magnetic nanoparticles (CM-Fe3O4@SiO2, CMNPs) for stimulating
NK cells and enhancing NK cell-based immunotherapy [131]. In their study, CMNPs
enhanced the expression of surface-activating hallmark receptors on NK cells and facilitated
the production of cytotoxic cytokines such as granzyme and perforin, resulting in enhanced
NK cell-mediated immunotherapy. In another study, Gong and colleagues constructed
nanobody 7D12-engineered NK cells (7D12-NK92MI) through a glycoengineering approach
to improve NK cell-based immunotherapy in EGFR-overexpressing solid tumors [132].
The obtained 7D12-NK92MI exhibited high targeting and affinity to EGFR-positive cancer
cells, resulting in good tissue penetration and enhanced secretion of cytotoxic cytokines
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such as enzyme B, IL-2, and IFN-γ. In addition, 7D12-NK92MI exhibited more significant
immunotherapy efficacy in EGFR-positive cancer cell-bearing mice.

DC-based ACT is another alternative treatment for T cell-mediated immunother-
apy [133]. Nevertheless, the ITME can trigger the differentiation of tolerogenic DCs, which
in turn induces the apoptosis of CD8+ T cells or activates regulatory T cells, eventually
leading to tumor immune escape [134]. Herein, Sun and colleagues constructed smart
DCs (iDCs) to restart the cancer immunity cycle by coating IR-797-loaded nanoparticles
with mature DC membranes [135]. The obtained iDCs could effectively cross-prime T cells
to secrete cytokines and migrate to lymph nodes to activate the initial T cell. Then, the
activated T cells up-regulated the levels of heat shock proteins in cancer cells, thus making
tumor cells more susceptive to heat stress. Moreover, radiation therapy with mild pho-
tothermal therapy effectively killed cancer cells and further induced the immune responses
by releasing ROS as well as other immunomodulators. Consequently, the dying cancer
cells combined with activated immune cells synergistically triggered powerful ICD and
restarted the everlasting cancer immunity cycle, exhibiting a synergistic anticancer effect.

Additionally, a summary of biomimetic cell-derived nanoparticles applied in ACT is
displayed in Table 2.

Table 2. Application of biomimetic cell-derived nanoparticles in ACT.

Cell Membrane Core Nanoparticle
Characteristics of

the Core
Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and the
Reason for Selecting

Each Cancer Cell Line
Biomedical Application Ref.

T cell membrane

Poly(lactic-co-
glycolic) acid

(PLGA)
nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

Dacarbazine (DTIC)
B16F10 cells, DTIC for
metastatic melanoma

treatment

The biomimetic delivery
system could induce
Fas-ligand-mediated

apoptosis and scavenge
TGF-β1 and PD-L1 to

restore the function
of CTLs.

[127]

T cell membrane
over-expressing

PD-1, TGF-β
receptor, and
granzyme B

-- -- Granzyme B
LLC cancer cells,

immunotherapy for lung
carcinoma

The biomimetic delivery
system prevented CD8+ T
cell exhaustion mediated
by PD-L1/TGF-β, and
promoted tumor cell

apoptosis via granzyme B.

[128]

Cancer cell
membrane

Magnetic
nanoparticles

Good
biocompatibility,

magnetic targeting,
rapid clearance by

macrophages

--

HepG2 and A375 cells,
homologous targeting,

and multiple
mouse models

The biomimetic delivery
system effectively

activated NK cells and
enhanced NK cell-based

ACT through the enhanced
secretion of soluble
cytotoxic effectors.

[131]

NK92MI cell
membrane

equipped with the
anti-EGFR

nanobody 7D12

-- -- --

EGFRpositive cancer cell
lines, including LoVo,
MDA-MB-468, A549,

and A431 cells, 7D12 for
specifically recognizing
EGFRpositive cancer cells

The biomimetic delivery
system exhibited high

targeting for
EGFR-positive cancer cells,
caused enhanced secretion
of cytotoxic effectors, and

improved NK
cell-based ACT.

[132]

Mature DC
membrane

Polymeric
nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

IR-797

4T1 cells, specific
recognition between

tumor specific antigens
and tumor cells

Mature DC membrane
facilitated effective

cross-priming of T cells,
recruited T cells, and

produced
immunostimulatory

cytokines, while mild PTT
mediated by IR-797

induced a greater degree of
tumoricidal effect, which
consequently amplified
ICD and reinitiated the
self-sustaining cycle of

cancer immune responses.

[135]
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Table 2. Cont.

Cell Membrane Core Nanoparticle
Characteristics of

the Core
Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and the
Reason for Selecting

Each Cancer Cell Line
Biomedical Application Ref.

Cancer cell
membrane

MnOx
nanoparticles

functionalized with
anti-CD3/CD28

mAbs

Good
biocompatibility,

low passive
targeting efficiency,
rapid clearance by

macrophages

anti-CD3/
CD28 mAbs

B16F10 cells,
homologous targeting

The biomimetic delivery
system not only efficiently
promoted the expansion
and activation of CD8+ T

cells and DCs but also
reversed the

immunosuppressive
microenvironment to

promote T cell survival.

[136]

NK92MI cell
membrane

Anti-CD56
antibodies modified
Fe3O4 nanoparticles

Good
biocompatibility,

magnetic targeting,
rapid clearance by

macrophages

--

K562, B16F10, and H22
cells, NK92 cell

possessing a
broader-spectrum

anti-cancer activity

The biomimetic delivery
system up-regulated the
secretion of granzyme B
and IFN-γ at the tumor

site, which thereby
significantly improved the

antitumor effect.

[137]

Mature DC
membrane

Cancer cell
membrane coated

PLGA nanoparticles

Good
biocompatibility

and
biodegradability,

high active
targeting efficiency

--

HPV E6- and
E7-expressing TC-1,
B16-OVA, and Hepa
1–6 cells, multiple

mouse models

The biomimetic delivery
system could directly

cross-prime T cells without
the help of APCs and elicit
robust antigen-specific T

cell immunotherapy.

[138]

3.3. Cancer Vaccines

Cancer vaccines, including DNA vaccines, mRNA vaccines, peptides, tumor-specific
proteins, tumor cells/lysates, and personalized vaccines coated with tumor cell membranes,
can activate the anti-cancer immune responses by presenting tumor antigens and adjuvants
to the host immune system [139–141]. Nevertheless, challenges in vaccine manufactur-
ing, genetic heterogeneity among patients, limitations of immune response identification,
and the disadvantages of the ITME seriously hampered the clinical application of cancer
vaccines [139,142]. Therefore, nanovaccines as an alternative strategy in highly effective
immunotherapy are attracting more and more attention [142–144].

Inspired by in situ vaccines, Xiong and colleagues constructed a personalized vaccine
(R@P-IM) by camouflaging R837-loaded nanoparticles with calcinetin (CRT)-expressed
cancer cell membranes containing tumor-associated antigens [145]. The engineered tumor-
associated antigens constructed by ICD induction in vitro retained a complete antigen
array while alleviating the acute systemic toxicity of chemotherapy in vivo. Meanwhile,
the CRT expressed on the surface of the nanovaccine facilitated the internalization of
the nanovaccine by DCs, consequently enhancing the immune responses. Subsequently,
adjuvant R837 released from the nanovaccine excited toll-like receptor 7 (TLR7), which
further activated DCs. In addition, the nanovaccine activated memory T cells for long-
term protection, exhibiting a satisfactory immunotherapeutic efficacy for cancer therapy
and prevention.

Although cancer cell membrane-derived nanovaccines can stimulate multiantigenic
immunities with enhanced anticancer efficacy, once these nanovaccines enter the blood
capillary via lymphatic capillaries, the adjuvants leakage usually triggers severe systemic
inflammation. In order to avoid this high risk, there is an urgent need to construct biomimetic
nanovaccines based on nanoparticle cores with weak or no immune stimulatory effects. Li
and colleagues constructed a biomimetic nanovaccine (CCM@(PSiNPs@Au)) based on weak-
immunostimulatory silicon@Au nanoparticles [146]. In their study, CCM@(PSiNPs@Au)
with a weak immune stimulatory effect still efficiently delivered cancer cell membranes into
DCs and triggered DC maturation, thereby leading to the activation of the downstream anti-
tumor immune responses. Moreover, CCM@(PSiNPs@Au), as a photothermal therapeutic
agent, combined with immunotherapies exhibited a satisfactory immunotherapeutic efficacy
for cancer occurrence and development by activating the anti-cancer immune responses and
reversing the ITME in vivo.
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Neoantigens are abnormal proteins generated only by tumor cells, which are called
tumor-specific antigens [147]. Therefore, neoantigens can prevent “off-target” destruction
to normal tissues and are not affected by central or peripheral tolerance, making them
promising candidate antigens for personalized cancer immunotherapies [148,149]. Meng
and colleagues engineered bacteria to fabricate fusion neoantigens and constructed bacteria-
derived neoantigen-bearing vesicles (BDVs-Neo) as an individualized cancer vaccine to
trigger the systemic anti-tumor immune responses [150]. Then, BDVs-Neo and granulocyte-
macrophage colony-stimulating factor (GM-CSF, an adjuvant) were injected subcutaneously
within temperature-sensitive hydrogels. When combined with aPD-1, the sustained release
of GM-CSF and BDVS-lipopolysaccharide (LPS) in hydrogels recruited DCs and provided
long-term memory immunity by intensively enhancing the proliferation and activation of
tumor-infiltrating lymphocytes (TILs) and clonal expansion of memory T cells (Figure 4).
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Figure 4. BDVs-Neo vaccine combined with aPD-L1 for immunotherapy. (a) The preparation of BDVs-
Neo vaccine. (b,c) DC activity and maturation induced by BDVs-Neo in lymph nodes. (d) BDVs-Neo
combined with aPD-L1 for anti-tumor recurrence. (e,f) Synergistic mechanism of BDVs-Neo in
combination with aPD-1. (g) BDVs-Neo vaccine combined with aPD-L1 for lung metastasis. (#1) Gel-
PBS, (#2) Gel-Blank BDVs, (#3) Gel-Normal-M33-M47 BDVs, (#4) Gel-Mutation-M33-M47 BDVs,
(#5) aPD-1, (#6) Gel-Mutation-M33-M47 BDVs + aPD-1. NS: no significant, * p < 0.05, ** p < 0.01,
*** p < 0.001. Reproduced under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License [150].
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Herpesvirus, a major human pathogen, can bind specifically to cancer cells by iden-
tifying tumor-associated antigens on the surface of tumor cells, and trigger strong and
long-lasting anti-cancer immune responses by inducing mitochondrial DNA (mtDNA)
stress [151]. In addition, Mn2+ is released from organelles and accumulates in the cyto-
plasm during herpesvirus infection, which promotes the antiviral innate immune responses
by increasing the sensitivity of cGAS to mtDNA and facilitating STING activation [152,153].
Herein, encouraged by the strong innate immunity triggered by herpesvirus, engineering
erythrocyte membrane-wrapped DNAzyme-loaded nanoparticles (Vir-ZM@TD) were con-
structed for cancer immunotherapy by simulating the structure and infection processes of
herpesvirus [154]. Vir-ZM@TD not only effectively prolonged the blood circulation time
of nanoparticles, but also closely mimicked a series of herpesvirus infection processes,
including specific tumor targeting, effective endosomal escape mediated by membrane
fusion, mitochondrial DNA stress triggered by transcription factor A, and Mn2+ release
from organelles into the cytoplasm. Thus, the anti-cancer immune response triggered
by the cGAS-STING innate pathway was effectively activated, and the complete tumor
regression was about 68%.

Additionally, a summary of biomimetic cell-derived nanoparticles applied in cancer
vaccines is displayed in Table 3.

Table 3. Application of biomimetic cell-derived nanoparticles in cancer vaccines.

Cell Membrane Core Nanoparticle Characteristics of the
Core Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

CRT-expressed
cancer cell
membrane

PLGA nanoparticles

Good biocompatibility
and biodegradability,
low passive targeting

efficiency, rapid
clearance by
macrophages

Adjuvant R837
Luc-4T1 cells,
homologous

targeting

The CRT expressed on the
surface of the nanovaccine

facilitated the internalization
of the nanovaccine by DCs.

R837 released from the
nanovaccine excited TLR7
and further activated DCs.

[145]

Cancer cell
membrane

Silicon@Au
nanocomposites

Good biocompatibility,
low passive targeting

efficiency, rapid
clearance by
macrophages

Au
4T1 cells,

homologous
targeting

The biomimetic delivery
system based on

nanocomposites with weak
immune stimulation could
still induce DCs maturation
to activate the downstream

anti-tumor
immune responses.

[146]

BDVs presenting
the neoantigens -- -- Adjuvant GM-CSF B16F10-luc cells,

leading tumor

The biomimetic delivery
system efficiently recruited

DCs and promoted the
proliferation of TILs and

memory T cells.

[150]

Erythrocyte
membrane

Manganese-doped
imidazolate

frameworks-90
nanoparticles

Good biocompatibility,
low passive targeting

efficiency, rapid
clearance by
macrophages

DNAzyme 4T1 cells, classic
tumor model

The biomimetic delivery
system closely mimicked the

process of herpesvirus
infection, ultimately

initiating cGAS-STING
pathway-mediated innate

immunotherapy.

[154]

Cancer cell
membrane

Mesoporous
polydopamine
nanoparticles

Good biocompatibility
and biodegradability,

PTT nanoplatform,
low passive targeting

efficiency, rapid
clearance by
macrophages

Adjuvant R848
4T1 cells,

homologous
targeting

The biomimetic delivery
system effectively stimulated

the immune response and
demonstrated excellent

photothermal
immunotherapy, which

significantly promoted the
activation and maturation of

lymph node DCs, and
stimulated CD8+ T cells and

memory T cells.

[155]
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Table 3. Cont.

Cell Membrane Core Nanoparticle Characteristics of the
Core Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Bone
marrow-derived

macrophage
(BMDM) membrane

Poly
(lactic-co-glycolic

acid) nanoparticles
(PLP NPs)

Good biocompatibility
and biodegradability,
low passive targeting

efficiency, rapid
clearance by
macrophages

Adjuvant Poly I: C
(PIC)

4T1 cells, classic
tumor model

The PIC released from the
biomimetic nanoparticles

could not only directly
induce tumor cell apoptosis,
but also polarize exogenous

BMDMs into killing M1
macrophages and activate

endogenous APCs to trigger
robust anti-tumor

immune responses.

[156]

Tumor-antigen
activated DC

membrane
PLGA nanoparticles

Good biocompatibility
and biodegradability,
low passive targeting

efficiency, rapid
clearance by
macrophages

Rapamycin (RAPA)

C6-LUC cells,
biomimetic

nanoparticles
possessing the

potential to cross
the BBB

The biomimetic delivery
system could activate CD8+ T
cells directly or indirectly to

reconstitute the glioma tumor
immune microenvironment
and increase the proportion

of NK cells to reduce the
exhausted T cells, resulting in

a significant
anti-glioma efficacy.

[157]

CD80 engineered
cancer

cell-membrane
-- -- --

B16-OVA cells,
homologous

targeting

The biomimetic nanoparticle
platform could directly

activate T cells without the
help of professional APCs.

[158]

Anti-CD40
scFv-anchored

cancer cell
membrane

PLGA nanoparticles

Good biocompatibility
and biodegradability,
low passive targeting

efficiency, rapid
clearance by
macrophages

--

MC38 and Panc02
cells, homologous

targeting, and
multiple

mouse models

The biomimetic nanoparticle
platform effectively

promoted DCs maturation in
CD40-humanized transgenic

mice, improved the
engagement and expansion
of cognate T-cell immune
responses, and facilitated

subsequent adaptive
immune responses.

[159]

CD47KO/CRT
dual-bioengineered

cancer cell
membrane

Hyperbranched
PEI25k

nanoparticles

Good biocompatibility,
large surface area, low

passive targeting
efficiency, rapid

clearance by
macrophages

Unmethylated
cytosine-phosphate-

guanine (CpG)
adjuvant

B16F10 cells,
homologous

targeting

The biomimetic nanoparticle
platform significantly

stimulated APCs, resulting in
the activation of CD8+ T cells

and intense anti-tumor
immune responses.

[160]

MHC-I-Ag-
anchored mature

DC membrane
-- -- aPD-1 B16F10 cells,

leading tumor

The biomimetic nanoparticle
platform could present

neoantigens to CD8+ T cells
directly, resulting in strong
CTL responses. In addition,

the immunosuppressive
reversal function of anti-PD-1

antibody was enhanced by
CD28/B7 co-stimulation.

[161]

Cancer cell
membrane

Poloxamer 407
nanoparticles

Good biocompatibility,
low passive targeting

efficiency, rapid
clearance by
macrophages

Adjuvant R837
HCT116 cells,
homologous

targeting

The biomimetic nanoparticle
platform was presented with

APCs to secret
immunofactors and to
activate the lymphatic

immune network, resulting
in significant tumor

regression.

[162]

Cancer cell
membrane

Manganese dioxide
(MnO2)

nanoparticles

Good biocompatibility,
low passive targeting

efficiency, rapid
clearance by
macrophages

Polythiophene
B16F10 cells,
homologous

targeting

The biomimetic nanoparticle
platform could stimulate a
specific T cell anti-tumor

immune response by
promoting APCs maturation,

autologous tumor antigen
presentation, as well as

generating local
microinflammation.

[163]
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Table 3. Cont.

Cell Membrane Core Nanoparticle Characteristics of the
Core Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Cancer cell
membrane
expressing

fibroblast activation
protein-α (FAP)

-- -- --

CT26, B16F10, LLC,
and 4T1 cells, 90%
of human tumor

tissues
overexpressing FAP

and multiple
mouse models

The biomimetic nanoparticle
platform suppressed tumor
growth by triggering robust

and specific T cell anti-tumor
immune responses.

Moreover, the biomimetic
nanoparticle platform

facilitated tumor ferroptosis
by releasing IFN-γ from

CTLs and eliminating
FAP+CAFs.

[164]

3.4. Modulating the Immunosuppressive Tumor Microenvironment

The immunosuppressive tumor microenvironment (ITME) supports tumor escape
from immune surveillance and is a major obstacle to immunotherapy [165,166]. Multiple
complex factors contribute to the ITME (Figure 5). The low immunogenicity of tumors
impede recognition by the immune system [167]. A variety of immunosuppressive cells
and cytokines hinder anti-tumor immune responses via different pathways [168]. The
extracellular matrix of the tumor prevents the infiltration of anti-tumor immune cells [169].
The hypoxia and abnormal metabolic activities of tumors are conducive to the immune
escape of tumors [170–172]. Reversing the ITME is beneficial to the recruitment and
activation of anti-tumor immune cells, which can promote immunotherapy, and biomimetic
cell-derived nanodrug delivery systems may be a good choice.
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Tumor-associated macrophages (TAMs) are an important part of the ITME [173].
TAMs can be polarized into M2-like phenotypes, which trigger the occurrence, progression,
and recurrence of tumors [174]. Fortunately, TAMs have a certain degree of plasticity
and can be converted to M1 type to inhibit tumor growth [175]. Wei and colleagues con-
structed a bacteria–nanoparticles complex (Ec-PR848) for TAM polarization and enhanced
immunotherapy [176]. This smart biomimetic nanoparticle platform greatly repolarized
M2-type macrophages towards M1-type macrophages, resulting in the generation of TNF-α,
an increased expression of IL-6, as well as the activation of anti-cancer immunity. When
supplemented with PLGA-DOX-triggered ICD, Ec-PR848 further weakened the degree
of tumor immunosuppression and subsequently induced a strong anticancer immune
response. In another study, Rao and colleagues show that SIRPα variants-overexpressed
cancer cell membrane-wrapped magnetic nanoparticles (gCM-MNs) could effectively po-
larize M2 macrophages to M1 macrophages by the magnetic nanoparticle cores, facilitating
macrophages to phagocytose cancer cells and enhancing anticancer T-cell immunity [177].

In addition to M2-type TAMs, the presence of tumor hypoxia is also significantly
associated with the ITME [178]. Research shows that remodulating tumor hypoxia can
facilitate cancer immunotherapy by stimulating anti-tumor T cells and NK cells, reducing
macrophage recruitment and PD-L1 on cancer cells, and maintaining M1-TAMs polar-
ization [179,180]. Herein, Wang and colleagues constructed a biomimetic drug delivery
system (V(Hb)@DOX) for ITME remodulation by co-delivering oxygen and DOX using
erythrocyte membrane camouflaged amphiphilic PCL nanoparticles [181]. The Hb moiety
of V(Hb)@DOX effectively killed cancer cells by specifically targeting M2-type TAMs via
the CD163 receptor, while the O2 released by Hb relieved cancer hypoxia and further
enhanced the anti-cancer immunity by reducing the recruitment of M2-type TAMs, which
synergistically reversed the ITME by down-regulating the expression of PD-L1 on cancer
cells, reducing levels of immunosuppressive cytokines, increasing immunostimulant IFN-γ,
enhancing CTL response, and inducing a robust memory immunity.

CAFs, as the main components of tumor stroma, provide a tremendous energy supply
to tumor cells via the glycolytic pathway [182]. In addition, lactate produced by CAFs
and cancer cells via glycolysis often results in the ITME [183,184]. Therefore, metabolic
reprogramming by destroying the metabolic networks between CAFs and cancer cells
may be a key to enhancing cancer immunotherapy. Zang and colleagues constructed a
biomimetic nano-delivery system by using hybrid membranes of activated fibroblasts and
cancer cells to coat solid lipid nanoparticles containing the glycolytic inhibitor PFK15 and
chemotherapeutic drug PTX [185]. The obtained biomimetic nanoparticles (PTX/PFK15-
SLN@ [4T1-3T3] NPs) possessed homologous targeting towards both CAFs and tumor
cells. The encapsulated PFK15 effectively blocked glycolysis in both CAFs and tumor cells,
thereby cutting off the energy supply of CAFs to tumor cells. Moreover, PTX/PFK15-SLN@
[4T1-3T3] significantly reduced lactate production in CAFs and cancer cells, thus reversing
the ITME and thereby enhancing anti-cancer immunity.

Different from apoptosis which is generally considered to be an immune tolerance
process, pyroptosis is a highly inflammatory programmed cell death (PCD) triggered
by caspase-3, demonstrating a good opportunity to alleviate the ITME and facilitate the
systemic immune responses [186,187]. Zhao and colleagues constructed a biomimetic nano-
delivery system (BNP) by using a breast cancer membrane to coat PLGA nanoparticles
containing indocyanine green (ICG) and decitabine (DCT) for photo-triggered cancer
pyroptosis and cancer immunotherapy [188]. In their study, ICG induced a sharp increase
in cytosolic Ca2+ concentration by NIR, which promoted the release of cytochrome c and
subsequently activated caspase-3. DCT synergistically up-regulated the expression of
gasdermin E by inhibiting DNA methylation, thereby enhancing the cleavage of gasdermin
E by caspase-3 and causing robust cell pyroptosis. In particular, the cell pyroptosis triggered
DC maturation, activated T cells, and exhibited powerful effects on primary and distant
tumor immunotherapy.
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Additionally, a summary of biomimetic cell-derived nanoparticles applied in modulat-
ing the ITME is displayed in Table 4.

Table 4. Application of biomimetic cell-derived nanoparticles in modulating the ITME.

Cell Membrane Core Nanoparticle
Characteristics of

the Core
Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Bacterial outer
membrane PLGA nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

DOX and R848 4T1 cells, classic
tumor model

The biomimetic nanoparticle
platform could polarize M2

macrophages into M1
macrophages, promote the

secretion of TNF-α and IL-6,
which thereby activated the

anti-tumor
immune responses.

[176]

Cancer cell
membrane

overexpressing
SIRPα variants

Magnetic
nanoparticles

Good
biocompatibility,

magnetic targeting,
rapid clearance by

macrophages

--

B16F10 and 4T1
cells, homologous

targeting, and
multiple mouse

models

In this system, the gCM shell
genetically overexpressing
SIRPα variants efficiently
blocked the CD47-SIRPα

pathway, while the
nanoparticle cores polarized

M2 macrophages into M1
macrophages, which thereby

synergistically facilitated
macrophage phagocytosis of

tumor cells and triggered
T-cell immune response.

[177]

Erythrocyte
membrane

Amphiphilic PCL
nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

DOX 4T1 cells, classic
tumor model

The Hb moiety of the
biomimetic nanoparticle

platform could effectively kill
the tumor cells. In addition,

the O2 released by Hb
alleviated cancer hypoxia

and further augmented the
anti-tumor immune response.

[181]

4T1 and 3T3 hybrid
cell membrane

Solid lipid
nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

PTX and glycolysis
inhibitor PFK15

4T1 cells,
homologous

targeting

The biomimetic nanoparticle
platform possessed

outstanding dual-targeting
ability. The encapsulated

PFK15 could inhibit
glycolysis in both CAFs and

cancer cells, resulting in
elevated immune responses.

[185]

Cancer cell
membrane PLGA nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

ICG and DCT
4T1 cells,

homologous
targeting

ICG induced a sharp increase
in cytosolic Ca2+

concentration, promoted
cytochrome c release and

subsequent caspase-3
activation. DCT

synergistically up-regulated
the expression of gasdermin

E by inhibiting DNA
methylation, enhancing the
cleavage of gasdermin E by

caspase-3, and causing robust
cancer pyroptosis.

[188]

Macrophage
cell-derived sEVs -- -- siRNA against

YTHDF1

MGC-803 and
HGC-27 cells,

YTHDF1 promoting
tumor progression

in a variety of
cancers and

multiple
mouse models

This nanosystem efficiently
depleted YTHDF1 expression

and stimulated strong
cytotoxic T lymphocytes

responses through
hampering frizzled7

translation and inactivating
the Wnt/β-catenin pathway

in an m6A
dependent manner.

[189]

Platelet membrane PLA nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

R848
MC38 and 4T1 cells,

multiple
mouse models

The biomimetic nanoparticle
platform promoted the

robust activation of APCs
and increased immune
infiltration, resulting in

complete tumor regression.

[190]
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Table 4. Cont.

Cell Membrane Core Nanoparticle
Characteristics of

the Core
Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Activated
neutrophils
membrane

Redox-responsive
polymer

nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

DOX 4T1 cells, classic
tumor model

The biomimetic nanoparticle
platform could prevent the

recruitment and functions of
MDSCs, thereby inhibiting

tumor recurrence
and metastasis.

[191]

Tumor-associated
macrophage

membrane with
high macrophage

colony-stimulating
factor 1 receptor

(CSF1R)

Rare-earth-
upconversion
nanoparticles

Good
biocompatibility,

“nanotransducer”,
theranostic

nanoplatform, low
passive targeting
efficiency, rapid

clearance by
macrophages

Rose Bengal 4T1 cells, classic
tumor model

The biomimetic nanoparticle
platform could block the

interaction between TAMs
and cancer cells via depleting
the CSF1 secreted by cancer

cells. In addition, the
biomimetic nanoparticle

platform-mediated
photodynamic therapy (PDT)

could polarize
M2 macrophages into

M1 macrophages.

[192]

Erythrocyte
membrane

Copper peroxide
(CP) nanoparticles

Good
biocompatibility,

PDT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

H2O2 and
protoporphyrin

(PpIX)

B16F10 cells,
leading tumor

The biomimetic nanoparticle
platform could relieve tumor

hypoxia and polarize
M2 macrophages into

M1 macrophages.
Furthermore, the ROS

generated by
photosensitizers could cause

the ICD of tumor cells.

[193]

Macrophage cell
membrane

Polydopamine
nanoparticles

Good
biocompatibility

and
biodegradability,

PTT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

TMP195 (a TAMs
repolarization

agent)

4T1 cells, classic
tumor model

The loaded TMP195
significantly polarized
M2 macrophages into
M1 macrophages and

subsequently remodeled the
ITME in residual tumor after

PTT, which thereby
rescued CTLs.

[194]

Cancer cell
membrane

Cu2-xSe
nanoparticles

Good
biocompatibility,

effective ferroptosis,
low passive

targeting efficiency,
rapid clearance by

macrophages

Indoximod (IND)
and JQ1

GL261 cells,
homologous

targeting

The smart nanoparticle
platform could remodel the

ITME by increasing
M1 macrophages and
preventing Tregs cell

infiltration. In addition, it
also served as a checkpoint

inhibitor to inhibit the
expression of PD-L1 on

cancer cells.

[195]

M1-like
macrophage cell

membrane
-- -- Celastrol

LLC and GL261
cells, multiple
mouse models

M1 macrophages not only
acted as drug delivery

carriers for celastrol but also
as therapeutic agents. In turn,
celastrol could maintain the
anticancer polarization of

M1 macrophages.

[196]

Erythrocyte
membrane TiO2 nanoparticles

Good
biocompatibility,

SDT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

Hb and RRx-001 4T1 cells, classic
tumor model

Upon reaching the hypoxic
TME, the Hb in this smart
nanoparticle platform was

deoxygenated, further
initiating a series of reactions

that generated a large
number of RNS in cascade

fashion. Subsequently,
oxygen compensation by Hb

enhanced TiO2-mediated
ROS for SDT, and the

resulting highly active RNS
triggered ICD in cancer cells.

[197]
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Table 4. Cont.

Cell Membrane Core Nanoparticle
Characteristics of

the Core
Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

M1-like
macrophage cell

membrane

Magnetic polymer
nanoparticles

Good
biocompatibility

and
biodegradability,

magnetic targeting,
rapid clearance by

macrophages

R837 4T1 cells, classic
tumor model

The intracellular uptake of
this smart nanoparticle
platform could greatly

polarize M2 macrophages
into M1 macrophages with

the synergy of R837 and
Fe3O4, alleviating the

immunosuppression of the
TME for immune recovery.

[198]

Cancer cell
membrane

Fe-doped polydi-
aminopyridine
nanoparticles

Good
biocompatibility,

SDT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

Ce6
4T1 cells,

homologous
targeting

The prepared smart
nanoparticle platform could

significantly reduce the
unnecessary consumption of
H2O2 in the TME, while US

irradiation could promote the
exposure of Fe-PDAP and
provide more adequate O2
supply, enabling efficient

ROS production and
DCs maturation.

[199]

3.5. Combination Therapy

Cancer is a complex disease with a variety of intricate factors, which makes it more
difficult to treat different types of cancer with monotherapy [200]. It is suggested that
combination therapy is a new trend for cancer treatment in the future. The combination
of chemotherapy, radiotherapy, PDT, or other therapies with immunotherapy is the main
combination treatment modality [201]. Additionally, biomimetic cell-derived nanocarriers
play an important role in cancer combination therapy because of their unique superiorities.

Xiao and colleagues constructed biomimetic nanoparticles (PDA/GNS@aPD-L1) to
combine PTT with PD-1/PD-L1 blockade for synergistic tumor inhibition in colorectal
cancer [202]. Firstly, polydopamine-modified gold nanoparticles (PDA-GNS) were prepared
as nanoparticle cores. Subsequently, cell membranes extracted from anti-PD-L1 scFv-
engineered HEK 293T cells were applied to camouflage these PDA-GNs cores. Anti-PD-L1
scFv on the biomimetic nanoparticles not only blocked the PD-1/PD-L1 signal, but also
promoted the aggregation of PDA-GNs at the tumor site. What is more, PDA-GNs-induced
PTT triggered the release of tumor-associated antigens and reversed the ITME, which
thereby greatly improved the outcome of ICI immunotherapy (Figure 6).

Lu and colleagues constructed tumor cells and DCs dual active-targeting biomimetic
nanoparticles (AMR-MOF@AuPt) as a sono-immunotherapeutic nanoplatform for multi-
modal therapies [203]. In their study, the sono-responsive nanometal organic frameworks
(MOFs) were successfully coated by engineering cancer cell membranes displaying anti-
DEC205 antibodies. Anti-DEC205-anchored cell membranes directly targeted and activated
DCs to facilitate tumor antigen cross-presentation, thereby triggering a cascade of T cell im-
mune responses. More interestingly, AMR-MOF@AuPt-triggered SDT observably inhibited
tumor growth through ROS and induced ICD of cancer cells, which further activated and
proliferated cytotoxic T cells. This design allowed for multicellular engagement between
tumor cells, DCs, and T cells, which thereby induced a robust systemic and long-term
immunity to inhibit tumor relapse and distant metastasis.

Wang and colleagues constructed a PLGA-based biomimetic nano-delivery system
(AFT/2-BP@PLGA@MD) which integrated small molecule targeted therapy with im-
munotherapy [204]. In this platform, the palmitoylation inhibitor 2-bromopalmitic acid
(2-BP) was encapsulated in PLGA nanoparticles to enhance the treatment efficacy of afatinib
against EGFR-TKIs non-sensitive cancer cells. Then, drug-loaded PLGA nanoparticles
were wrapped with cancer cell membranes modified by a D-peptide antagonist (DPPA-1)
to block PD-1/PD-L1. In their study, AFT/2-BP@PLGA@MD observably inhibited can-
cer occurrence and progression by directly killing cancer cells and triggering systemic T
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cell responses. Their findings indicated that small molecule targeted therapy combined
with immunotherapy could break through their respective limitations and obtain stronger
anti-cancer efficacy.
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Figure 6. PDA/GNS@aPD-L1 nanoparticles for cancer immunotherapy by combining PTT with
PD-1/PD-L1 blockade. (a) The preparation of PDA/GNS@aPD-L1. (b) PDA/GNS@aPD-L1 binding
capability for PD-L1-expressing cells. (c) PTT effects of PDA/GNS@aPD-L1. Scale bar: 100 µm.
(d) Anti-cancer effect of PDA/GNS@aPD-L1 in primary tumor. (e,f) PDA/GNS@aPD-L1 reversed the
ITME by decreasing the number of Treg and MDSC cells at the tumor site. (g) Anti-cancer effect of
PDA/GNS@aPD-L1 in distal tumor. G1, PBS group; G2, PDA-GNS + NIR group; G3, PDA/GNS@Free
NPs group; G4, PDA/GNS@aPD-L1 NPs group; G5, aPD-L1 mAb group; G6, aPD-L1 NVs + PDA-
GNS + NIR group; G7, aPD-L1 mAb + PDA-GNS + NIR group; G8, PDA/GNS@aPD-L1 NPs + NIR
group. ns: no significant, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Reproduced under the terms of the CC
BY-NC-ND license [202].

Li and colleagues constructed a multifunctional biomimetic delivery system (Au-
DRM) to realize the synergistic effect of starvation/PTT/immunotherapy [205]. Briefly,
Au NPs were developed in the mesopores of mesoporous silica and then the obtained
nanocomplexes were camouflaged with pH-responsive hybrid cancer cell membrane frag-
ments. When AuDRM nanoparticles were efficiently accumulated at the tumor site, the
pH-responsive membranes fell off, thereby facilitating the exposed Au NPs for starvation
treatment and the released immunostimulant R837 for enhanced immunotherapy. Im-
portantly, upon irradiation, Au NPs caused PTT and then triggered ICD. The resulting
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immunogenicity, together with the immunostimulant R837 released by AuDRM, stimulated
stronger immune responses for cancer therapy.

To improve the safety and efficacy of OMVs in cancer treatment, Li and colleagues
loaded OMVs into macrophages and used OMVs as platforms for co-delivery of DOX
and Ce6 for combined tumor chemo/photodynamic/immunotherapy [206]. In their study,
OMVs effectively polarized M2 macrophages to M1 macrophages and activated pyroptosis-
related pathways, thereby enhancing antitumor immunity. The developed Ce6/DOX-
OMVs@M demonstrated high safety and exhibited satisfactory immunotherapeutic efficacy
for tumor ablation and metastasis (Figure 7).
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Figure 7. Ce6/DOX-OMVs@M for combined tumor chemo/photodynamic/immunotherapy. (a) The
preparation of Ce6/DOX-OMVs@M. (b) Generation of ROS by Ce6/DOX-OMVs@M in 4T1 cells.
Scale bar: 100 µm. (c) Anti-tumor effect of Ce6/DOX-OMVs@M. (d) Ce6/DOX-OMVs@M for lung
metastasis. (e) OMVs activated pyroptosis in tumors in vivo. * p < 0.05, ** p < 0.01, *** p < 0.001.
Reproduced under the terms of the CC BY-NC-ND license [206].

Additionally, a summary of biomimetic cell-derived nanoparticles applied in combi-
nation therapy is displayed in Table 5.
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Table 5. Application of biomimetic cell-derived nanoparticles in combination therapy.

Cell Membrane Core Nanoparticle
Characteristics of

the Core
Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Anti-PD-L1
scFv-anchored HEK
293T cell membrane

Polydopamine-
modified gold
nanoparticles

Good
biocompatibility

and
biodegradability,

PTT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

Au and
membrane-bound

aPD-L1 scFv

MC38 cells,
immunotherapy for

colorectal cancer

The developed smart
nanoparticle platform

combined PD-1/PD-L1
blockade with PTT, which

triggered the immune
stimulatory responses and

remodeled the ITME.

[202]

Anti-DEC205
anchored cancer cell

membrane

Porphyrin-based
metal organic

frameworks (MOFs)

Good
biocompatibility

and
biodegradability,

SDT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

R848 and AuPt
Hep1-6 cells,
homologous

targeting

AMR-MOF@AuPt-mediated
multimodal therapies based

on sonoimmunotherapy
induced systemic immune
responses and long-term

memory immunity.

[203]

Cancer cell
membrane

anchored with a
cleavable peptide

by MMP2

PLGA nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

Afatinib (AFT) and
2-bromopalmitate

(2-BP)

4T1 cells,
homologous

targeting

The developed smart
nanoparticle platform

combined targeted therapy
with immunotherapy, which
remarkably prevented tumor

growth and metastasis.

[204]

Hybrid
pH-sensitive
membrane

Mesoporous silica
nanoparticles

Good
biocompatibility

and
biodegradability,
large surface area,

low passive
targeting efficiency,
rapid clearance by

macrophages

R837 and Au
4T1 cells,

homologous
targeting

The developed smart
nanoparticle platform

realized the synergistic effect
of starva-

tion/PTT/immunotherapy
and induced a long-term
immune memory effect.

[205]

Macrophage cell
membrane

Bacterial outer
membrane vesicles

Good
biocompatibility

and
biodegradability,

potent anti-cancer
potential, low

targeting efficiency

Ce6 and DOX 4T1 cells, classic
tumor model

The developed smart
nanoparticle platform

realized the synergism of
PDT/chemo-

/immunotherapy.

[206]

Hybrid cell
membrane

Glutathione (GSH)
decorated Te
nanoparticles

Good
biocompatibility,

radiotherapy
sensitization,
radiotherapy

nanoplatform, low
passive targeting
efficiency, rapid

clearance by
macrophages

GTe
4T1 cells,

homologous
targeting

The developed smart
nanoparticle platform

realized the synergism of
radiotherapy and
immunotherapy.

[207]

DC-derived sEVs
MBPN-TCyP
nanoparticle
complexes

Good
biocompatibility,

PDT nanoplatform,
mitochondrion-
targeting, rapid

clearance by
macrophages

MBPN-TCyP (an
AIE

photosensitizer)

4T1 and CT26 cells,
multiple mouse

models

The developed smart
nanoparticle platform

realized the synergism of
PDT/immunotherapy and

inhibited the self-renewal of
cancer stem cells for
tumor suppression.

[208]

Cancer cell
membrane

Hollow manganese
dioxide (HMnO2)

nanoparticles

Good
biocompatibility,
GSH-sensitive,

excellent loading
capacity, low

passive targeting
efficiency, rapid

clearance by
macrophages

Ginsenoside Rh2
(Rh2)

K7M2 cells,
homologous

targeting

The developed smart
nanoparticle platform

realized attractive
immuno-chemo-dynamic

combined
therapeutic efficiency.

[209]
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Table 5. Cont.

Cell Membrane Core Nanoparticle
Characteristics of

the Core
Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

Stem cell membrane Polydopamine
nanoparticles

Good
biocompatibility

and
biodegradability,

PTT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

DOX and PD-L1
siRNA

PC-3 cells, one of
the major tumors

The developed smart
nanoparticle platform

showed attractive
immuno-chemo-dynamic

combined therapeutic
efficiency for PCa
bone metastases.

[210]

M1-like
macrophage cell

membrane

Polyethylenimine
(PEI) nanoparticles

Good
biocompatibility,

large surface area,
rapid clearance by

macrophages

DOX and
short-hairpin RNA
(shRNA) targeting

Ptpn2

B16F10 cells,
leading tumor

The developed smart
nanoparticle platform

realized the synergism of
chemotherapy and gene

immunotherapies.

[211]

M1-like
macrophage cell

membrane

Magnetic
photothermal

nanocomplexes

Good
biocompatibility,

PTT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

DOX 4T1 cells, classic
tumor model

The developed smart
nanoparticle platform

enhanced ROS generation
and exhibited outstanding

chemo-phototherapy efficacy.

[212]

Cancer cell
membrane

Mesoporous
polydopamine
nanoparticles

Good
biocompatibility

and
biodegradability,

PTT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

Chloroquine (CQ,
an autophagy

inhibitor)

RM-1 cells,
homologous

targeting

The developed smart
nanoparticle platform

facilitated PTT and
autophagy blockade for

synergistic tumor
elimination.

[213]

Hybrid cell
membrane

Polydopamine
nanoparticles

Good
biocompatibility

and
biodegradability,

PTT nanoplatform,
low passive

targeting efficiency,
rapid clearance by

macrophages

--
B16F10 cells,
homologous

targeting

The developed smart
nanoparticle platform

realized the synergism of
OMV-mediated

immunotherapy and hollow
polydopamine-
mediated PTT.

[84]

Anti-PD-1 peptide
AUNP-12 modified

cancer cell
membrane

Dendritic large-pore
mesoporous silica

nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

Copper sulfide
(CuS) and R848

4T1 cells,
homologous

targeting

The developed smart
nanoparticle platform

realized the synergism of
PDT and immunotherapy.

[214]

Cancer cell
membrane

expressing CD86
and anti-LAG3

Polymeric
nanoparticles

Good
biocompatibility,

PDT nanoplatform,
mitochondrion-
targeting, rapid

clearance by
macrophages

Fs (an AIE
photosensitizer)

4T1 cells,
homologous

targeting

The developed smart
nanoparticle platform

realized the synergism of
PDT and immunotherapy by

directly presenting tumor
antigens and reversed
immunosuppression.

[215]

Cancer cell
membrane Liposomes

Good
biocompatibility

and
biodegradability,
pH-sensitive, low
passive targeting
efficiency, rapid

clearance by
macrophages

RA-V (a
chemotherapeutic
drug) and BMS202

CT26 cells,
homologous

targeting

The developed smart
nanoparticle platform

systemically eliminated
hypoxia tumors by

synergistic chemotherapy
and checkpoint blockade

immunotherapy.

[216]

Cancer cell
membrane

Ovalbumin antigen
(OVA) nanoparticles

Good
biocompatibility

and
biodegradability,

rapid clearance by
macrophages

Ce6
B16-OVA cells,
homologous

targeting

The developed smart
nanoparticle platform

facilitated ROS-triggered
immune cascade for

photodynamic
immunotherapy.

[217]
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Table 5. Cont.

Cell Membrane Core Nanoparticle
Characteristics of

the Core
Nanoparticle

Drug/Imaging
Agent

Encapsulated

Cancer Models and
the Reason for
Selecting Each

Cancer Cell Line

Biomedical Application Ref.

M1-like
macrophage cell

membrane

Nanoparticle
complexes

Good
biocompatibility,
laser-sensitive,

size-changeable,
rapid clearance by

macrophages

Ce6, DOX, and d
indoleamine

2,3-dioxygenase
1 inhibitor

4T1 and B16F10
cells, multiple
mouse models

The developed smart
nanoparticle platform

realized the synergism of
PDT/chemo-

/immunotherapy.

[218]

Erythrocyte
membrane PLGA nanoparticles

Good
biocompatibility

and
biodegradability,

low passive
targeting efficiency,
rapid clearance by

macrophages

P2-PPh3 (an AIE
photosensitizer)
and Poly (I:C)

B16F10 cells,
leading tumor

The developed smart
nanoparticle platform

combined the PDT properties
of P2-PPh3 with the

immunotherapy properties of
Poly (I:C).

[219]

4. Conclusions and Challenges

With new advances in the construction of nano-based drug delivery systems, re-
searchers have successfully developed various of biomimetic cell-derived nanoparticles.
This review highlights the recent developments in biomimetic cell-derived nanoparticles
for cancer immunotherapy.

Benefiting from ideal characteristics, biomimetic cell-derived nanoparticles can effec-
tively deliver immunotherapeutic agents and/or immunostimulants to tumor sites, reverse
the ITME to an immune-supportive one, trigger ICD, induce the release of tumor-associated
antigens, facilitate DCs maturation and tumor antigen presentation, as well as activate
T and NK cells, which can observably promote the immune responses and improve the
efficacy of cancer immunotherapy. The critical analysis of abundant evidence acquired from
existing research suggests that biomimetic cell-derived nanoparticles with cell membrane
camouflage can be effectively used for cancer bio-imaging, prevention, diagnosis, and
treatment (Figure 8).
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Although the advantages of biomimetic cell-derived nanoparticles have promoted the
development of cancer immunotherapy, many challenges still need to be overcome before
their clinical transformation.
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Firstly, the anti-cancer efficacy and long-term safety of these emerging biomimetic
nanoparticles have not been fully established in humans, which may be one of the key
scientific questions for scientists to address in the future. Moreover, the pharmaceutical
spectrum of these biomimetic nanoparticles can be further expanded to the delivery of
different types of drugs to manage other types of diseases.

Secondly, the isolation of the cell membrane mainly includes cell lysis, cell contents
removal, and purification. The removal of cytoplasmic components by differential cen-
trifugation in the current studies may not completely remove all cytoplasmic components
and may instead lead to the loss of membrane fragments. In addition, gentle extraction is
required because functional proteins on the cell surface are very susceptible to denaturation
and inactivation. How to extract high-purity and intact cell membranes to make sure
that the cell membranes can completely inherit the biological functions of the source cells
deserves further study.

Thirdly, the extrusion method generally used to prepare biomimetic nanoparticles is
time-consuming, inefficient, and difficult to scale up in industrial production. Moreover, the
uncontrollable stability of the production process and the high cost of the manufacturing
method are also significant challenges. Therefore, the high-quality control and large-scale
preparation of biomimetic nanoparticles are urgent problems to be solved.

Fourthly, current complexity and reproducibility issues are also major challenges
associated with biomimetic nanoparticles. In general, the more complicated the preparation
processes, the worse the reproducibility. Researchers should prioritize the scale-up of
biomimetic nanoparticles in the early stages of nanoparticle design, and the preparation
methods and technologies used to construct biomimetic nanoparticles should be simple,
reliable, and mature enough to meet the requirements of large-scale production. In addition,
the introduction of new preparation methods, such as microfluidic electroporation, is also
a future direction. Moreover, surface membrane components are known to play a key
role in the design of biomimetic nanoparticles, but the guidelines on which kind of cell
membrane may work better for a specific application are not available. According to the
current literatures, immune cell membranes and cancer cell membranes are mainly used to
fabricate biomimetic nanovaccines for cancer immunotherapy, EVs are mainly used to treat
neurological diseases or deliver nucleic acid drugs to treat genetic diseases and cancer, and
platelet membrane-derived nanoparticles can effectively locate atherosclerotic plaques for
atherosclerosis detection.

Lastly, tumor heterogeneity is a common challenge in the successful treatment of
cancer. In cancer immunotherapy, the response of the immune system against antigen-
positive cells can lead to selective pressure towards antigen-negative cells, which is a
common cause of cancer recurrence. Combined with high-level techniques, developing
some individualized biomimetic nanomedicines and improving their efficacy in cancer
immunotherapy may be effective problem-solving strategies.

Although the clinical translation of biomimetic cell-derived nanoparticles faces many
challenges, it is undeniable that biomimetic cell-derived nanoparticles have unique advan-
tages and great potential in cancer immunotherapy.
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