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Abstract: Antisense oligonucleotide (ASO)-mediated exon skipping has become a valuable tool for
investigating gene function and developing gene therapy. Machine-learning-based computational
methods, such as eSkip-Finder, have been developed to predict the efficacy of ASOs via exon skipping.
However, these methods are computationally demanding, and the accuracy of predictions remains
suboptimal. In this study, we propose a new approach to reduce the computational burden and
improve the prediction performance by using feature selection within machine-learning algorithms
and ensemble-learning techniques. We evaluated our approach using a dataset of experimentally
validated exon-skipping events, dividing it into training and testing sets. Our results demonstrate
that using a three-way-voting approach with random forest, gradient boosting, and XGBoost can sig-
nificantly reduce the computation time to under ten seconds while improving prediction performance,
as measured by R2 for both 2′-O-methyl nucleotides (2OMe) and phosphorodiamidate morpholino
oligomers (PMOs). Additionally, the feature importance ranking derived from our approach is in
good agreement with previously published results. Our findings suggest that our approach has the
potential to enhance the accuracy and efficiency of predicting ASO efficacy via exon skipping. It
could also facilitate the development of novel therapeutic strategies. This study could contribute to
the ongoing efforts to improve ASO design and optimize gene therapy approaches.

Keywords: antisense oligonucleotides; exon skipping; machine learning; ensemble learning; person-
alized medicine; n-of-1 therapy; splice switching; genetic disease; splicing; RNA

1. Introduction

Antisense oligonucleotides (ASOs) have emerged as a powerful tool in the field of
molecular biology and have attracted widespread attention as a promising therapeutic
modality for a range of genetic diseases. These small, single-stranded nucleotides function
by binding to the complementary sense strand of specific mRNAs through Watson–Crick
base pairing, leading to the modulation of gene expression through a variety of mecha-
nisms [1]. The therapeutic potential of ASOs was recognized in the 1970s [2]. However,
early versions of unmodified ASOs were found to have limited plasma persistence and
bioavailability, which posed significant challenges to their clinical utility [3].

Over the years, ASOs have undergone three generations of development to improve
their stability, bioavailability, and binding affinity. These advancements have been achieved
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through the modification of sugar moieties, bases, and phosphodiester linkages. The first
generation of ASOs involved the use of unmodified nucleotides, which were unstable
and rapidly degraded in vivo. This led to the development of the second-generation
ASOs, which incorporated 2′-O-methyl nucleotides (2OMe) to enhance their stability and
binding affinity [4]. The third generation of ASOs is represented by phosphorodiamidate
morpholino oligomers (PMOs), which contain a neutral backbone and show improved
cellular uptake and bioavailability compared to previous generations [4].

ASOs modify target mRNA expression through two main mechanisms: RNase H-
dependent cleavage and steric block [5]. RNase H-dependent ASOs, designed as gapmers,
bind to the target RNA and trigger cleavage by the endogenous RNase H enzyme, leading
to target gene silencing [6–8]. Steric blocking ASOs, on the other hand, are often employed
to specifically exclude (exon skipping) or retain (exon inclusion) a specific exon(s), leading
to alternations in splicing decisions [2,9].

Phosphorothioates also play a significant role in ASOs and have contributed to the
development of ASO-based therapies. Fomivirsen, the first antisense drug approved by the
U.S. Food and Drug Administration (FDA), is an excellent example of the application of
phosphorothioates in ASOs [10].

The improvements achieved in ASO technology have significantly expanded their
therapeutic potential and led to numerous successful clinical trials for the treatment of
various genetic disorders. For example, nusinersen, an exon-inclusion 2′-O-Metoxyethyl-
modified ASO, was approved by the U.S. FDA in 2016 for the treatment of spinal muscular
atrophy (SMA), a devastating neuromuscular disease that is caused by the loss of function
of the survival motor neuron 1 (SMN1) gene [11]. Similarly, eteplirsen, an exon-skipping
PMO ASO, was approved in 2016 for the treatment of Duchenne muscular dystrophy
(DMD), a lethal X-linked disorder that leads to progressive muscle wasting and early
mortality [12].

Exon skipping, where an ASO causes the exclusion of a specific exon in splicing, has
emerged as a promising treatment for genetic diseases, especially muscular dystrophies.
The U.S. FDA has approved multiple exon-skipping ASO treatments for DMD, including
eteplirsen, golodirsen, viltolarsen, and casimersen [13–16]. These ASOs induce exon
skipping, which leads to the production of a truncated but still functional dystrophin
protein. For example, eteplirsen targets exon 51, while viltolarsen and golodirsen target
exon 53, and casimersen targets exon 45. By inducing exon skipping, these ASOs enable the
production of a shortened but functional dystrophin protein, which can partially restore
muscle function and slow disease progression.

Exon skipping has shown promising potential as a treatment option for many genetic
diseases beyond DMD. Splicing defects are a common cause of many genetic diseases,
and exon skipping can be used to restore proper splicing by skipping over faulty exons.
Milasen, a patient-customized n-of-1 ASO drug targeted for a pseudoexon in the neuronal
ceroid lipofuscinosis-7 (CLN7) gene, was recently approved by the FDA for the treatment
of a single patient with Batten’s disease, demonstrating the potential of exon skipping for
personalized medicine [17,18]. Milasen is an ASO that targets a pseudoexon with a novel
intronic mutation in the CLN7 gene, which encodes a protein involved in lysosomal func-
tion [19]. Milasen targets a complementary RNA sequence in the pseudoexon, leading to
the production of a full-length CLN7 protein. This approach is an example of personalized
medicine, where the ASO is tailored to the specific genetic mutation present in the patient.
Exon-skipping therapies are also being explored for other genetic diseases, such as cystic
fibrosis [20], retinitis pigmentosa [21], sarcoglycanopathy [22,23], dysferlinopathy [24–26],
fibrodysplasia ossificans progressive [27,28], epidermolysis bullosa [29,30], frontotemporal
dementia with, parkinsonism linked to chromosome 17 (FTDP-17) [31,32], and cancer [33],
among others.

Despite these promising developments, there are still significant challenges in de-
veloping effective exon-skipping therapies. A major hurdle is the difficulty in selecting
an optimal sequence for exon skipping, as the efficacy of ASOs is often unpredictable
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due to numerous factors involved in the exon-skipping process [34]. Designing effec-
tive ASO sequences requires consideration of various criteria [35], particularly for exon
skipping [36]. Software tools, such as eSkip-Finder, can aid in this process [37]. eSkip-
Finder (https://eskip-finder.org, accessed on 1 May 2023) is a web-based tool developed
by Chiba et al. that provides a solution for identifying optimal ASO sequences for exon
skipping by using machine-learning models built from a curated database of publications
and patents [37].

The selection of important features is a crucial step in the tool’s approach, and the
eSkip-Finder uses an exhaustive search of subsets of features to identify these critical
components. However, due to the high computational cost, the subset size was limited
to seven features. To optimize the performance of the models, hyperparameters in the
support vector regressor are optimized through a grid search. This optimization process is
computationally intensive, requiring a significant amount of computing power, and can
take several days to complete.

This paper seeks an alternative solution to reduce the computational cost associated
with the eSkip-Finder. Some machine-learning algorithms, such as decision tree or ran-
dom forest, have built-in feature-ranking capabilities [38]. Ensemble methods are also
proven to have good performance with reasonable computation cost [39,40]. We explored
their utility in ASO efficacy prediction and demonstrated that a combination of three al-
gorithms, namely random forest, gradient boosting, and XGBoost, through a three-way
voting mechanism, can significantly reduce computation time while maintaining or slightly
improving the prediction performance. This approach offers a promising solution for
reducing computational cost in the ASO efficacy prediction process.

2. Materials and Methods
2.1. Dataset Description

The datasets utilized in this study were identical to those employed in Chiba et al. [37].
For PMO, 369 and 57 measurements were used for training and testing, respectively, and
there were 98 and 11 unique ASO sequences in each split without any overlap. Similarly,
for 2OMe, 197 and 31 measurements were used for training and testing, respectively, with
111 and 13 unique ASO sequences in each split without overlapping. Given that PMO and
2OMe exhibit different chemical properties and binding affinities, the datasets were treated
separately throughout the analysis.

2.2. Feature Description

For each measurement, there were 32 numerical features calculated via bioinformatics
tools, as discussed in Chiba et al. (such as dose). The categorical feature, Malueka’s
category, was excluded from modeling. As reported in [37], this feature was not important
in determining the ASO efficacy and was specifically linked to dystrophin exons [41].
Models developed with this feature included would be difficult to generalize to other genes.

2.3. Problem Formulation and Model Input

The efficacy was measured as a percent in the range of 0 to 100, both inclusive. We
wanted to develop a machine-learning model to predict the efficacy value of a given
ASO with associated feature vector, which makes it a regression problem. All 32 features
were inputted into the machine-learning models, and feature selection was left to the
models themselves.

2.4. Machine-Learning Libraries and Regressors

The machine-learning libraries included scikit-learn (0.42.2) [42] and XGBoost (1.6.1) [43].
The following regressors were used: support vector, random forest, gradient boosting, and
XGBoost. The last three were also used to vote by the simple average of the individual
predictions. The support vector regressor was included for comparison purposes, as it
was used in Chiba et al. All the regressors were built without hyperparameter tuning, i.e.,

https://eskip-finder.org
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default parameters were used in each regressor (except random seeds). The computation
code was developed using Python (3.9.7) on Mac (Quadcore i5, 2 GHz CPU, 16 GB RAM).

2.5. Model Assessment and Selection

Two metrics were used to assess model performances: R2 and mean absolute error
(MAE) between true efficacy values and predictions. The models were first assessed on the
training data via 10-fold cross-validation. Other numbers of folds were also attempted, but
they gave similar results. The best model was then selected and applied to the reserved test
data. The R2 and MAE on each fold were collected, and their mean and standard deviation
were further computed to aid the best model selection. The model with the highest R2 and
lowest MAE values was considered the best-performing model.

2.6. Feature Importance Analysis

While the random forest, gradient boosting, and XGBoost models were trained, they
also collected data to compute the feature importance score. The voting regressor had
no feature importance score; however, we used the model-agnostic method, permutation
feature importance provided by scikit-learn, to rank the feature importance. This anal-
ysis helped identify the most significant features contributing to efficacy prediction and
provided insights into the underlying biological processes related to ASO efficacy.

2.7. Model Comparison and Generalizability

To further assess the performance of the proposed ensemble approach and its in-
dividual components (random forest, gradient boosting, and XGBoost), we compared
the results with the support vector regressor, as utilized in Chiba et al. This comparison
aimed to validate the effectiveness of the ensemble method in terms of prediction accuracy,
computational efficiency, and generalizability.

To further access the potential generalizability of the predictive models, we applied
the PMO model to a gene not seen in the training dataset (the exon 73 skipping of collagen
type VII alpha 1 chain). We compared the efficacy ranking order from prediction to the real
experimental measurements.

3. Results

The performance metrics for various models using 10-fold cross-validation on the
training data are shown in Table 1. The five-fold and twenty-fold cross-validations were
also attempted, and the results were similar to what was reported here. The data splitting
was based on ASOs, i.e., there were no overlapping ASOs in training and validation splits.
As can be seen from Table 1, for both PMO and 2OMe ASOs, the three-way-voting approach
gives the largest R2 and smallest MAE. We thus chose this approach and applied it to the
test datasets. The support vector regressor performed noticeably poorly as there was no
hyperparameter optimization in the current study. It shall also be noted that the whole
computing took about 10 s on a laptop computer.

Table 1. Model performance assessed on training datasets with 10-fold cross-validation.

Methods
PMO 2OMe

R2 MAE R2 MAE

Support Vector 0.138 ± 0.076 22.06 ± 4.02 0.558 ± 0.093 17.70 ± 5.32

Random Forest 0.555 ± 0.247 15.39 ± 4.84 0.729 ± 0.169 10.59 ± 3.31

Gradient Boosting 0.564 ± 0.234 14.97 ± 4.58 0.721 ± 0.152 10.13 ± 2.77

XGBoost 0.530 ± 0.214 15.58 ± 3.87 0.717 ± 0.164 10.56 ± 3.49

Three-way Voting 0.576 ± 0.244 14.87 ± 4.63 0.740 ± 0.157 10.07 ± 3.29
The uncertainty represents standard deviation of 10-fold cross validation.
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When the three-way-voting models, trained on the training data with all features,
were applied to the test data, the predictions were similarly assessed. For PMO, we have
R2 = 0.706 and MAE = 12.250 and for 2OMe, R2 = 0.795 and MAE = 9.237. The R2 values
are higher than those reported [37], which were 0.6 and 0.7, respectively. The true efficacy
and predicted one have a good linear correlation, as depicted in Figure 1. It shall be noted
that unlike the support vector regressor, which can generate unrealistic, negative efficacy
values, the three-way voting approach will not possibly predict a negative efficacy as long
as the input data has no negative efficacy.
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Figure 1. Predictive performance of three-way voting for PMO (left) and 2OMe (right) ASOs. When
the three-way-voting approach was applied to the test data, we observed improved predictive
performance for both PMO and 2OMe AOs compared to previous studies.

The feature importance ranking using the training data as reported by the three-way
voting is shown in Figure 2. The rankings using the test data are similar on top-ranked
features, suggesting that overfitting is not a concern. Among the top five and ten features
using training or test dataset, three (ACP, oligo concentration, dG (100BaseFlanks, RNAs-
tructure)) and eight (ACC_AVE, ACC_LAST8, ACP, distance from acceptor (position of
last base relative to acceptor), length, oligo concentration, dG (100BaseFlanks, RNAstruc-
ture), dG (200BaseFlanks, RNAstructure)) are common for PMO, and four (# exon GCs
blocked by oligo, %GC of exon when blocked by oligo, ACP, Oligo concentration) and
nine (# exon GCs blocked by oligo, %GC of exon when blocked by oligo, ACC_LAST15,
ACP, distance from donor (position of first base relative to donor), oligo concentration, dG
(50BaseFlanksAroundTarget, RNA structure), dG (TargetAsExon, RNAstructure), niscore)
are common for 2OMe. The four PMO features (oligo concentration, exon v intron %GC
after blocking by oligo, dG (50BaseFlanksAroundTarget), ACC LAST15) used in Chiba et al.
here were ranked at 1, 24, 11, and 15. The 6 2OMe features (oligo concentration, GCs (num-
ber of), ACP, %GC of exon when blocked by oligo, niscore per base, ACC LAST8) used in
Chiba et al. here were ranked at 2, 25, 4, 3, 17, and 11. In both cases, some correlation can be
observed. We also noted that some features were strongly correlated, as shown in Figure 3.
As an example, niscore and niscore_per_base are strongly correlated. Niscore_per_base was
ranked seventeenth, but niscore was ranked fifth in our 2OMe model. Therefore, at least
some discrepancies can be attributed to the feature correlations. Due to the randomness in
the algorithms, the rank order can be slightly different in each run. We also did not filter
out strongly correlated features as the cut-off threshold for correlation coefficient is to some
extent arbitrary.
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With the above feature importance ranking, we used top k (k = 1, 2, . . . , 32) features
to do the 10-fold cross validation with three-way voting, similar to the experiment that
generates the data in Table 1, except top k features were used instead of all 32 features. The
results are shown in Figure 4. As can be seen, for PMO, top 8–15 features give the best R2

and for 2OMe, top six and more features give the best results. The variation, specifically
in the PMO case, can be attributed to the randomness in data split. Using the top features
sometimes improves the predictive performance on the test dataset. Since the behavior is
not consistent for both PMO and 2OMe and it is also difficult to pick a reasonable k for
PMO, we decided not to explore it further to reduce the risk of the test data leaking into the
model development.
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To check if the voting approach works for different genes and exons, we applied the
trained PMO model to the exon 73 skipping of collagen type VII alpha 1 chain [9]. The
results are summarized in Table 2. The predictions by the voting approach preserve the
ranking order of ASO efficacy experimentally measured. Cautions must be taken when one
extends the model to a different application domain however. As more data is accumulated
in databases, such as eSkip-Finder, we expect predictive models will be validated rigorously
and extended as needed.
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Table 2. Prediction of exon 73 skipping of collagen type VII alpha 1 chain using PMOs.

ASO Name Voting Predicted eSkip Predicted Experimental [14]

H73A (+16 + 40) 63% (ranked #1) 60% (ranked #1) 100% (ranked #1)

H73A (+16 + 35) 37% (ranked #3) 23% (ranked #3) 40% (ranked #3)

H73A (+21 + 40) 42% (ranked #2) 48% (ranked #2) 85% (ranked #2)

4. Discussions

In this study, we applied machine-learning algorithms with built-in feature selection
capabilities to train and predict the exon-skipping efficacy of PMO and 2OMe ASOs. The
results of this study indicate that the three-way-voting ensemble approach using random
forest, gradient boosting, and XGBoost regressors outperforms the support vector regressor
in terms of prediction accuracy for both PMO and 2OMe ASOs. The improved performance
is evident through higher R2 values and lower MAE in both training and test datasets. For
PMO, we have R2 = 0.706 and MAE = 12.250, and for 2OMe, R2 = 0.795 and MAE = 9.237.
The R2 values are higher than those in the current eSkip-Finder model, which were 0.6 and
0.7, respectively [37]. The support vector regressor performed poorly in this study, likely
due to the lack of hyperparameter optimization. Additionally, the ensemble approach was
computationally efficient, requiring only 10 s for computation on a laptop computer.

The ensemble approach presented in this study offers several advantages over the
support vector regressor, including improved prediction accuracy, computational efficiency,
and generalizability. The improved performance and versatility of this model make it a
valuable tool for designing novel ASOs for exon skipping, optimizing existing ASO thera-
pies, and developing personalized medicine approaches. The true efficacy and predicted
efficacy values demonstrated a strong linear correlation, and the three-way-voting ap-
proach did not predict any negative efficacy values. The feature importance rankings were
consistent across training and test datasets, suggesting minimal overfitting. Although some
discrepancies in feature rankings were observed compared to Chiba et al., these differences
can be attributed to feature correlations and the randomness inherent in the algorithms.

When the PMO model was applied to a different gene, exon 73 skipping of collagen
type VII alpha 1 chain, the three-way voting approach was able to preserve the ranking
order of ASO efficacy. However, caution should be exercised when extending the model to
different application domains as the model’s performance may be influenced by differences
in target genes or exons.

The study emphasizes the importance of feature selection in developing accurate
predictive models for ASO efficacy. Feature selection is a critical step in machine learning
as it helps to identify the most informative and relevant features for predicting the target
variable. We used three different methods, each identifying the most important features
for predicting exon-skipping efficacy of PMO and 2OMe ASOs. The feature importance
ranking generated by the three-way-voting approach revealed the top features used in
the prediction of exon-skipping efficacy for both PMO and 2OMe ASOs. These findings
suggest that the selection of informative features is crucial for developing accurate and
interpretable predictive models for ASO efficacy.

The study highlights the potential applications of the developed predictive models
for drug development and personalized medicine. ASOs have emerged as a promising
therapeutic strategy for a wide range of diseases, including DMD, Batten’s disease, and
retinitis pigmentosa [44–46]. The ability to predict ASO efficacy accurately and efficiently
could accelerate the drug development process by enabling researchers to identify the most
promising ASOs for further development. Moreover, personalized medicine approaches
could be developed by using predictive models to select ASOs that are most likely to be
effective for specific patients based on their genetic profiles.

The study provides insights into the limitations and challenges of the developed
predictive models. One potential limitation of the voting approach is that it relies on
engineered features hand-picked by scientists. Although most selected features were found
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to be consistent with previous studies and eSkip-Finder, there is still a possibility that
important features have been overlooked or excluded. Moreover, the voting approach may
not generalize well to other diseases or target regions, and further validation is required
to ensure the applicability of the approach. Additionally, the study focused on predicting
exon-skipping efficacy of PMO and 2OMe ASOs, and the performance of the developed
models for other types of ASOs needs to be evaluated in future studies. As a possible
future extension, one could consider machine-learning algorithms in combination with
natural language-processing techniques, which has been successfully applied to biological
sequence analysis [47].

As mentioned above, the voting approach predicts non-negative efficacies as long as
there are no samples with negative efficacies in the training data. This aspect of the voting
approach warrants further discussion as it has important implications for the interpretation
of the predicted efficacies. By design, the voting approach ensures that no negative effica-
cies are predicted, which is a desirable property since negative efficacies are not biologically
meaningful. However, this also means that the approach will not predict any efficacies
larger than the highest efficacy in the training data since decision trees are used essentially
in the individual algorithms. However, this can be a drawback, i.e., the approach will not
predict any efficacies larger than the highest efficacy in the training data since decision trees
are used essentially in the individual algorithms. While the approach has demonstrated
promising results in predicting exon-skipping efficacy of PMO and 2OMe ASOs, its perfor-
mance is constrained by the training data and may not be able to predict efficacies that are
outside the range of the training data. Further research is needed to validate the approach
and to compare its performance with other machine-learning algorithms.

The proposed voting approach has a very short training time. The short training
time of the voting approach is a significant advantage of the method as it enables rapid
development of predictive models for ASO efficacy. In the study, we reported that the
whole computing took about 10 s on a laptop computer, which is a remarkable achievement
considering the complexity of the problem and the large number of features involved. The
short training time of the voting approach is particularly advantageous for drug develop-
ment, where time and resources are often limited. The ability to rapidly develop predictive
models for ASO efficacy could accelerate the drug development process by enabling re-
searchers to identify the most promising ASOs for further development. Moreover, the short
training time could also facilitate the development of personalized medicine approaches by
enabling rapid screening of ASOs for specific patients based on their genetic profiles.

Future research directions include incorporating additional features, integrating ad-
vanced machine-learning techniques, such as natural language-processing techniques, as
mentioned above, and applying the model to different types of ASOs and diseases. As
more data become available in databases, such as eSkip-Finder, predictive models can be
validated more rigorously and extended as needed, further improving the accuracy and
applicability of ASO efficacy predictions. Many machine-learning and artificial intelligence
techniques can be applied to drug discovery. For a recent review, please refer to [48].

In conclusion, the study presents a promising approach for predicting exon-skipping
efficacy of PMO and 2OMe ASOs using machine-learning algorithms with built-in feature
selection capabilities. The findings emphasize the importance of feature selection and have
potential applications for drug development and personalized medicine. However, further
validation is required to ensure the applicability of the approach for other diseases and ASO
types. The study also highlights the potential for integrating machine-learning algorithms
with natural language-processing techniques for biological sequence analysis, which could
provide a more comprehensive understanding of ASO-mediated exon skipping.
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