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Abstract: Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms
that occur within the brain and spinal cord. Although significant advances in our understanding of
the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been
made, the translation of these discoveries into effective therapies has been stymied by the unique
challenges presented by these tumors’ exquisitely sensitive location and the body’s own defense
mechanisms (e.g., the brain–CSF barrier and blood–brain barrier), which normally protect the CNS
from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease.
To overcome these obstacles, new methods for therapeutic delivery are being developed, with one
such approach being the utilization of nanoparticles. Here, we will cover the current state of the field
with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which
are under development for targeted CNS tumor therapeutics delivery, and strategies which have
been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.

Keywords: nanoparticle; liposome; extracellular vesicle; chemotherapy; targeted therapy; drug
delivery; blood–brain barrier; brain tumor; glioma

1. Introduction
1.1. Primary Brain and Other Central Nervous System Tumors

Primary brain and other central nervous system (CNS) tumors are a diverse group
of neoplasms that occur within the brain and spinal cord. These tumors can arise from
various cell types, including glial cells, neurons, meningothelial cells, and embryonic cells.
In adults, brain tumors account for approximately 2% of all cancer diagnoses and 3% of
deaths due to cancer [1]. It is estimated that 700,000 people in the U.S. are living with a
primary brain tumor, and approximately 90,000 more will be diagnosed in 2023 [2]. More
than two-thirds of patients diagnosed with glioblastoma (GBM), the most aggressive type
of brain cancer in adults, will succumb to their disease within 2 years of diagnosis, and an
estimated 20,000 adults in the U.S. die from primary cancerous brain tumors each year [1,3].
In individuals under the age of 20, brain tumors are the second most common category
of cancer and the leading cause of cancer-related death [4,5]. In children, H3 K27-altered
diffuse midline glioma (DMG) is the most lethal form of brain cancer, associated with an
abysmal prognosis and a 5-year survival rate of less than 2% [4,6]. Additionally, children
diagnosed with a brain tumor who survive and enter adulthood will often be affected by
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the long-term consequences of exposing the developing brain to medical interventions [7].
Overall, brain tumors remain a significant source of morbidity and mortality for which
diagnosis and treatment require extensive resource allocation and sophisticated diagnostic
and therapeutic technology [8].

Treatment options for brain tumors depend on the type, location, and stage of the
tumor, as well as the patient’s age and overall health [9]. Most brain tumors have proved
challenging to treat, due in large part to the molecular features of these tumors, which
frequently work in concert to impede advancements in therapy [10]. Surgical resection,
chemotherapy, and radiation therapy (RT) remain the primary treatment modalities [11,12].
Given the lack of durable therapies for most brain tumors, there is a dire unmet gap
in clinical practice for improved therapeutic modalities based on the unique molecular
underpinnings of individual tumors.

As our understanding of the intricate biology that mediates tumorigenesis and pro-
gression increases, the integration of molecularly targeted agents, which can target key
factors on tumor cells, the tumor microenvironment, or the patient’s immune system,
into conventional therapeutic regimens may provide a substantial benefit for patients
with otherwise incurable brain tumors [12–15]. However, a multitude of factors, such as
molecular heterogeneity, invasion of tumor cells outside the bulk tumor core identified
on imaging, as well as the brain–CSF barrier and blood–brain barrier (BBB), which pre-
vent the buildup of xenobiotics within the CNS, may limit the efficacy of these promising
therapeutic strategies [16].

1.2. Blood–Brain Barrier

Although progress has been made in identifying potentially targetable vulnerabilities
for the treatment of brain tumors, crossing the BBB and achieving therapeutic drug levels
at the tumor remain significant obstacles. The BBB is an anatomical and biochemical barrier
that works by tightly controlling the permeation of ions, macromolecules, and nutrients into
the brain in order safeguard it from potentially harmful substances like toxins, pathogens,
and drugs present in systemic circulation [17,18]. This is accomplished with cooperative
work by multiple cellular components, including brain capillary endothelial cells (ECs),
pericytes, and astrocytic glia cells, which orchestrate a complex intra- and intercellular
barrier network [19–21]. Together, these cells not only serve a structural purpose, but
they also function as a neurovascular unit that regulates BBB integrity and affects drug
penetration into the brain [22,23].

Unlike the peripheral microvasculature, ECs located at the BBB are characterized
by having only few fenestrations and pinocytic vesicles and are tightly linked by tight
junctions (zonulae occludentes), which together act as a physical barrier, limiting the
unrestricted diffusion of substances from the bloodstream into the brain [24,25]. Claudins,
occludins, and junctional adhesion molecules (JAM-A, -B, and -C) are among the most
abundant proteins that make up the zonula occludens complex for restricting paracellular
transport [26,27]. Molecules that cannot diffuse easily across lipid bilayers, such as small
hydrophilic drugs and therapeutic macromolecules, including antibodies and antibody–
drug conjugates, therefore, cannot normally accumulate in meaningful amounts due to this
physical barrier [28].

Polar nutrients like some amino acids, hormones, carbohydrates, and vitamins are
transported across the BBB through carrier-mediated influx transporters such as the L-
type amino acid transporter 1 (LAT1), glucose transporter 1 (GLUT1), and organic anion
transporter polypeptides (OATPs) [29]. Similarly, large molecules like insulin, transferrin,
and some vitamins can be shuttled into the brain by multiple transport mechanisms,
including receptor-mediated endocytosis and different transcytosis pathways [17,30].

Efflux transporter proteins found on the luminal and abluminal side of the EC mem-
brane effectively transport many lipophilic molecules through the luminal EC membrane
back into the capillary lumen [31]. Many small molecules including drugs that can other-
wise readily diffuse across plasma membranes have substrate properties for these efflux
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pumps [32]. ATP-binding cassette (ABC) family members, such as P-glycoprotein (P-gp),
breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 1
(MRP1), have been studied in detail and reported to limit brain distribution of numerous
anticancer drugs [33–37]. Therefore, the physical and biochemical characteristics of the
BBB greatly restrict the delivery of therapeutic agents to the brain, which may reduce the
effectiveness of many systemically administered therapies [38–40].

The integrity of the BBB within the tumor area can vary depending on the particular
tumor type and is referred to as the blood–tumor barrier (BTB) by many [18,40,41]. While
in the majority of brain tumor patients, the BBB is disrupted to some extent, its integrity
has been shown to be variable or remain intact using dynamic contrast enhanced magnetic
resonance imaging (MRI), especially in the peritumoral regions [42–44]. This is particularly
true for children with DMG and some medulloblastoma subtypes (e.g., sonic hedgehog
(SHH) activated tumors), where little or no contrast enhancement on MRI indicates a largely
intact BBB [45]. Furthermore, the structure of the BBB and the expression pattern of efflux
transporters has been shown to vary in different patient populations [46,47]. Based on age,
brain location, and efflux transporter type, a distinct maturation profile was reported in
brain cortical and ventricular tissue of more than 50 human patients, including fetuses,
newborns, children, and adults [48]. These findings imply that major advancements in the
treatment of brain tumors will require the delivery of therapeutic agents across the BBB to
all tumor regions regardless of individual patient and tumor characteristics.

1.3. Nanoparticle Strategies in Neuro-Oncology

Nanoparticles (NP) are a diverse group of nanoscale objects characterized by their
size—usually ranging from 1 to 100 nm—which have gained attention as drug delivery
systems to improve the biodistribution of therapeutic agents through improved solubility
and stability, ability to cross biological barriers, and organ- or cell-specific targeting in
order to either increase efficacy, reduce side effects, or both [49,50]. Several NP-based
drug formulations have been approved by the U.S. Food and Drug Administration (FDA)
in other oncology fields, yet no successful clinical trials have been conducted in brain
tumors, highlighting an important translational gap [51]. While there exists an abundance
of promising preclinical studies, the clinical failure of nanoparticle formulations in brain
tumors to date is likely related to an incomplete reflection of the BBB and other anatomical
and physiological hurdles that must be surmounted to obtain access to this highly protected
tumor environment. In this review, we will provide an update on and highlight recent
developments in NP-based drug delivery systems across the BBB, with a specific focus on
the therapeutic application for brain tumors, along with existing constraints and possible
future paths to overcome translational limitations (Table 1) [52–57].

Table 1. General strengths and weaknesses of nanoparticle classes.

Nanoparticle Class Strengths Weaknesses References

Lipid-based NP

Simplicity of manufacturing process Rapid elimination from bloodstream [58–64]
Payload flexibility CARPA

Potential for surface modification
Biocompatibility

Polymeric NP

Precise control over physicochemical properties and
drug release profile Rapid elimination from bloodstream [65–71]

Payload flexibility Relatively low drug loading capacity
Potential for surface modification

Inorganic NP
Variability in sizes, shapes, and constructs Low solubility, aggregation [72–76]

Unique magnetic and/or photothermal properties,
allowing theragnostic applications Toxicity concerns

Biological NP

Biocompatibility Rapid elimination from bloodstream [61,77–81]
Inherently functionalized membrane Low production scalability

Payload flexibility More complex drug loading process
Low drug loading capacity

Abbreviations: NP = nanoparticle, CARPA = complement activation-related pseudoallergy.
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2. Nanoparticle Classes under Investigation as Drug Delivery Systems for
Brain Tumors

Several classes of NPs are being pursued for the development of CNS-targeted drug
delivery systems. While many paradigms are applicable across different NP categories,
important differences are to be observed. Synthetic (Figure 1) and biological NPs make up
the two major categories of NPs. The former are characterized by a high degree of control
over pertinent physicochemical properties, such as size and surface charge, and include
lipid-based NPs, polymeric NPs, and inorganic NPs, among others. Biological NPs are
either fully derived from living cells or at least partly constructed through a biological
process, offering biocompatibility through their intrinsically functionalized membranes
while foregoing some of tunability of synthetic NPs. Although the various NP classes
have been thoroughly reviewed elsewhere, we will briefly discuss the main categories
that have been investigated for the application in brain tumor therapy in the following
section [58,64,69,72,82–87].
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2.1. Lipid-Based Nanoparticles

The two main lipid-based NPs are liposomes and solid lipid NPs (SLNs). Liposomes
are spherical vesicles consisting of at least one phospholipid bilayer around an aqueous
core, typically ranging from 30 to 2500 nm in size [88]. Despite the fact that several liposo-
mal drug formulations are approved as systemic drug delivery system by the FDA, none
are currently in clinical use for the treatment of brain tumors [51]. The main advantage of
liposomes is the easy manufacturing process, allowing for the modulation of physicochem-
ical properties and phospholipid composition. By introducing a double lipid bilayer or by
encasing several vesicles inside a second membrane, multilaminar or multivesicular lipo-
somes can be produced depending on the phospholipid makeup [58]. Furthermore, surface
modifications using proteins, peptides or polymers are used to alter systemic circulation
time and allow for targeted delivery [59,60]. A broad range of therapeutics, including both
lipophilic and hydrophilic drugs, can be encapsulated in the lipid bilayer or the aqueous
core, expanding the use of liposomal drug carriers [58]. An important limitation for clinical
use is the low bioavailability due to efficient phagocytosis by the reticuloendothelial system
(RES), resulting in preferential accumulation in the liver and spleen [61,89]. Moreover, even
though liposomes are regarded as highly biocompatible, complement activation-related
pseudoallergy (CARPA) is a common adverse reaction, occurring in 25–45% of patients
upon first administration [62,90].

BioRender.com
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Solid lipid NPs (SLNs) are another common subset of lipid-based NPs. They differ
from liposomes in that they are built from a phospholipid monolayer around a lipophilic
core matrix. Within this core, micellar structures can be formed around hydrophilic cargo.
SLNs have been mainly used as drug delivery systems for nucleic acids [63,91]. Ionizable
phospholipids with near-neutral charge in physiologic pH form micelles around nucleic
acids, while in acidic endosomes, these phospholipids become charged, promoting endo-
somal escape [63,91]. Combined with their simple synthesis and good biocompatibility,
SLN are a promising drug delivery system for brain tumor therapy, and small molecule
drugs have been successfully delivered to the brain using SLN [92–94]. However, as with
liposomes, rapid accumulation in the RES is a major limiting factor [64,94].

Besides liposomes and SLNs, nanoemulsions have also been considered to improve
drug delivery to CNS tumors. Nanoemulsions are colloidal suspensions, usually consisting
of nanosized lipid droplets in aqueous media stabilized by surfactants [95]. They have
gained attention due to their ability to cross biological barriers, increase bioavailability of
hydrophobic therapeutics, ease of manufacturing, stability, and biocompatibility [95–98].
However, although some groups have been able to attach targeting ligands, the potential
for modification is more restricted compared to other NPs [97]. While oral and intravenous
administration have been investigated, the intranasal delivery of nanoemulsions was the
most effective in the treatment of CNS tumors in animal models [99–101].

2.2. Polymeric Nanoparticles

Polymeric NPs are a diverse group of synthetic NPs. They are built using a nat-
ural or synthetic core polymer that either forms a solid nanosphere or a liposome-like
nanocapsule, in which the core polymer forms a shell around a usually aqueous core.
Most frequently used polymers in neuro-oncology research are poly (lactic-co-glycolic
acid) (PLGA), poly (β-amino ester), polystyrene (PS), polyanhydride, chitosan, and poly-
caprolactone. Through the inclusion of various co-polymers, polymeric NPs exhibit a high
potential for modifying stability and surface charge, enabling drug release timing to be
altered from days to weeks [65,102–105]. As with liposomes, further surface functionaliza-
tion is possible [66,67,106]. Drugs can either be attached to the surface, embedded in the
nanosphere or nanocapsule shell, or can reside in the aqueous core, enabling the delivery
of both lipophilic and hydrophilic cargo with different molecular weights [69].

Dendrimers are a specific type of polymeric NP that can be distinguished from other
polymeric NPs by their structural differences. They are built from an initiator core that
anchors a variable number of ‘generations’ of branched layers, terminating in an outer
layer of functionalized surface groups that can harbor imaging, targeting or therapeutic
moieties. Sizes typically range from 1 to 15 nm, growing 1–2 nm with each generation while
doubling the amount of surface groups, allowing a high degree of control over size and
surface chemistry [68]. Commonly used dendrimers to target the CNS are polamidoamine
(PAMAM) and dendrigraft poly-L-lysine (DGL). Small molecule drugs and nucleic acids
are the most frequent payloads, although a wide variety of therapeutics can be attached to
the outer branches and encapsulated in the inner void spaces [84].

Overall, polymeric NPs are excellent candidates for drug delivery because they are
biodegradable into nontoxic components, highly tunable, and several polymers have been
FDA-approved for clinical use as either systemic or topical drug delivery system [51,107–113].
However, the low drug loading capacity of most polymeric NPs and rapid clearance by the
RES are limiting factors [70,71]. Notwithstanding these limitations, several clinical trials of
polymeric NPs for systemic drug delivery in cancer are ongoing, although none of which
target CNS neoplasms [114].

2.3. Inorganic Nanoparticles

Inorganic NPs are synthesized from inorganic compounds, such as gold, silica, iron
and carbon, and can be manufactured in a wide array of sizes and shapes. Gold NP (AuNP),
for example, form nanospheres, nanorods, nanoflowers, nanoshells and nanocages [72].
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Carbon forms quantum dots, fullerenes or nanotubes, and silica is usually used to make
mesoporous NPs (MSN) [85,86,115]. Different inorganic NPs have unique properties, such
as the photothermal properties of gold or the magnetic properties of iron NPs, giving rise
to other uses such as photothermal radiosensitization therapies or imaging applications,
respectively [73,74]. AuNPs, carbon nanotubes and mesoporous silica NPs in particular
have been explored as drug delivery systems. AuNPs have the most diverse applications,
providing a high surface-to-volume ratio and being able to conjugate a wide arrange of
small molecules, proteins or nucleic acids directly to the surface [72]. MSN provide a large
surface area, can be modulated to harbor different pore sizes fitting various types of drugs,
and allow a high degree of control over drug release [87]. Carbon nanotubes can be loaded
with hydrophobic drugs, and the surface decorated with various therapeutic and targeting
moieties [116]. The main disadvantages of inorganic NPs are toxicity concerns and low
solubility leading to aggregation [74,75]. While AuNPs are generally regarded as safe,
MSNs are prone to causing hemolysis through interaction with the red blood cell plasma
membrane, and especially prolonged exposure to carbon nanotubes induces cytotoxicity
in vitro and lung and liver toxicity in rodents [76,87].

2.4. Biological Nanoparticles

Biological NPs (Figure 2) mainly encompass extracellular vesicles (EVs) and cell-
derived nanovesicles (CDN). Extracellular vesicles (EVs) are a group of naturally occurring
NPs with a phospholipid bilayer membrane that are produced by most cells studied to
date [117–129]. Based on their biogenesis, EVs are classified into three main groups: exo-
somes, microvesicles and apoptotic bodies. Exosomes have attracted the most attention as a
drug delivery mechanism, but it can be difficult to distinguish them from other EVs because
of the overlap in size and biological make-up [130–133]. Therefore, in accordance with the
MISEV2018 consensus paper, we will use the term EV in the rest of this review [133].

Contrary to earlier theories that EVs were primarily responsible for the removal of
unwanted proteins from cells, they have been demonstrated to play a significant role in
intercellular communication in both physiological and pathological processes [77,134–141].
The strict regulation of EV lipid bilayer composition, which is different from that of the
parent cell, as well as the selective inclusion/exclusion of certain membrane and intra-
vesicular proteins that are present in the parent cell, are indications of this biological
function [142–146]. While some proteins are related to their biogenesis, others are im-
portant for their biological function and differ between EVs from different parent cells,
e.g., combinations of α- and β-chains of integrins changing their organotropism, or the
presence of MHC molecules in EVs from dendritic cells [77,147,148]. Nucleic acids rele-
vant to their function are also regularly identified as a cargo of EVs [149]. Although the
inherently functionalized membrane provides high biocompatibility and some degree of
organotropism, further surface modifications have been applied in an effort to improve
drug delivery [77,150–152]. Therapeutics can be introduced into EVs either before harvest-
ing (through the overexpression of desired proteins or nucleic acids in engineered parent
cells) or after harvesting (through electroporation, sonication or other loading methods) [78].
EVs have shown little to no inherent toxicity in previous in vivo studies [77,79,80,129,153].
As with other NPs, however, a large portion of EVs are captured in the RES [61,81,154].
Furthermore, harvesting and purifying EV in sufficient quantities for research or clinical
purposes are time consuming and complex, limiting their application at present [78].
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Figure 2. Biogenesis, production and general structure of biological NPs. (1–3) Extracellular vesicles
(EVs) are differentiated into three groups based on their biogenesis (1) Microvesicles are small to
medium sized vesicles (100–1000 nm) that originate from outward budding of the plasma membrane
(PM), incorporating cytosolic proteins. (2) Exosomes are small, homogenous vesicles (30–150 nm),
formed by inward budding of the endosomal membrane, forming intraluminal vesicles (ILVs) in
an MVB and subsequently transported to either the PM, where they are released as exosomes, or to
the lysosome for degradation. (3) Apoptotic bodies are usually large (50–5000 nm), heterogeneously
shaped vesicles, shed by cells undergoing apoptosis. (4) Cell-derived nanovesicles (CDNs) are
generated through mechanical extrusion, ultrasonication or freeze–thawing of parent cells. (5) EVs
and CDN are both constructed from a phospholipid bilayer, inherently functionalized with various
groups of membrane proteins. While some proteins are more common in certain vesicle types, there
is considerable overlap. In the lumen, a diverse range of cargo proteins and nucleic acids can be
identified. Abbreviations: MVB = multivesicular body, ER = endoplasmic reticulum, HSP = heat shock
protein, ESCRT = endosomal sorting complexes required for transport. Created with BioRender.com.

Cell-derived nanovesicles (CDNs)—in contrast to EVs, which are created through a
tightly regulated biological process—are produced through mechanical extrusion, ultra-
sonication, or the freeze–thawing of parent cells [155,156]. These techniques cause donor
cells to release CDN in high quantities, dramatically increasing production yield compared
to EVs, while preserving biological properties [155,157]. There is a substantial overlap in
membrane proteins and smRNA contents between EV and CDN, although studies have
demonstrated a difference in membrane lipid composition [155,156]. The in vitro and
in vivo behavior of CDNs as well as the achievable drug loading capacity are also similar
to EVs [155,158]. Overall, preliminary findings imply that CDNs might offer a useful
EV substitute by combining the benefits of EVs with significantly improved production
scalability.

3. Engineered Nanoparticles to Enhance Targeted Drug Delivery to CNS Tumors

Despite the abundance of available NP formulations, the majority of NPs are unable
to efficiently reach the CNS, necessitating the development of advanced NP designs for
brain tumor purposes that take into account the entire delivery cascade [159]. While BBB
penetrance is the most widely acknowledged prerequisite, attaining adequate, persistent
plasma concentrations; having the ability to migrate the extracellular matrix of the brain
parenchyma; and being able to selectively deliver therapeutic payloads to tumor cells
are equally important for achieving a therapeutic effect (e.g., CRITID procedure of brain-
targeting drug delivery) [54]. In this section, we will review the various strategies that have
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been applied across NP classes to address these biological barriers in the treatment of brain
tumors (Figure 3) [54,160,161].
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Figure 3. Paradigms of NP-mediated delivery to the central nervous system (CNS). (a) The ma-
jority of systemically administered NPs are subject to rapid clearance by the reticuloendothelial
system (RES). Two important strategies to avoid recognition by macrophages and inhibit phago-
cytosis are PEGylation or CD47 expression, respectively. (b) While the blood–brain barrier (BBB)
considerably impairs drug delivery to the CNS, NP-mediated drug delivery can exploit various
biological transport pathways to overcome this limitation. CNS neoplasm-induced neoangiogenesis
gives rise to blood vessels with an immature BBB, marked by leaky tight junctions and fenestrated
endothelial cells (ECs), allowing NPs to take advantage of the enhanced permeability and retention
(EPR) effect. Adsorption-mediated transcytosis (AMT), receptor-mediated transcytosis (RMT), and
transporter-mediated transcytosis (TMT) are forms of endosomal transport, triggered by electrostatic
interactions, ligand–receptor interactions or substrate-transporter interactions, respectively, that
can be leveraged by targeted NPs. Furthermore, in cell-mediated transport (CMT), NPs have been
loaded into mesenchymal stem cells (MSC) and white blood cells (WBC) that migrate over the BBB in
response to tissue damage and inflammation. (c) PEGylation allows for improved migration through
the extracellular matrix (ECM), while tumor-specific ligand conjugation increases NP targeting
capabilities. Abbreviations: PEG = polyethylene glycol, BM = basal membrane, CCP = clathrin-
coated pit, CLDN = claudin, OCLN = occluding, JAM = junctional adhesion molecule. Created with
BioRender.com.

3.1. Nanoparticle Clearance and Blood Circulation Time

Achieving adequate and persistent plasma concentrations is crucial for systemically
administered drugs to achieve and maintain effective CNS concentrations in order to
impart its therapeutic effect. As mentioned earlier in this review, most NPs are rapidly
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captured in the bloodstream by the RES. While this has been long known for liposomes
and polymeric NPs, EVs show a similar clearance pattern despite their biological ori-
gin, with half lives of less than ten minutes and significant accumulation in the liver,
spleen and lungs [61,71,81,89,154,162]. PEGylation is the most common modification to
improve NP circulation time, but this has been shown to decrease the capacity for cellu-
lar interaction [60,71,163–165]. While the improved pharmacokinetics of PEGylated NPs
have been shown to enhance CNS delivery in some scenarios, a detrimental effect on BBB
crossing has been reported in others [166,167]. Furthermore, while PEG is classified by the
FDA as generally regarded as safe (GRAS), production of anti-PEG antibodies has been
detected after repeated dosing of PEGylated NP, resulting in accelerated blood clearance
(ABC) known as the ABC effect [90,168].

A more recently explored alternative strategy is the expression of CD47, a ligand
of signal-regulatory protein alpha (SIRPα) on phagocytes, inhibiting phagocytosis, as a
natural ‘don’t eat me’ signal [169]. Kamerkar et al. showed reduced clearance of EVs and
liposomes after increasing CD47 expression [152]. This strategy has been further leveraged
by Belhadj et al. into a combined ‘eat me/don’t eat me’ strategy, which consists of first
administering decoy EVs to saturate the RES, followed by CD47-expressing drug-loaded
EVs [170]. Using this strategy, the authors reported increased tumor accumulation of
drug-loaded EVs and improved survival rates in a lung cancer mouse model. This strategy
is also applicable to other NPs and has been shown to be superior to PEGylation by some
studies [171,172].

Additionally, physicochemical properties such as NP size and surface charge impact
systemic circulation time [173–175]. NPs smaller than 5 nm are rapidly excreted through
renal glomerular filtration [176]. Zhang et al., markedly reduced renal clearance of a
PAMAM dendrimer by slightly increasing the size from 4.3 nm to 6.7 nm [176]. Conversely,
NPs larger than 200 nm are more likely to be captured by the RES [177]. Furthermore, in
phospholipid-based NPs, lipid composition can also influence clearance rates [178–180].
More recently, the effect of different NP shapes has gained considerable interest, as it
has been demonstrated that rod-shaped NPs interact with cells less frequently, leading to
decreased clearance by the RES [181–183].

3.2. Nanoparticle Strategies to Enhance Drug Delivery Past the BBB

The inability to cross the BBB and achieve therapeutic concentrations is a significant
drawback of most conventional drugs [19]. While unaltered NPs exhibit some degree of BBB
penetrance, engineered NPs have been developed to improve drug delivery over the BBB.
These formulations exploit biological processes such as endogenous transport pathways or
the migration of mesenchymal stem cells (MSC) and white blood cells (WBC) in response to
tissue damage or inflammation [128,132,184–190]. Other strategies for bypassing the BBB
altogether, such as intranasal delivery, convection-enhanced delivery (CED), or temporary
BBB disruption, are also being investigated in combination with NPs.

3.2.1. Nanoparticle Modifications to Increase BBB Passage

Although their physicochemical properties largely prevent most NPs from crossing
the BBB, they can either inherently or after surface modification take advantage of natu-
ral transcytosis pathways. Transcytosis is a form of active vesicular transport, initiated
by endocytosis from the luminal side of ECs, from where endosomes are sorted to be
degraded in lysosomes, returned to the bloodstream, or transported to the abluminal
side of the EC. In brain capillaries, endocytosis is primarily mediated by clathrin-coated
pits (CPs) [191]. Three pathways are distinguished based on the trigger for endocyto-
sis: adsorption-mediated transcytosis (AMT), receptor-mediated transcytosis (RMT) and
transporter-mediated transcytosis (TMT). Although an in-depth analysis of these path-
ways is beyond the scope of this review, we will provide a summary of the most common
strategies. We kindly refer to reviews from Azarmi et al. and Moura et al. for a more
comprehensive overview [192,193].
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In AMT, endocytosis is initiated after the electrostatic adsorption of cationic particles
to the anionic CPs. While cationic NPs, such as chitosan NPs and certain polyamidoamine
(PAMAM) dendrimers, and NPs functionalized with cationic molecules have been shown
to cross the BBB, AMT intrinsically lacks CNS specificity as negatively charged mem-
branes are virtually universal to all living cells [185,194–196]. In contrast, RMT is a specific
process, triggered by binding an EC surface receptor. Through the conjugation of either
endogenous or engineered ligands for receptors predominantly expressed on brain ECs
onto NPs, CNS-specific delivery of NP-encapsulated drugs can be achieved. Commonly
targeted receptors include transferrin (TfR), lactoferrin (LfR), insulin, and low-density
lipoprotein (LDLR) receptors as well as LDLR-related peptides (LRPs) [197–203]. Some
authors further reported the expression of the nicotinic acetylcholine receptor (nAchR) on
NPs to harness RMT [204]. Due to their potential as a dual target, being widely expressed
in both tumor cells and brain EC, some receptors, such as the TfR, have undergone exten-
sive research [198,205,206]. TfR ligands have been successfully conjugated to lipid-based,
polymeric and inorganic NP, increasing target cell specificity in vitro while providing in-
creased CNS uptake in vivo [206–210]. Using transferrin-coupled temozolomide-loaded
PLGA NPs, Kuang et al. showed increased antitumor activity in a U87 orthotopic xenograft
glioma mouse model [206]. Nonetheless, absolute NP uptake with RMT is usually low [211].

Similar to RMT, TMT is a specific process initiated by binding a transporter present on
the EC surface. The most commonly investigated TMT transporters are GLUT1 and the
glutathione transporter, both serving a dual role, being highly expressed on brain ECs and
many tumor cells [203,212,213]. Critically, however, when targeting endogenous receptors
and transporters important for brain homeostasis, the potential for serious adverse reactions
should be considered, as ligand-coated NPs might competitively inhibit the transport of
important nutrients to the CNS. To this end, a study using TfR-targeted oxaliplatin-loaded
liposomes reported dose-dependent lethargy postinjection in mice [207]. Conversely,
endogenous ligands might outcompete engineered NPs, decreasing the targeting efficiency.

Besides conjugation of targeting moieties, modulation of NP shape provides another
strategy to optimize endocytosis. Anti-VCAM-1, anti-ICAM-1 and anti-TfR-coated PS
nanorods showed increased brain accumulation compared to spherical PS NP in vitro
and in vivo. Interestingly, spherical NPs associated significantly more with brain ECs
than their rod-shaped counterparts, suggesting that spherical shapes increase nonspecific
intercellular interactions [214–216]. Given that most NPs are spherical, this warrants further
investigation of NPs with other shapes.

3.2.2. Cell-Mediated and Cell-Mimicking Drug Delivery over the BBB

Another strategy to potentially enhance BBB passage is by loading NP into cells
capable of migrating over the BBB, such as MSCs and WBCs, or coating them with cell
membranes [217]. This way drug can be protected from degradation while carrier cells
facilitate targeting to the tumor regions [188,189]. MSCs have been intensely investigated
for cell-based therapies due to their regenerative properties and tumor-tropism, making
them a prime candidate for NP-based drug delivery [190,218]. Roger et al. demonstrated the
ability to load PLA NPs and SLN into MSCs without affecting their cell viability or ability to
migrate towards glioma cells in vitro and in vivo in a U87MG orthotopic xenograft glioma
mouse model after administration via CED [219]. Using a U251 heterotopic flank xenograft
glioma mouse model, Li et al. reported prolonged retention and enhanced apoptosis after
intratumoral injection of doxorubicin-loaded silica nanorattles attached to MSCs compared
to both free drug and doxorubicin-loaded silica nanorattles [220]. Similarly, WBCs are
capable of migrating over the BBB towards regions of tissue damage and inflammation [188].
Multiple groups demonstrated the ability of macrophages, neutrophils and T-lymphocytes
to be loaded with different types of NPs [221–225]. Using monocytes as a carrier, Ibarra
et al. showed enhanced accumulation of polymeric NPs in the tumor region of an GL261
orthotopic xenograft glioma mouse model [222]. Importantly, this xenograft model had a
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compromised BBB in the tumor region; therefore, none of these experiments were able to
definitively prove NP passage over an intact BBB.

Rather than loading NPs into live cells, other groups have coated various NPs in
specific cell membranes in order to attain similar benefits. For example, Zhang et al. have
cloaked their NP in MSC membranes to improve BBB passage and tumor targeting, and Ji
et al. packaged doxorubicin in platelet membranes as adjuvant therapy with neurosurgery,
targeting the damaged vascular endothelium at the surgical margins [226,227]. Although
further evaluation is needed, these ‘Trojan horse’-inspired strategies hold promise to
optimize NP delivery.

3.2.3. Bypassing the BBB

Rather than improving BBB penetrance, other strategies have focused on circum-
venting or (temporarily) disrupting the BBB entirely. Widely studied approaches include
intranasal delivery, convection-enhanced delivery (CED), and focused ultrasound (FUS).
While these techniques are also being investigated in combination with conventional drugs,
beneficial effects of NP-encapsulation are being explored.

A systemic first pass effect and the BBB are avoided by intranasal delivery, which
is envisioned by direct uptake via the olfactory and trigeminal neuroepithelia into the
brain parenchyma. Upon intranasal administration of EV-encapsulated curcumin and
JSI-124, a STAT3 inhibitor, Zhuang et al. demonstrated anti-inflammatory effects and
reduced tumor growth in brain inflammation and orthotopic xenograft glioma mouse
models, respectively [228]. Similarly, Sousa et al. reported improved antiangiogenesis,
reduced tumor growth and reduced systemic drug exposure in a U87 orthotopic xenograft
glioma mouse model after intranasal administration of a bevacizumab-loaded PLGA PNP
compared to the free drug [229]. However, the translation relevance of intranasal delivery
from animal models to humans is debated due to the relatively large size of the olfactory
system in rodents, the highly variable administration efficiency, and the limited maximal
doses [230].

CED is a neurosurgical technique that circumvents the BBB by directly infusing drugs
into the brain parenchyma, encompassing the tumor site through the generation of a
mechanical pressure gradient [231,232]. The use of convective kinetics facilitates the ho-
mogenous distribution of infused drugs at high local concentrations with minimal systemic
toxicity [45,233]. Early-phase clinical trials of CED have established the safety and feasibility
of this procedure in children and adults [234–238]. However, inadequate drug distribution
and retention have been largely cited as the reasons for the failure of a phase III CED study
performed in adult GBM [239–241]. Nanoparticle-encapsulated drugs were found to be
retained in situ for longer than free drugs alone in prior in vivo experiments using CED
of nanoparticles [242]. Zhang et al. further demonstrated the enhanced in vivo distribu-
tion of PEGylated liposomal doxorubicin compared to free doxorubicin in a tumor-naïve
mouse model [243]. MTX110, a water-soluble nanoparticle formulation of panobinostat,
distributed effectively in the brains of small and large animals following CED without
clinical or neuropathological signs of toxicity up to an infused concentration of 30 µM and is
currently undergoing clinical development [33,244]. Preliminary data from seven patients
who received two 48 h MTX110 infusion pulses (30 or 60 µM) showed some encouraging
signs of antitumor activity with repeated CED of MTX110 [237].

Lastly, a legion of options has been explored to improve brain–drug delivery via the
temporary disruption of the BBB, including osmotically active agents such as mannitol
and mechanical methods such as focused ultrasound (FUS). However, disruption of the
BBB does not uniformly result in increased drug penetration into the brain, as it does
not only increase influx but also facilitates rapid clearance out of the brain [245,246].
Notwithstanding, Nance et al. showed improved delivery of long-circulating PEGylated
PS PNPs to the brain using MRI-guided FUS, suggesting that local and temporary BBB
disruption in combination with longer circulating NP might improve the in vivo efficacy of
administered therapeutics [247].
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3.3. Nanoparticle Modifications to Increase Delivery to Brain Tumor Cells

After crossing or bypassing the BBB, the extracellular matrix (ECM) of the brain
parenchyma forms another biological barrier NPs need to navigate to reach the target
cell. While the ability to move throughout the ECM is inversely correlated with NP size,
mechanical adhesion can severely limit the diffusion of NPs of any size [248]. Nance et al.
demonstrated that uncoated PS PNPs of all sizes are immobilized by adhesion, and while
densely PEGylated paclitaxel-loaded PLGA nanoparticles could readily move through the
ECM, uncoated PLGA NPs could not [248]. The authors concluded that densely PEGylated
NPs with a near-neutral charge and a size of <114 nm are most optimal for diffusion
through the brain parenchyma after systemic administration. Building on these findings,
Schneider et al. produced a PEGylated PS PNP decorated with a ITEM4 monoclonal
antibody targeting fibroblast growth factor-inducible 14 (Fn14), which is highly expressed
in high-grade glioma. The authors demonstrated specific targeting of glioma cells with
retained ability to navigate the ECM in rat brain tissue and in a U87 orthotopic xenograft
glioma mouse model using CED [249].

This combination of surface modifications, including targeting antibodies and pep-
tides, is frequently used to enhance drug delivery specifically to the targeted tumor cell.
While in solid tumors outside the CNS, NPs provide passive accumulation through the
enhanced permeability and retention (EPR) effect (i.e., preferential tumor accumulation of
nanosized particles through leaky vessels ensuing tumor-induced neoangiogenesis and
accompanying inflammatory response), it is unclear whether this concept is directly trans-
latable to brain tumors due to the unique characteristics of the BBB [250,251]. Even though
passive accumulation might still occur to a certain degree through tumor-induced BBB
disruption, tumor-specific targeting moieties have been used across NP classes to increase
brain tumor cell delivery [185,252–254].

The most intensely investigated targets for drug delivery to high-grade gliomas are
vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR),
including the truncated, constitutively active variant EGFRvIII [67,106,255,256]. Other
commonly investigated moieties are TfR-ligands, as discussed above, and chlorotoxin,
targeting a chloride ion channel and matrix metalloprotease 2, which have all been shown
to be overexpressed in different neuroectodermal tumors [187,206–210,257,258]. Several of
these ligands have been successfully conjugated to drug-loaded NPs and demonstrated
to increase cytotoxicity and tumor cell selectivity in vitro and CNS accumulation in vivo
in orthotopic xenograft glioma mouse models [67,106,229,255,256,258]. However, studies
have reported the reliance on the overexpression of the target receptor in the used tumor
models [67,106].

Notwithstanding the promising preclinical data, the lack of successful clinical trans-
lation highlights the inherent limitations of targeting specific receptors due to inter- and
intratumoral heterogeneity, expression changes upon treatment, and the generation of
alternative oncogenic mutations, which all promote the development of treatment resis-
tance [53,259,260].

4. Novel Strategies and Future Directions

Notwithstanding the aforementioned strategies to specifically design CNS-targeted
NPs with promising preclinical data, no successful clinical translation has been achieved.
However, novel technologies are under investigation to further improve NP-based brain
tumor therapy by combining several treatment modalities and defining new therapeutic
targets (Figure 4).
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Figure 4. Novel strategies in NP-mediated drug delivery. (a) Complex NPs have been constructed,
combining magnetic properties, tumor microenvironment (TME)-responsive elements, and multiple
targeting strategies into one NP platform for drug delivery. (b) After injection, magnetic NPs can
increase targeting efficiency using magnetic convection-enhanced diffusion to the region of interest.
Furthermore, magnetothermal and radiosensitizing properties allow for additional therapeutic
benefits. (c) Dual-targeting strategies for recognition of both the blood–brain barrier and brain tumor
cells are commonly implemented. (d) TME-responsive elements can increase site-directed delivery
by allowing cargo release when encountering specific molecules abundant in the TME, e.g., reactive
oxygen species (ROS). Abbreviations: NP = nanoparticle, EC = endothelial cell, CNS = central nervous
system. Created with BioRender.com.

While many NPs mainly focus on the efficient, targeted delivery of drugs, magnetic
NPs, e.g., iron oxide (loaded) NPs, exhibit unique properties, allowing additional ther-
apeutic benefits [261]. Using external magnetic fields, brain targeting can be improved
using magnetic convection-enhanced diffusion, usually in combination with regular tumor-
targeting ligands [262–265]. Furthermore, magnetic NPs induce local magnetic hyper-
thermia when exposed to alternating magnetic fields, providing a noninvasive method to
impart local cell death, and act as a radiosensitizer, potentiating the effect of concomitant
radiotherapy [266,267]. Similarly, AuNPs display a photothermal effect, providing the
possibility of local hyperthermia induction using near-infrared light, while also being a
potent radiosensitizer [268–270]. As such, the potential of these NPs to potentiate radiother-
apy efficacy, improve chemotherapy delivery, and simultaneously allow additional local
hyperthermal therapy is offering perspectives to reinforce the current treatment regimens.

The emerging appreciation of the tumor microenvironment (TME) allows ample
opportunities for novel NP-based therapies, providing new therapeutic targets and creating
new possibilities for TME-responsive NPs to improve site-specific delivery. For example,
Hsieh et al. produced a CNS-targeted NP delivering small interfering RNA (siRNA) to
silence PD-L1 expression in a GBM mouse model, increasing cytotoxic T cell infiltration and
suppressing tumor progression [271]. Furthermore, several groups have created reactive
oxygen species (ROS)-responsive NPs, which release their cargo when encountering high
ROS concentrations as present in the GBM TME [272–274]. Seeing that novel adoptive
cellular therapies are currently limited by the immunosuppressive TME and cell-mediated
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NP delivery has been successful preclinically, combination regimens of adoptive cellular
therapies with NP-based TME modulation are under intense investigation [275,276]. Chang
et al. introduced MSN loaded with the hypoxia-activated prodrug tirapazamine into anti-
GBM chimeric antigen receptor (CAR) neutrophils. In a mouse model, the CAR neutrophils
effectively delivered the MSN to the tumor, significantly inhibiting tumor growth and
prolonging survival through the combined effect of the CAR neutrophils and the local
drug delivery [277]. Furthermore, in solid tumors outside the CNS, pretreatment with
TME-modulating NPs or NP-mediated photothermal therapy have also shown promising
results, although this has yet to be evaluated in CNS tumors [278,279].

Increasingly, highly complex NPs are being engineered, combining multiple NP types,
multiple targeting strategies and various treatment modalities in order to surmount the
different biological barriers [226,265,272]. Zhang et al. produced a nanocapsule loaded
with anti-VEGFR2 antibodies (inhibiting angiogenesis) crosslinked to anti-CPT1C siRNA
(an essential protein for fatty acid oxidation) by a ROS-responsive disulfide crosslinker.
The surface was decorated with 2-Deoxy-D-Glucose, a glycolysis inhibitor that is also a
substrate for GLUT1, allowing for TMT over the BBB and targeting to the tumor cells. Upon
encountering ROS in the TME, the anti-VEGFR2 antibodies, CPT1C siRNA and 2-Deoxy-D-
glucose are released, inhibiting angiogenesis, fatty acid oxidation and glycolysis pathways,
killing the tumor cells by effectively blocking their energy supply [272]. Another example
was recently published by Li et al., combining angiopep-2-decorated EVs, targeting the LRP-
1 receptor, with a magnetic NP consisting of an iron oxide core surrounded by a mesoporous
silica shell, allowing for both ligand-mediated and magnetic targeting. The EVs were
loaded with GPX4 siRNA and the mesoporous silica shell decorated with a dihydroorotate
dehydrogenase inhibitor, targeting two important ferroptosis defense pathways, inducing
cell death through their combined effect [265]. Similarly, Zhang et al. produced a CNS
targeted, MSC membrane-coated, pH-responsive, cupper-based NP loaded with siRNA
to induce cuproptosis, a recently uncovered form of cell death [226]. Considering the
complexity of these NP platforms reflects the diversity of biological barriers that has to be
surmounted, continued efforts are needed in order to achieve effective NP-based treatment
strategies for CNS neoplasms.

5. Summary and Conclusions

To date, the therapeutic impact of advances in our knowledge of CNS tumors has been
significantly hindered by the unique biology which surrounds these tumors, namely the
blood–brain barrier, which not only prevents the entry of the vast majority of therapeutics,
but actively removes them from the CNS space via the activity of efflux transporters. To
overcome the vexing challenges posed by the BBB and increase the CNS tumor therapeutic
exposure time, a variety of strategies utilizing nanoparticles have been developed, which
enable greater delivery and retention of therapeutics at the site of disease. One such
strategy in the CNS targeting nanoparticle space entails the modification of therapeutic-
containing nanoparticles with groups which will induce nanoparticle transport into the
CNS via transcytosis. To achieve this, nanoparticles are modified with ligands for receptors
highly expressed on CNS endothelial cells which when bound will induce transcytosis.
Alternatively, the nanoparticle can be modified with a substrate for a transporter highly
expressed on CNS endothelial cells which, when bound, similarly induces transcytosis.
Ideally, these receptors/transporters are both highly expressed on the CNS endothelial
cells and on the tumor itself, as is the case for transferrin and GLUT1, respectively. Another
approach for facilitating nanoparticle BBB circumvention involves hitching a ride with cells
which are already able to enter the CNS, and which have innate tumor-tropic active homing
ability. Examples of this approach have utilized MSCs and various WBCs, and although—to
our knowledge—this strategy has yet to be tested in an animal model with an intact BBB,
enhanced accumulation of NPs in the tumor region of orthotopic xenograft glioma mouse
models has been demonstrated, indicating significant promise for the approach.
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In addition to strategies which solely rely on the nanoparticle to bypass the BBB,
strategies have been devised which make use of nanoparticles in combination with unique
delivery methods which are designed to disrupt the BBB or bypass it entirely. These
approaches include intranasal delivery, convection-enhanced delivery, and focused ultra-
sound. The first two delivery methods are intended to bypass the BBB, while the third
attempts to temporarily disrupt the BBB, allowing therapeutics to reach the site of disease.
By combining these delivery approaches with nanoparticle formulations which have an
enhanced volume of distribution and extended therapeutics release profile, the hope is
that the retention of therapeutics at the site of disease can be increased, and, thus, ther-
apeutic efficacy can be achieved. These combination approaches also have the benefit
of overcoming one of the major hurdles in the nanoparticle therapeutics space, namely,
rapid clearance from the bloodstream by the RES. By directly delivering nanoparticles to
the site of disease, this problem of rapid clearance can be ameliorated. Alternatively, the
modification of nanoparticles with PEG has been shown to increase circulation time by
helping the nanoparticles evade the RES. It is, however, unclear how PEGylation impacts
BBB penetration ability, with some studies indicating enhanced penetrance and others
indicating diminished BBB penetration. It has also been shown that CD47 expression
on nanoparticles can prevent phagocytes from clearing the nanoparticles. Although in
its infancy, this strategy of modifying nanoparticles with antiphagocytosis signals holds
the promise of helping to defeat rapid nanoparticle clearance by the RES. Increasingly,
complex nanoparticles combining several of these strategies and/or exhibiting additional
magnetothermal, photothermal, or radiosensitizing effects are being evaluated and are
combined with other treatment modalities. In this review, we have covered the current state
of the CNS-tumor-targeting nanoparticle space, highlighting the breadth of nanoparticle
types being investigated for this use, the strategies being employed to circumvent the BBB,
and some of the recent advances in combining nanoparticles with unique delivery methods
to overcome the myriad challenges posed by the unique biology surrounding CNS tumors.
Taken together, there is significant merit in the continued investigation and development of
nanoparticles as therapeutic delivery vehicles for the treatment of CNS tumors in order to
translate the successful preclinical investigations into the clinic.
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62. Szebeni, J.; Bedőcs, P.; Rozsnyay, Z.; Weiszhár, Z.; Urbanics, R.; Rosivall, L.; Cohen, R.; Garbuzenko, O.; Báthori, G.; Tóth, M.; et al.
Liposome-induced complement activation and related cardiopulmonary distress in pigs: Factors promoting reactogenicity of
Doxil and AmBisome. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 176–184. [CrossRef] [PubMed]

63. Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA
Delivery. Mol. Ther. 2019, 27, 710–728. [CrossRef] [PubMed]

64. Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [CrossRef]
[PubMed]

65. Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers
2011, 3, 1377–1397. [CrossRef]

66. Song, E.; Gaudin, A.; King, A.R.; Seo, Y.E.; Suh, H.W.; Deng, Y.; Cui, J.; Tietjen, G.T.; Huttner, A.; Saltzman, W.M. Surface chemistry
governs cellular tropism of nanoparticles in the brain. Nat. Commun. 2017, 8, 15322. [CrossRef]

67. Banstola, A.; Duwa, R.; Emami, F.; Jeong, J.-H.; Yook, S. Enhanced Caspase-Mediated Abrogation of Autophagy by Temozolomide-
Loaded and Panitumumab-Conjugated Poly(lactic-co-glycolic acid) Nanoparticles in Epidermal Growth Factor Receptor Overex-
pressing Glioblastoma Cells. Mol. Pharm. 2020, 17, 4386–4400. [CrossRef]

68. Jackson, C.L.; Chanzy, H.D.; Booy, F.P.; Drake, B.J.; Tomalia, D.A.; Bauer, B.J.; Amis, E.J. Visualization of Dendrimer Molecules
by Transmission Electron Microscopy (TEM): Staining Methods and Cryo-TEM of Vitrified Solutions. Macromolecules 1998, 31,
6259–6265. [CrossRef]
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