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Abstract: Human papillomavirus types 16 and 18 cause the majority of cervical cancers worldwide.
Despite the availability of three prophylactic vaccines based on virus-like particles (VLP) of the major
capsid protein (L1), these vaccines are unable to clear an existing infection. Such infected persons
experience an increased risk of neoplastic transformation. To overcome this problem, this study
proposes an alternative synthetic long peptide (SLP)-based vaccine for persons already infected,
including those with precancerous lesions. This new vaccine was designed to stimulate both CD8+
and CD4+ T cells, providing a robust and long-lasting immune response. The SLP construct includes
both HLA class I- and class II-restricted epitopes, identified from IEDB or predicted using NetMHC-
Pan and NetMHCIIPan. None of the SLPs were allergenic nor toxic, based on in silico studies.
Population coverage studies provided 98.18% coverage for class I epitopes and 99.81% coverage for
class II peptides in the IEDB world population’s allele set. Three-dimensional structure ab initio
prediction using Rosetta provided good quality models, which were assessed using PROCHECK and
QMEAN4. Molecular docking with toll-like receptor 2 identified potential intrinsic TLR2 agonist
activity, while molecular dynamics studies of SLPs in water suggested good stability, with favorable
thermodynamic properties.

Keywords: human papillomavirus; cervical cancer; therapeutic vaccine; epitopes; molecular docking;
in silico; synthetic long peptides
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1. Introduction

Cervical cancer represents the fourth most common neoplastic lesion among women
worldwide [1], with an estimated 604,000 new cases and 342,000 deaths in 2020. 90%
of newly diagnosed cancers, with most deaths occurring in middle- and low-income
countries [2]. The human papillomavirus (HPV) infection is responsible for most cases [3].
Besides cervical carcinoma, HPV is also responsible for uterine pre-neoplastic lesions
(cervical intraepithelial neoplasia, CINs) that require a rigorous screening process through
cytological examination and prompt therapeutic interventions [4].

Human papillomaviruses (HPVs) are double-stranded, circular DNA viruses with
high epithelial tropism. The 48 species and 206 genotypes are clinically classified based
on their carcinogenic potential: high risk (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73,
82) and low risk [5]. While high-risk types present a more aggressive behavior that leads
to neoplastic transformation, low-risk HPVs give rise to benign papillomatous lesions,
such as anogenital warts (condyloma acuminata). Among the high-risk species, HPV-16
and HPV-18 are the most prevalent ones, being responsible for up to 77% of all cervical
cancers [1,5,6]. The prevalence of the other genotypes is far lower: in Europe, HPV-33 and
HPV-45 are ranked the 3rd and 4th most prevalent, with a prevalence in carcinomas of only
4.4% and 4.3%, respectively [6].

The HPV genome is a circular, double-stranded DNA that encodes 6 early genes (E1,
E2, E4, E5, E6, and E7) and 2 late genes (L1 and L2) [7]. A non-coding region that contains
the early promoter and regulatory elements plays a major role in viral replication [8].

E6 and E7 proteins promote tumorigenesis by disrupting the apoptotic pathways
while promoting angiogenesis, invasion, metastasis, and telomerase activity.

E6 interacts with E6AP to form a complex that degrades p53, allowing cells to bypass
cell cycle checkpoints and proliferate uncontrollably. Moreover, p53 degradation also leads
to underexpression of thrombospondin-1 and maspin, and overexpression of HIF-1α and
IL-8, promoting blood vessel formation.

E7 degrades pRb, activating E2F and promoting premature entry into the S phase of
the cell cycle. Enhanced telomerase activity occurs through the upregulation of hTERT
and degradation of NFX1 (hTERT repressor), leading to increased telomere replication. E6
and E7 facilitate invasion and metastasis by activating transcription factors involved in
epithelial-mesenchymal transition, such as Slug, Twist, and ZEB1/2 [9].

E6- and E7-dependent downregulation of MHC class I and class II molecules, E-
cadherin, and CCL20 [10] leads to (1) a reduction in epitope presentation by dendritic cells
and antigen recognition by T cells; (2) impairment of antigen-presenting cell (APC)-infected
keratinocyte interaction; and (3) loss of positive chemotactic signals for Langerhans cells
(LC). Consequently, viral DNA integration into the host genome, with subsequent nucleic
acid replication and transcription, is achieved in the presence of a hampered immune
response [11].

Compared to healthy keratinocytes, (pre)malignantly transformed cells express E6 and
E7 early proteins, making them suitable candidates for protein/peptide-based therapeutic
vaccines [10].

Prevention is key for HPV-related illnesses and involves proper sexual hygiene, along
with vaccination. The current vaccination platform utilizes virus-like particles (VLPs)
containing the highly immunogenic L1 capsid protein to produce high titers of protective
neutralizing antibodies against future HPV infections. The three commercially available
vaccines, Gardasil (against HPV-16 and -18), Cervarix (against HPV 6-, 11-, 16-, and -18),
and Gardasil-9 (HPV-6, 11, 16, 18, 31, 33, 45, 52, 58) [12] provide almost 100% protection
against high-risk viral types in women between the ages of 9 and 26 years old [5]. However,
the vaccine is ineffective against a preexisting infection, which greatly limits its usefulness
in adults who have already started their sexual life. The poor vaccine availability in
developing countries, exacerbated by the COVID-19 pandemic, can be attributed to low
cost-effectiveness, a worldwide shortage of HPV vaccine doses, and a deficit of medical
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and administrative personnel [13]. In addition, low vaccination rates among boys and men
contribute to the unsuccessful decline of skin and mucosal cancers worldwide [14].

The three available vaccines exert a highly potent prophylactic effect by interfering
with the adhesion of HPV to keratinocytes, thus preventing the infection and disabling
the pathway to malignant keratinocyte transformation (primary prevention). However,
vaccination has no effect on persistent infection due to the lack of L1 antigen expression in
basal and neoplastic epithelial cells, and, as a consequence, subsequent DNA integration
may lead to malignant transformation [15].

Once malignant transformation occurs, cervical cancer treatment strategies vary from
surgical resection to radio chemotherapy and immunotherapy, based on the level of dyspla-
sia, tumor dimensions, lymph node invasion, and distant site metastasis. All therapeutic
actions present a high risk of adverse effects (including psychosocial and psychosexual
problems) and do not guarantee total tumor cell clearance [8]. Furthermore, as chemother-
apy is non-specific, it often causes treatment-associated cytotoxicity [16].

Therapeutic HPV vaccination can be employed to cure the infection (secondary pro-
phylaxis) or to target malignant tumors. This approach stimulates the differentiation of
naïve T cells into effector CD8+ cytotoxic T cells and CD4+ T helper cells. The result is
a CD8+-dependent cytotoxicity against virally infected or malignantly transformed ker-
atinocytes, with increased pro-inflammatory cytokine release by the CD4+ Th1 cells. The
objective during secondary prophylaxis is the full resolution of the HPV infection before
any malignant transformation occurs.

By using minimal antigenic components, peptide-based vaccination allows a safer and
more controlled targeted immune response.

Peptide-based vaccines express increased stability during storage and transport, while
being easily synthesized with high purity and yield via chemical or biological methods [17].
Although their immunogenicity and stability may be poor in vivo, these caveats can be
overcome by combining multiple peptides into a single construct, and by simultaneous
administration of adjuvants such as toll-like receptor agonists.

Peptide-based strategies utilize either highly conserved epitopes (overcoming the
effect of point mutations on antigen presentation) or a variety of highly immunogenic anti-
genic determinants. Single epitope strategies are mainly based on CD8+-restricted epitopes
that can be easily cleaved by extracellular peptidases. To improve their stability and potenti-
ate the immune response, CD8+-restricted epitopes can be combined with CD4+-restricted
epitopes in synthetic long peptide constructs. The result is a potent, specific, cytotoxic T cell
response against virally infected cells, amplified by the CD4+-mediated pro-inflammatory
cytokine secretion.

The combination of an HLA class I-restricted epitope with an HLA class II-restricted
epitope and a cleavable linker provides a bidirectional stimulation of the T cell population
via canonical antigen presentation (HLA class II-CD4+ cell interaction), along with the
cross-presentation of class I-restricted epitopes to CD8+ T cells.

In this study, we present the design of a therapeutic synthetic long peptide-based
vaccination platform, targeting patients with persistent HPV-16 and HPV-18 infections
using an immunoinformatic approach.

2. Materials and Methods
2.1. HPV-16 and -18 Peptide Identification from the IEDB Database

Epitopes from E6 and E7 proteins belonging to HPV-16 and -18 types were extracted
from the publicly available Immune Epitope DataBase (IEDB), which contains approx-
imately 260,000 antigenic sequences collected from over 20,000 curated, peer-reviewed
publications [18]. The search criteria included: (a) linear peptides; (b) belonging to HPV-16
(Alphapapillomavirus 9) or HPV-18 (Alphapapillomavirus 7); (c) the host was selected to be
human; (d) the disease was selected to be infectious; (e) T cell-based assays.
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2.2. Neo-Antigen Prediction Using Artificial Neural Networks

To enhance the recognition repertoire, neo-epitopes were predicted using an artificial
neural network-based model from IEDB Tools.

IEDB Tools provides 2 consensus ANN-based algorithms that predict epitopes present
in a specific protein with a high probability to bind to a user-specified HLA allele dataset.
Class I and class II prediction tools estimate, for each peptide, an IC50 and a percentile
rank, reflecting the ability of a specific peptide to bind to a particular HLA molecule and
elicit a potent immune response.

For neo-antigen prediction, FASTA sequences of the E6 and E7 proteins were accessed
from the NCBI Database. The HLA class I and class II dataset recommended by the IEDB
were used. For the selection of strong class I binders, we used the IEDB recommendations
of an IC50 below 50 nM, and a percentile rank < 2%. In the case of class II strong binders,
an IC50 < 50 nM, along with a percentile rank < 10%, were considered.

2.3. Allergenicity and Toxicity in In Silico Screening

As peptides may trigger an IgE-mediated hypersensitivity reaction which may mani-
fest clinically from skin rash and pruritus to severe anaphylactic reactions, allergenicity
prediction is an important selection process for peptide design. In addition, toxicity screen-
ing is mandatory, given the fact that many animal venoms contain peptides with potent
neuro- and hematotoxic activity. To prevent unwanted hypersensitivity or toxic reactions,
peptides were screened in silico for allergenicity and toxicity.

The allergenicity prediction assay was performed using AllerCatPro v.2.0, a web-
based algorithm that identifies, for a given FASTA sequence, both linear and discontin-
uous epitopes with allergenic potential through a hexamer hit screening, a gluten-like
pattern recognition, and a 3D structure comparison with 4180 already known allergenic
proteins [19].

ToxIBTL is a hybrid deep-learning model that classifies both short and long amino acid
sequences. The screening algorithm involves peptide sequence encoding as a BLOSUM62
scoring matrix. Then, the evolutionary information from the BLOSUM62 matrix is inputted
into a 2D convolutional neural network that uses the ReLU non-linear activation function
to extract correlations between amino acids [20].

To extract features from protein sequences, the FEGS model is used. FEGS extracts
graphical and statistical features of peptide sequences based on 158 physicochemical
properties of amino acids. Hence, each peptide is transformed into a 158-dimensional
numerical vector. For each property, the amino acids are represented graphically on a right
circular cone with a height of 1. Then, a 3D graphical curve of the peptide is constructed.
The corresponding 2D non-symmetrical matrix for a given physicochemical property is
constructed and its largest eigenvalue is determined [21].

Combining statistical features, such as amino acid and dipeptide composition, the
vectors are refined, using the information bottleneck principle, and fed to a ReLU activation
function layer and a sigmoid. The result shows the probability that a given peptide/protein
is toxic. The values range from 0 to 1 and a score > 0.5 reflects toxicity [20].

2.4. Population Coverage Analysis

Optimal peptide vaccine production requires careful analysis of the most frequent
HLA alleles that bind the peptide set. Peptides bind with various affinities to specific
human leukocyte antigen (HLA) molecules. By knowing the affinity of each peptide to
certain HLA molecules and the allele frequency in the world population, the population
coverage of a given peptide set can be computed. The IEDB population coverage analysis
tool inputs peptides with specific HLA-binding repertoire and calculates the percentage of
a population of interest that is covered by the peptide pool [22]. The HLA class I and class
II allele reference dataset was used for population coverage analysis.
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2.5. Peptide Selection Criteria

The main criteria for epitope selection included a high antigenicity score, high promis-
cuity (binding to a larger number of HLA alleles), non-toxicity, non-allergenicity, and
favorable physicochemical properties.

2.6. Design of Synthetic Long Peptide Construct Linker Selection

Our proposed vaccine candidates comprise two subunits joined by the designed
cleavable linker, LRMK. Each subunit consists of an N-terminal class II-restricted epitope,
the cathepsin-sensitive linker LLSVGG, and a class I-restricted antigenic sequence at the
C terminus.

The rationale for this construct is based on the following hypotheses:

1. HLA class II molecules are less restrictive in peptide size and may bind larger epitopes,
including linker fragments.

2. Endoplasmic reticulum aminopeptidases (ERAPs) cleave the remaining class I epitope
bound to the linker fragment, therefore fitting the class I-restricted molecule inside
the HLA class I-binding pocket.

3. Rabu et al. described a 100-fold increase in antigen presentation and cross-presentation
of synthetic long peptides by dendritic cells by using the LLSVGG cathepsin-sensitive
linker, compared to other linkers (LVGS, LLSV, GGGG, etc.) [23].

4. ERAP1 has a higher specificity for hydrophobic amino acids such as leucine and
methionine, while ERAP2 cleaves basic residues such as lysine or arginine [24].

5. The LRMK linker is also a good substrate for cathepsin S, enhancing cross-presentation
and providing protective cellular immunity against overlapping peptide proteins [25].

2.7. Physicochemical Properties of Synthetic Long Peptides

Peptide candidates were characterized based on their physicochemical properties
using the ProtParam library for BioPython.

Guruprasad et al. demonstrated, based on a statistical analysis performed on 32
stable and 12 unstable proteins, that the instability of a polypeptide chain correlates with
the presence of specific dipeptides. From these observations, the authors described the
instability index (II) which correlates with poor stability in vivo when greater than 40 [26].

The Grand Average of Hydropathy (GRAVY) was computed by the addition of hy-
dropathy values, determined by Kyte and Doolittle [27], of all amino acids contained
in each SLP and divided by the total number of residues. A positive GRAVY value is
correlated with an overall hydrophobic polypeptide, whereas a negative value suggests
hydrophilicity [28].

2.8. Antigenicity Assay Using VaxiJen 2.0

Vaxijen 2.0 is the first alignment-independent antigenicity prediction based exclusively
on the physicochemical properties of a given peptide/protein. The prediction method
relies on auto-cross-covariance (ACC) transformation of amino acid sequences into vectors
of equal length containing the principal z-descriptors. The z-descriptors of amino acid
sequences were established by Hellberg et al., based on the principal component analysis
(PCA) of 29 amino acid physicochemical properties and dependent upon hydrophobicity
(z1), geometric features (z2), and polarity (z3) [29]. The output of VaxiJen is a score that
reflects the probability of an amino acid sequence to be antigenic. A VaxiJen score greater
than 0.4 (the viral antigen threshold) reflects probable antigenicity [30].

2.9. 3D Structure Prediction

Three-dimensional structure prediction was performed using the Rosetta ab initio pro-
tocol. For each synthetic long peptide, 3-mer and 9-mer fragment libraries were generated
using Robetta (http://old.robetta.org/fragmentsubmit.jsp, accessed on 1 February 2023),
by searching in the Protein Data Bank (PDB) for all known conformations that a 3-mer or
9-mer can adopt inside an already solved protein structure. Fragment assembly generates

http://old.robetta.org/fragmentsubmit.jsp
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models with different conformations based on physicochemical interactions between amino
acid residues, and on the probabilities that specific backbone orientations are conserved
throughout evolution. The physico-chemical parameters, along with the statistical terms,
are used by the Rosetta scoring function, ref2015, to attribute to each synthetic long peptide
a Rosetta score [31].

For each SLP structure, we generated 10,000 decoys, which were clustered based on
their Rosetta score and root mean square deviation (RMSD) from the initial conformation.
Because E6 and E7 proteins from HPV-16 and HPV-18 are already solved and stored inside
PDB, the initial conformation for each SLP was determined by homology modeling, using
SwissProt. From the best cluster (lowest RMSD and lowest Rosetta score) the model with
the lowest Rosetta score was selected for further analysis.

2.10. 3D structure Validation QMEAN Score Ramachandran Plots

Overall stereochemical quality assessments of the generated models was performed
using PROCHECK, and the corresponding Ramachandran plots were drawn. Global quality
analysis was computed using SWISS-MODEL’s Quality Model Energy Analysis (QMEAN)
score. The QMEAN scoring function is a weighted sum of structural descriptors which
describe the local molecular geometry (3-mer torsion potentials), long-range interactions
(Cβ-all atom interactions), solvation potential, and solvent accessibility. QMEAN scores
range from 0 to 1, with 0 representing a poor-quality model, and 1 representing a high-
quality model. Additionally, the Z-score reflects the QMEAN score comparison between
the input sequence and a non-redundant set of NMR or X-ray crystallography-solved
PDB structures. A Z-score value closer to 0 suggests that the analyzed polypeptide chain
possesses fragments with similar conformations to native protein structures, while a Z-score
below −4 indicates a low-quality model [32].

A good-quality model was considered to have > 90% of the total residues in the
allowed regions, with no aberrant values of the ϕ and ψ angles, a > 0.5 QMEAN4 score,
and a QMEAN Z-score above −2.0.

2.11. Molecular Docking Studies with Toll-Like Receptor 2

Besides adaptive immunity, an investigation of potential innate immune system acti-
vation by synthetic long peptides is required.

Toll-like receptor 2 (TLR2) is a membrane-bound protein that recognizes pathogen-
associated molecular patterns (PAMPs) and triggers inflammatory cytokine production
and release. In addition, it activates the dendritic cells and improves antigen presentation.
Its biochemical structure comprises an extracellular domain, containing 10–30 leucine-rich
repeats that recognize PAMPs, a transmembrane region, and a cytoplasmic domain, which
plays an important role in signal transduction and subsequent inflammatory cytokine
release [33].

To assess the capacity of SLPs to bind TLR2, molecular docking studies using HAD-
DOCK were performed.

HADDOCK 2.4 is a molecular docking script collection that accesses the Crystallogra-
phy and NMR System (CNS) experimental library, along with geometric and energy-based
calculations for guiding the docking process.

The HADDOCK protocol begins with the identification of the most geometrically
favorable binding surfaces between the ligand (SLP) and the receptor (TLR2). During
this step (it0), both the ligand and the receptor are treated as rigid objects. HADDOCK
generates 1000 models in this step, but only the top 200 decoys are kept for further analysis.
The next step is a three-step molecular dynamics-based flexible docking protocol, in which
the torsion angles between the interacting residues are adjusted to maximize the number
of strong intermolecular bonds (ionic interactions, hydrogen bonds). The last step is an
energy minimization protocol consisting of a short molecular dynamic simulation at 300 K
in a box of water molecules (TIP3P model). The latter step further adjusts the torsion angles
to minimize the area accessible for solvent molecules [34,35].
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2.12. Binding Affinity Calculation Using the PRODIGY Webserver

For binding energy and dissociation constant calculation, we used the PRODIGY
webserver. PRODIGY (PROtein binDIng enerGY prediction) uses a linear regression model
based on the number of interfacial contacts (polar/apolar/charged) between the receptor-
ligand (TLR2-SLP) interacting residues. Two residues are considered in contact if the
distance between them is <5.5 Å [36,37].

Starting from the binding affinity (∆G), the dissociation constant (Kd) can be calculated:

∆G = RT ln Kd

where R—ideal gas constant (0.082 kcal × K−1 × mol−1), T—temperature (K).

2.13. Molecular Dynamics (MD) Simulations

To better understand the interactions between the peptide and the solvent, as well as
the stability and dynamics of the peptide over time, MD simulations were performed using
the GROMACS 2023.1 package.

The selected force field was OPLS-AA. Each SLP was solvated using the SPC/E water
model in a cubic box with a volume of 300 nm3 and centered. Electrical neutralization of the
system was performed by adding Na+ and Cl− ions. Each simulation started with energy
minimization for 5000 steps, using the steepest descent method, which involved finding
the minimum energy configuration of the system by iteratively adjusting the positions of
the atoms until the forces acting on them were minimized [38].

After minimization, three MD simulation steps were performed: NVT, NPT, and MD
production run.

NVT (constant number of particles, constant volume, constant temperature) equili-
bration was performed using the v-rescaled Berendsen thermostat [39], while the NPT
(constant number of particles, constant pressure, constant temperature) equilibration was
done with the Parinello-Rahman barostat [40]. Both MD simulations were performed for
100 ps. The electrostatic interactions were computed using the particle-mesh Ewald (PME)
method [41] and the linear constraint solver (LINCs) [42].

Finally, a full molecular dynamics simulation of the system of 100 nanoseconds (ns)
with periodic boundary conditions was performed. This allowed the simulation to capture
the behavior of the peptide in a solvent environment (water) over an extended period. Each
MD production simulation was performed at 300 K for 100 ns, with a time step equal to
2 fs (0.002 ps). The MD trajectories were analyzed using gmxrms (for root mean square
deviation, RMSD), gyrate (for radius of gyration, Rg), gmxrmsf (for root mean square
fluctuation, RMSF), and gmx sasa packages, which provided information about the stability
and conformation of the peptides over time.

The root mean square deviation (RMSD) quantifies the differences between the initial
and simulated conformations of a molecule over time. The RMSD is calculated as the root
mean square of the distances between backbone corresponding atoms in the two structures.
These distances are calculated after the two structures have been superimposed, so that
their centers of mass are aligned:

RMSD (a, b) =

√
1
n

n

∑
i=1

[
(aix − bix)

2 +
(
aiy − biy

)2
+ (aiz − biz)

2
]

where n—total number of atoms, aix, aiy, aiz, bix, biy, biz—coordinates of atom i from the
initial conformation and the simulated conformation b on the x, y, and z-axes;

A lower RMSD value indicates that the simulated structure closely resembles the
experimental structure, while a higher RMSD value suggests a significant conformational
change. RMSD dynamics were also evaluated, with subtle changes over time reflecting
high stability.
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The root mean square fluctuation (RMSF) evaluates the flexibility of an amino acid
residue i by determining its deviation from the average position of the residue over the
course of the MD simulation:

RMSFi =

√√√√ 1
T

T

∑
t=1

(
ri(t)− rre f

i

)2

where T—duration of MD simulation, t—timestep, ri(t)—coordinates of atom i at timestep
t, ri

ref—coordinates of atom i in the initial (reference) conformation.
The RMSF was used to identify the most flexible and rigid regions of a molecule. A

high RMSF value for a residue indicates high mobility and flexibility, while a low RMSF
value indicates a relatively rigid amino acid.

The radius of gyration (Rgyr) is defined as the root mean square distance of the atoms
from the molecular center of mass:

Rgyr =

√√√√ 1
M

N

∑
i=1

mi(ri − R)2

where Rgyr—radius of gyration, M—total mass of the molecule, R—the center of mass
for the molecule, mi—mass of the atom i, ri—distance of atom i from the origin of the
cartesian system.

Therefore, Rgyr reflects the size, shape, flexibility, and stability of a molecule in molec-
ular dynamics simulations.

A smaller Rgyr indicates that the atoms in the molecule are more compactly distributed,
while a larger value suggests a looser conformation.

The radius of gyration was calculated at different points in time to track changes in
the size and shape of the molecule as the simulation progresses. This information can be
used to study the dynamics of the molecule and to understand how its structure is affected
by changes in temperature or pressure.

3. Results
3.1. Class I- and Class II-Restricted Epitope Identification

One hundred and forty-nine unique class I (43 epitopes, 28.85%) and class II (106 epi-
topes, 71.15%) epitopes were identified from HPV-16 E6 and E7 proteins, based on the
search criteria. Of the 26 class I epitopes that expressed a percentile rank < 0.5% (Table 1),
7 epitopes expressed the highest promiscuity (could bind more than 2 HLA class I alleles).
To enhance the recognition repertoire and achieve optimal population coverage, 5 addi-
tional epitopes were predicted from E6 and E7 FASTA sequences (accessed via NCBI), using
the IEDB class I consensus prediction algorithm.

Out of the 17 identified class II epitopes, six of them expressed a percentile rank < 10%,
bound more than 2 HLA class II alleles, and provided adequate population coverage (94.8%)
(Table 2).

For HPV-18 E6 and E7 proteins, we have identified 5 class I-restricted antigenic
sequences from the IEDB database, along with 10 class I-predicted epitopes, which could
provide 79.8% coverage for the world population. Three IEDB and 8 predicted class II
epitopes cover 98.18% population coverage for the most frequent HLA alleles in the world.

3.2. Population Coverage Analysis

Population coverage analysis for the combined HPV-16 and HPV-18 class I dataset
provided a world population coverage of 98.18%, an average hit of 6.48, and a PC90 of 2.47,
suggesting that 90% of the world population will recognize a minimum of 2 epitopes from
this dataset.

The corresponding class II coverage parameter output highlighted 99.81% world
coverage, an average hit of 15.29, and a minimum number of 9 epitopes that would be
recognized by 90% of the population (Table 3).
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Table 1. Class I-restricted epitopes.

Epitope Source Alleles Protein HPV Type

YMLDLQPETT Literature ([43–45]) HLA-A*02:01 E7 16
TIHDIILECV Literature ([46–49]) HLA-A*02:01, HLA-B*07:02 E6 16

YAVCDKCLKF Literature ([50]) HLA-A*24:02, HLA-B*35:01 E6 16

EYRHYCYSL Literature ([51,52]) HLA-A*02:01, HLA-B*07:02, HLA-A*24:02,
HLA-B*35:01 E6 16

FAFSDLYVVY Literature ([53]) HLA-B*35:01, HLA-A*26:01, HLA-A*24:01 E6 18
KLPDLCTEL Literature ([54–56]) HLA-A*02:01, HLA-A*02:03 E6 18
LFLNTLSFV Literature ([54]) HLA-A*02:01 E7 18
SVYGDTLEK Literature ([57]) HLA-A*11:01 E6 18

HTMLCMCCK Literature ([57]) HLA-A*11:01, HLA-A*30:01 E7 18

KFYSKISEY Prediction HLA-A*30:02, HLA-B*15:01, HLA-A*30:01,
HLA-A*32:01, HLA-A*23:01 E6 16

CPEEKQRHL Prediction HLA-B*07:02, HLA-B*08:01, HLA-B*53:01 E6 16
YGTTLEQQY Prediction HLA-B*35:01, HLA-A*30:02, HLA-A*01:01 E6 16
TTLEQQYNK Prediction HLA-A*11:01, HLA-A*68:01, HLA-A*03:01 E6 16

RAHYNIVTF Prediction
HLA-B*57:01, HLA-B*58:01, HLA-B*15:01,
HLA-A*32:01, HLA-B*35:01, HLA-B*53:01,

HLA-A*23:01
E7 16

LQPETTDLY Prediction HLA-B*15:01, HLA-A*30:02, HLA-A*01:01 E7 16

TPTLHEYML Prediction HLA-B*07:02, HLA-B*53:01, HLA-B*35:01,
HLA-B*08:01, HLA-B*51:01 E7 16

FAFKDLFVV Prediction HLA-A*02:06, HLA-A*02:01 E6 18
LQDIEITCVY Prediction HLA-B*15:01 E6 18
LIRCLRCQK Prediction HLA-A*30:01 E6 18
FYSRIRELR Prediction HLA-A*33:01 E6 18

FAFKDLFVVYR Prediction HLA-A*68:01 E6 18
ELTEVFEFA Prediction HLA-A*68:02 E6 18

RFHNIAGHY Prediction HLA-A*30:02 E6 18
FEFAFKDLF Prediction HLA-B*40:01 E6 18

RFHNIAGHYR Prediction HLA-A*31:01 E6 18
LNTLSFVCPW Prediction HLA-B*57:01, HLA-B*58:01 E7 18

Table 2. Class II-restricted epitopes.

Epitope Source HLA Alleles

CVYCKTVLELTEVPAV Literature ([58]) HLA-DPA1*02:01, HLA-DPB1*01:01,
LFMDSLNFVCPWC Literature ([59]) HLA-DRB3*01:01,

DLFVVYRDSIPHAACHKCIDFY Literature ([58]) HLA-DRB1*03:01
MHGDTPTLHEYM Literature ([60–62]) HLA-DQB1*02:01

DRAHYNIVTFCCKCD Literature ([59]) HLA-DRB1*15:01
DSTLRLCVQSTHVD Literature ([59,63]) HLA-DRB1*04:01, HLA-DRB1*15:01
LKFYSKISEYRHYCY Literature ([64]) HLA-DRB1*01:01

MLDLQPETTDLYCYE Literature ([64]) HLA-DRB1*01:01
TLRLCVQSTHVDIRT Literature ([64]) HLA-DRB1*01:01

VFEFAFKDLFVVY Prediction HLA-DQA1*01:01, HLA-DQB1*05:01, HLA-DPA1*01:03, HLA-DPB1*04:01,
HLA-DPA1*02:01, HLA-DPB1*05:01, HLA-DPA1*01:03, HLA-DPB1*02:01

ELTEVFEFAFKDLFVVY Prediction HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DQA1*01:01, HLA-DQB1*05:01,
HLA-DPA1*02:01, HLA-DPB1*05:01

LTEVFEFAFKDLF Prediction HLA-DPA1*02:01, HLA-DPB1*05:01, HLA-DPA1*01:03, HLA-DPB1*02:01,
HLA-DPA1*01:03, HLA-DPB1*04:01

TVLELTEVFEFA Prediction HLA-DQA1*05:01, HLA-DQB1*02:01, HLA-DPA1*01:03, HLA-DPB1*04:01

LRAFQQLFLNTLSFV Prediction HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DPA1*02:01, HLA-DPB1*01:01,
HLA-DPA1*03:01, HLA-DPB1*04:02, HLA-DPA1*02:01, HLA-DPB1*05:01

DLRAFQQLFLNTLSFVC Prediction HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DPA1*02:01, HLA-DPB1*01:01,
HLA-DPA1*03:01, HLA-DPB1*04:02, HLA-DPA1*01:03, HLA-DPB1*02:01

ESSADDLRAFQQLFLNTL Prediction HLA-DPA1*02:01, HLA-DPB1*01:01, HLA-DPA1*01:03, HLA-DPB1*04:01,
HLA-DPA1*03:01, HLA-DPB1*04:02

EARIELVVESSADDL Prediction HLA-DQA1*03:01, HLA-DQB1*03:02, HLA-DQA1*05:01, HLA-DQB1*02:01
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Table 3. Population coverage analysis for the combined HLA class I and class II epitope dataset.

Class I

Coverage Average Hit PC90

98.18% 6.48 2.47
Class II

Coverage Average hit PC90
99.81% 15.29 9.03

3.3. SLP Construct Design

SLPs were constructed by linking 2 antigenic subunits with the ERAP- and cathepsin
S-sensitive cleavable linker, LRMK. Each antigenic subunit consists of a class II-restricted
epitope located at the N-terminus, the cathepsin-sensitive linker LLSVGG, and a class
I-restricted epitope at the C-terminus. Every construct provides 4 antigenic sequences that
can be canonically and cross-presented to CD4+ and CD8+ T cells.

Out of the total possible constructs (>200,000 combinations), physicochemical property
analysis and antigenicity screening provided 25,000 structures, with an instability index
below 40 and a VaxiJen score above 0.4.

The additional selection process identified 25 constructs, with the maximum VaxiJen
score, minimum instability index, and maximum diversity (maximum number of different
epitopes included in one construct). (Table 4)

3.4. Physicochemical Property Analysis

Physicochemical property analysis reveals that the 25 synthetic long peptides have a
molecular weight of 7.5 ± 0.3 kDa, express high antigenicity (mean VaxiJen score = 0.97),
are stable under in vitro conditions (mean instability index = 37.61), and are slightly hy-
drophobic (mean GRAVY score = 0.38). Based on their N-terminal amino acids, the SLPs
have a half-life of 15.76 ± 13.03 h inside a mammalian cell.

3.5. In Silico Toxicity and Allergenicity Assay

Toxicity prediction revealed that all 25 SLPs express a close-to-zero ToxIBTL proba-
bility (mean ToxIBTL score = 1.5 × 10−2), which translated into a low likelihood for toxic
adverse effects. Allergenicity in silico screening provided negative results for triggering
hypersensitivity reactions.

3.6. Three-Dimensional Structure Prediction

For each SLP, we constructed a fragment library consisting of 3-mers and 9-mers
with known secondary conformation. Using Rosetta ab initio, we predicted 10,000 decoys
for each antigenic construct that were further clustered based on their Rosetta score and
RMSD. The models with the lowest Rosetta score, RMSD, and the best 3D structure analysis
parameters were selected for further analysis.

3.7. Three-Dimensional Structure Validation

The QMEAN4 score was between [0.665; 0.813], while the Z-score was between
[−2.03; 0.3], implying that the designed models express similarities with structures already
found in nature. PROCHECK analysis identified that the residues were located >90% in
most favorable regions, suggestive for thermodynamically stable conformations (Table 5).
The results were represented graphically using Ramachandran plots (Figure 1).

Three-dimensional structure visualization was performed using PyMol software
(Figure 2).
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Table 4. Synthetic long peptide constructs and their physicochemical properties.

FASTA Sequence VaxiJen
Score

Instability
Index GRAVY Molecular

Weight (Da)

MLDLQPETTDLYCYELLSVGGFAFKDLFVVYRLRMKMLDLQPETT
DLYCYELLSVGGEYRHYCYSL 1.4279 37.45909 0.040909 7833.9792

LKFYSKISEYRHYCYLLSVGGLQDIEITCVYLRMKLTEVFEFAFKDL
FLLSVGGFAFKDLFVV 1.1891 39.81286 0.590476 7415.6859

DRAHYNIVTFCCKCDLLSVGGFAFKDLFVVLRMKVFEFAFKDLFVV
YLLSVGGLQDIEITCVY 1.0951 36.4 0.850794 7221.5035

DSTLRLCVQSTHVDLLSVGGEYRHYCYSLLRMKLKFYSKISEYRHY
CYLLSVGGFEFAFKDLF 1.0271 38.92873 −0.01429 7498.5943

TLRLCVQSTHVDIRTLLSVGGLQPETTDLYLRMKDRAHYNIVTFCCK
CDLLSVGGFAFKDLFVVYR 0.9781 37.7 0.262121 7541.7734

MHGDTPTLHEYMLLSVGGFAFSDLYVVYLRMKELTEVFEFAFKDLFV
VYLLSVGGLQPETTDLY 0.6547 35.02656 0.40625 7358.4145

MLDLQPETTDLYCYELLSVGGFAFKDLFVVYRLRMKDLFVVYRDSIP
HAACHKCIDFYLLSVGGEYRHYCYSL 1.1275 37.96452 0.206849 8612.9278

LKFYSKISEYRHYCYLLSVGGFAFKDLFVVYRLRMKTVLELTEVFEFA
LLSVGGLQDIEITCVY 1.1195 39.20172 0.51875 7526.7864

DRAHYNIVTFCCKCDLLSVGGFAFKDLFVVYRLRMKLRAFQQLFLNT
LSFVLLSVGGLQDIEITCVY 0.9761 39.02537 0.652239 7714.0804

TLRLCVQSTHVDIRTLLSVGGLQDIEITCVYLRMKDLRAFQQLFLNTLS
FVCLLSVGGFEFAFKDLF 0.9172 39.97463 0.650746 7644.9508

MLDLQPETTDLYCYELLSVGGLQDIEITCVYLRMKESSADDLRAFQQLF
LNTLLLSVGGFAFKDLFVVYR 0.9848 39.74571 0.331429 8031.2119

LKFYSKISEYRHYCYLLSVGGFAFKDLFVVYRLRMKEARIELVVESSADD
LLLSVGGEYRHYCYSL 0.9481 37.32894 0.084848 7811.9636

DRAHYNIVTFCCKCDLLSVGGFAFKDLFVVLRMKCVYCKTVLELTEVPA
VLLSVGGEYRHYCYSL 1.0237 37.51538 0.550769 7401.7143

MLDLQPETTDLYCYELLSVGGRAHYNIVTFLRMKLTEVFEFAFKDLFLLS
VGGSVYGDTLEK 0.8487 30.49839 0.227419 7099.1161

MLDLQPETTDLYCYELLSVGGKFYSKISEYLRMKLKFYSKISEYRHYCYL
LSVGGLFLNTLSFV 0.982 39.17688 0.096875 7579.7813

LKFYSKISEYRHYCYLLSVGGYGTTLEQQYLRMKLKFYSKISEYRHYCYL
LSVGGLNTLSFVCPW 0.9343 39.72492 −0.12615 7810.0122

MLDLQPETTDLYCYELLSVGGELTEVFEFALRMKVFEFAFKDLFVVYLLS
VGGCPEEKQRHL 1.0156 39.10645 0.232258 7209.293

MLDLQPETTDLYCYELLSVGGHTMLCMCCKLRMKLTEVFEFAFKDLFLL
SVGGTTLEQQYNK 1.013 33.57097 0.170968 7161.3828

ELTEVFEFAFKDLFVVYLLSVGGRFHNIAGHYRLRMKELTEVFEFAFKDLF
VVYLLSVGGKLPDLCTEL 0.811 33.27 0.486 8022.4

MLDLQPETTDLYCYELLSVGGTIHDIILECVLRMKELTEVFEFAFKDLFVVY
LLSVGGLIRCLRCQK 0.8199 36.09552 0.559701 7746.1327

TLRLCVQSTHVDIRTLLSVGGTPTLHEYMLLRMKLFMDSLNFVCPWCLLS
VGGYAVCDKCLKF 0.5793 37.00794 0.573016 7138.5331

TLRLCVQSTHVDIRTLLSVGGRFHNIAGHYRLRMKCVYCKTVLELTEVPAV
LLSVGGFAFKDLFVV 0.8791 38.62 0.5777 7392.82

TLRLCVQSTHVDIRTLLSVGGFYSRIRELRLRMKVFEFAFKDLFVVYLLSVG
GDSAPILTAF 0.5897 36.52113 0.579032 7067.2829

MLDLQPETTDLYCYELLSVGGFAFKDLFVVYRLRMKLFMDSLNFVCPWCL
LSVGGYMLDLQPETT 1.0507 38.34615 0.435385 7551.8357

MLDLQPETTDLYCYELLSVGGFAFKDLFVVLRMKLTEVFEFAFKDLFLLSV
GGRFHNIAGHY 1.0857 39.02097 0.453226 7167.2824
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Table 5. Three-dimensional structure analysis parameters for the 25 SLP set. MFR—residues located
in the most favorable regions (%); AR—residues located in the allowed regions (%).

Peptide Number QMEAN4 QMEAN Z-Score %MFR %AR

1 0.742796 −0.82878 94.8 5.2
2 0.723041 −0.99288 93 7
3 0.716242 −1.0865 96.5 3.5
4 0.723265 −0.9898 96.5 3.5
5 0.70044 −1.45772 94.9 5.1
6 0.766649 −0.36818 92.7 7.3
7 0.709004 −1.35817 96.9 3.1
8 0.697578 −1.32017 94.8 5.2
9 0.711653 −1.23814 91.8 8.2

10 0.730673 −0.96492 91.8 8.2
11 0.665429 −2.03666 90.5 9.5
12 0.682124 −1.72969 95 5
13 0.70809 −1.33992 98.3 1.7
14 0.681138 −1.58902 90.7 9.3
15 0.803581 0.140843 98.2 1.8
16 0.776045 −0.32012 93 7
17 0.745241 −0.69935 98.1 1.9
18 0.732722 −0.8731 92.7 7.3
19 0.813586 0.300254 91.8 8.2
20 0.737284 −0.86994 96.4 3.6
21 0.745382 −0.75361 95 5
22 0.701926 −1.43243 94.8 5.2
23 0.751108 −0.61793 94.5 5.5
24 0.747556 −0.74766 94.6 5.4
25 0.69386 −1.41245 92.6 7.4
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Figure 1. Ramachandran plot for the peptide MLDLQPETTDLYCYELLSVGGKFYSKISEYLRMK-
LKFYSKISEYRHYCYLLSVGGLFLNTLSFV. Most residues are located in the most favored regions
(98.3%), while 1.7% are in the additional allowed regions, confirming a high−quality model. The Gly
residues are represented as triangles, whereas the squares represent the other amino acids. The red
areas represent the core region in which the most favorable combinations of ϕ-ψ angles are located
(defined as A, B, P, L); a, b, p, l represent the additional allowed regions (yellow areas), while −a, −b,
−l, −p are the generously allowed regions (light yellow areas).
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Figure 2. (A–Y). Molecular visualization of the peptide constructs using PyMol software.

3.8. Molecular Docking Studies of the TLR2-SLP Complexes

Molecular docking analyses provided a HADDOCK score of −151 ± 18.77. We found
that the electrostatic energy had the biggest contribution to the TLR2-SLP interactions.
Further statistical analysis has shown that electrostatic energies make a notably greater
contribution than the van der Waals interactions (p < 0.001). The desolvation energies had a
predominantly negative value, suggesting that water dissociates freely from the interacting
surfaces, allowing receptor-ligand interaction. The restraints violation energy values were
close to 0 (mean EAIR = 0.852), suggestive for good-quality docking simulations (Table 6).

Table 6. Molecular docking parameters of the 25 SLP set with TLR2.

Peptide # HADDOCK
Score RMSD (Å)

Van Der Waals
Energy

(kcal/mol)

Electrostatic
Energy

(kcal/mol)

Desolvation
Energy

(kcal/mol)

Restraints
Violation

Energy
(kcal/mol)

Buried Surface
Area (Å2)

1 −129.3 +/− 1.3 0.5 +/− 0.3 −75.4 +/− 3.2 −261.7 +/− 16.1 −1.7 +/− 1.2 1.4 +/− 0.6 2336.5 +/− 53.2
2 −174.2 +/− 4.3 0.5 +/− 0.3 −64.8 +/− 4.5 −443.8 +/− 46.6 −20.6 +/− 2.9 1.0 +/− 0.4 2411.5 +/− 58.8
3 −156.7 +/− 10.1 0.5 +/− 0.3 −94.6 +/− 6.2 −246.2 +/− 16.2 −12.9 +/− 3.3 0.8 +/− 0.3 2486.8 +/− 106.0
4 −137.9 +/− 3.9 0.6 +/− 0.3 −62.0 +/− 4.0 −271.4 +/− 7.3 −21.7 +/− 1.4 0.6 +/− 0.4 2089.0 +/− 34.1
5 −132.0 +/− 0.9 0.5 +/− 0.3 −61.9 +/− 0.8 −273.5 +/− 22.7 −15.5 +/− 4.0 0.5 +/− 0.2 1816.7 +/− 39.4
6 −133.5 +/− 2.6 0.5 +/− 0.3 −63.4 +/− 4.6 −319.4 +/− 17.6 −6.3 +/− 3.3 0.8 +/− 0.2 2276.4 +/− 75.3
7 −178.7 +/− 1.0 0.5 +/− 0.3 −93.3 +/− 4.1 −395.1 +/− 21.0 −6.4 +/− 4.8 0.6 +/− 0.2 2908.0 +/− 62.4
8 −155.2 +/− 1.7 0.5 +/− 0.3 −58.9 +/− 2.2 −418.1 +/− 13.1 −12.7 +/− 2.6 0.6 +/− 0.2 1877.4 +/− 16.9
9 −134.6 +/− 1.6 0.5 +/− 0.3 −60.2 +/− 0.7 −281.3 +/− 3.6 −18.5 +/− 1.6 2.6 +/− 0.8 1962.7 +/− 49.6

10 −119.0 +/− 1.1 0.5 +/− 0.3 −59.3 +/− 6.2 −363.4 +/− 39.0 13.0 +/− 2.2 0.3 +/− 0.2 2003.0 +/− 27.2
11 −172.8 +/− 4.6 0.5 +/− 0.3 −86.0 +/− 4.6 −380.4 +/− 9.3 −10.8 +/− 1.9 0.4 +/− 0.1 2854.3 +/− 87.2
12 −166.8 +/− 2.8 0.5 +/− 0.3 −59.6 +/− 7.6 −589.7 +/− 40.7 10.6 +/− 3.0 2.1 +/− 0.7 2336.5 +/− 45.5
13 −167.5 +/− 2.7 0.5 +/− 0.3 −83.9 +/− 1.9 −275.0 +/− 23.9 −28.7 +/− 2.8 0.7 +/− 0.4 2405.8 +/− 69.8
14 −192.9 +/− 3.8 0.5 +/− 0.3 −105.8 +/− 6.0 −341.3 +/− 41.0 −19.0 +/− 1.3 1.0 +/− 0.5 2882.3 +/− 28.0
15 −164.9 +/− 7.0 0.5 +/− 0.3 −74.3 +/− 1.1 −339.0 +/− 37.4 −22.9 +/− 1.4 0.4 +/− 0.2 2470.6 +/− 64.7
16 −141.9 +/− 3.7 0.5 +/− 0.3 −90.1 +/− 4.8 −218.1 +/− 12.4 −8.3 +/− 3.7 0.5 +/− 0.3 2412.6 +/− 57.5
17 −139.8 +/− 1.5 0.5 +/− 0.3 −56.6 +/− 0.9 −309.2 +/− 17.9 −21.4 +/− 1.5 0.5 +/− 0.1 1756.1 +/− 24.2
18 −141.8 +/− 1.6 0.5 +/− 0.3 −67.6 +/− 3.0 −276.5 +/− 17.4 −19.0 +/− 2.5 0.7 +/− 0.8 1991.6 +/− 60.4
19 −164.9 +/− 2.0 0.6 +/− 0.3 −67.8 +/− 5.2 −430.8 +/− 17.3 −11.0 +/− 1.9 0.4 +/− 0.1 2209.3 +/− 87.2
20 −127.0 +/− 1.4 0.5 +/− 0.3 −61.9 +/− 2.3 −318.7 +/− 16.1 −1.4 +/− 3.2 0.7 +/− 0.4 2076.1 +/− 3.5
21 −160.3 +/− 1.2 0.5 +/− 0.3 −81.5 +/− 2.5 −294.2 +/− 6.3 −20.1 +/− 1.9 1.1 +/− 0.5 2217.8 +/− 29.3
22 −151.8 +/− 3.0 0.6 +/− 0.3 −76.2 +/− 6.8 −392.2 +/− 66.7 2.7 +/− 4.1 1.3 +/− 0.7 2470.0 +/− 84.7
23 −132.8 +/− 4.3 0.5 +/− 0.3 −65.7 +/− 2.0 −252.5 +/− 25.7 −16.7 +/− 2.2 0.7 +/− 0.2 1829.6 +/− 37.7
24 −155.2 +/− 1.4 0.5 +/− 0.3 −75.2 +/− 4.7 −336.1 +/− 28.6 −12.8 +/− 1.3 0.8 +/− 0.3 2092.6 +/− 68.3
25 −143.5 +/− 0.7 0.6 +/− 0.3 −75.5 +/− 2.5 −296.9 +/− 18.6 −8.7 +/− 3.0 0.8 +/− 0.1 2444.0 +/− 61.0
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3.9. Free Energy Determination

Gibbs free energy and dissociation constants for the TLR2-SLP complexes were calcu-
lated using the PRODIGY webserver. The results showed a ∆G of −13.20 ± 1.42 kcal/mol
and an average Kd of 3.5 × 10−9 M, suggestive of a thermodynamically stable interaction
between the designed constructs and the toll-like receptor 2 (Table 7).

Table 7. Gibbs free energies (∆G) and dissociation constants (Kd) for TLR2-peptide complexes.

Peptide Number ∆G (kcal/mol) Kd (M)

1 −12.4 1.8 × 10−9

2 −14.1 1.2 × 10−10

3 −15.6 1.1 × 10−11

4 −12.5 1.6 × 10−9

5 −12.5 1.4 × 10−9

6 −12.1 2.9 × 10−9

7 −16.9 1.2 × 10−12

8 −10.3 5.3 × 10−8

9 −12.5 1.5 × 10−9

10 −12.1 3.0 × 10−9

11 −15.7 8.4 × 10−12

12 −12.7 1.1 × 10−9

13 −12.9 8.7 × 10−10

14 −14.5 6.2 × 10−11

15 −12.9 7.8 × 10−10

16 −14.1 1.1 × 10−10

17 −11.3 1.2 × 10−8

18 −13 6.4 × 10−10

19 −13.7 2.2 × 10−10

20 −12.7 1.0 × 10−9

21 −13.5 3.1 × 10−10

22 −13.7 2.2 × 10−10

23 −11.9 4.0 × 10−9

24 −13.8 1.9 × 10−10

25 −13 6.5 × 10−10

The interaction between TLR2 and the SLPs was visualized using PyMol (Figure 3).
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3.10. Molecular Dynamics Simulations

To evaluate the dynamics of the synthetic long peptide constructs, we performed
molecular dynamics simulations. The RMSD of the backbone, RMSF, and radius of gyration
were analyzed for 100 ns. Backbone RMSD values ranged between [0.1; 0.87] nm, with
mild fluctuations over the 100 ns simulation time, suggesting increased construct stability
during simulation. Peptides 6 and 24 expressed an RMSD shift at 40-ns, but with mild
fluctuations over the 40–100 ns time interval (Figure 4).
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Figure 4. (A–Y). RMSD changes during the 100 ns simulations of the 25 SLPs. All SLPs adopt a
stable conformation during the MD simulation. Peptides 6 and 24 change their conformation at 40 ns
simulation, but the newly adopted conformation is maintained during the 40–100 ns simulation time.

The Rg values showed very little fluctuation throughout the simulation, with the
average Rg being 1.22 nm. The lowest Rg value observed was 1.15 nm, while the highest
was 1.34 nm. These results reflect the compactness of the SLP constructs, with increased
stability over time.

Analysis of RMSF plots showed that the residues present in positions 15–25 and
51–57, corresponding to the LLSVGG linkers, express the highest flexibility. Conversely,
residues located in positions 30–35, corresponding to the LRMK linker, expressed the lowest
flexibility (Figures 5 and 6).
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Figure 6. Plot showing the variation of residue flexibility as a function of residue number. The relative
RMSF was computed with respect to the mean RMSF for each residue number. It is worth noting
that residues 30–35 express the lowest flexibility (corresponding to the LRMK linker), while residues
15–25 and 51–57 express the highest flexibility (corresponding to the LLSVGG linkers).

SASA (Solvent Accessibility Surface Area) analysis over the 100-ns simulation time
period provided a 49.37 ± 1.54 nm2, suggesting mild fluctuations during MD simulations.
These findings suggest that the 25 SLPs adopt a stable conformation when dissolved in
water (Figure 7).
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4. Discussion

HPV-16 and -18 infection represents a significant public health issue, due to its high
oncogenic potential. Despite the growing availability of prophylactic vaccines, HPV-related
neoplasia remains the fourth most common cancer worldwide.

The three VLP-based vaccines induce antibody production, thereby inhibiting HPV-
keratinocyte interaction. However, there is no effect on already HPV-infected or malignantly
transformed cells. This finding is attributed to L1 antigen downregulation.

E6 and E7 are the main HPV proteins that drive malignant transformation by enhanc-
ing the degradation of p53 and pRb tumor suppressor proteins. Because of this, along
with their high conservancy among the HPV subtypes, epitopes originating from these two
proteins were used in this vaccine design.

Peptide-based vaccination represents a promising alternative to classic vaccination
platforms. Even though peptides alone possess a low immunogenic potential, adjuvants
or immunostimulatory molecules can be added to elicit proper dendritic cell and T cell
stimulation.
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HPV-related cancers proliferate due to poor CD4+-mediated cytokine secretion, CD8+-
associated cytotoxicity, and tumor penetrability, along with a high influx of regulatory
CD4+ FOXP3

+ T cells [64].
The intended role of our proposed vaccine platform is to clear the infected cells before

the malignant transformation occurs. Therefore, this design should exert both a therapeutic
(pre-malignant cell clearance) and prophylactic effect (carcinoma prevention).

Several clinical trials that utilized HPV-derived SLPs were conducted. In a study
performed by Welters et al., synthetic long peptides comprised of overlapping E6 and
E7 peptides were administered to HPV-16+ cancer patients. All patients displayed an
increase in blood HPV-16-specific CD4+ and CD8+ cells, with proportional interferon-γ
release, which are all hallmarks for a rebalancing anti-tumoral immune response [65]. Van
Poelgeest et al. performed a phase I clinical trial on women with HPV-16+ gynecological
carcinoma, who were immunized subcutaneously with HPV-16 E6 and E7-overlapping
long peptides. The results have shown no systemic toxicity, but a vaccine-induced anti-
tumor response with increased IFN-γ, TNF-α, IL-5 and IL-10 production. Although the
vaccine was well tolerated and provided enhanced cytokine secretion, the investigators
did not observe any tumor regression or halting of the malignant process [66]. Speetjens
et al. conducted a phase I vaccination study on patients with HPV-related carcinomas
using HPV-16 SLPs conjugated with the TLR2 agonist, Amplivant. The results revealed a
dose-dependent T cell response with subsequent cytokine release (IFN-γ, IL-5). It was also
observed that the concentration of pro-inflammatory cytokines increased significantly when
the vaccine was administered in combination with chemotherapy [65,67]. Although various
pre-clinical and clinical studies have shown an increased number of HPV-specific CD4+
and CD8+ T cells after immunization, with proportional cytokine secretion, the activity
of tumor-therapeutic vaccines against established tumors is limited [65–69]. One possible
explanation involves the immunosuppressive behavior of the tumor microenvironment
against the vaccine-stimulated T cells, which stresses the need for cancer prophylaxis.

Compared to the aforementioned studies which used overlapping peptides, our pro-
posed design consists of isolated peptides that were either already identified as strong
immune enhancers or predicted in silico. The proposed design includes epitopes from
various regions of the whole protein sequences, thereby priming the T cells against multiple
antigenic regions. By including the flexible, cleavable linker LLSVGG, both canonical
and cross-presentation are enhanced 100-fold, based on the in vitro and in vivo studies
performed by Rabu et al [23]. Furthermore, the more rigid, cleavable linker LRMK used in
our constructs was also used in combination with HPV-16 E7 recombinant peptides in a
HPV-16 E7-B16 melanoma murine model. The results display both an increased CD8+ and
CD4+ T cell immune response against E7-expressing melanoma B16 cells, with increased
survival compared to the control group [25].

Linker usage provides a highly specific proteolysis compared to the overlapping
peptide designs, in which cleavage may occur randomly.

Twenty-six class I-, and 18 class II-, restricted epitopes were either selected from the
Immune Epitope Database or predicted using artificial neural networks. The peptides with
the highest promiscuity and highest binding affinity to HLA molecules were selected.

This particular vaccine design was chosen to achieve an increased immune response
against the virally infected cells in the global population. Multiple epitopes from E6
and E7 proteins of HPV-16 and HPV-18 were selected: 26 HLA class I-restricted, and 18
class II-restricted. Given the low prevalence of other genotypes in cervical carcinomas [6],
including another set of 10–15 epitopes was considered impractical.

According to population coverage analysis, it is estimated that there is a 90% likelihood
that individuals possessing an HLA allele listed in the IEDB database can identify at least
2 class I peptides and 9 class II epitopes. The analysis revealed that the combined class I
coverage was 98.18%, and the class II coverage was 99.81%. It is important to note that
further clinical studies are needed to fully understand the peptide recognition repertoire.
The cellular immune response is specific to each individual, based on the particular HLA
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class I and HLA class II haplotypes. Population coverage requires selecting a combination
of peptides, which can interact with the various HLA haplotypes present in the population.
Vaccines that are built using only a small number of peptides may fail in the population,
being active only in a small proportion of individuals. Our strategy overcomes this by
employing a set of peptides that interacts with the HLA molecules present in the majority
of the population.

The design of peptide-based vaccines requires screening for potential allergenic or toxic
reactions. In silico studies allow a rapid and cost-effective screening process. Allergenicity
analysis using AllerCatPro revealed that none of the 44 peptides or 25 synthetic long
peptides possess allergenic potential, while toxicity analysis using ToxiBTL provided low
probability for toxic adverse effects. However, the results need to be further validated
through in vitro and in vivo studies.

Combining class I- and class II-restricted epitopes achieves a bidirectional stimulation
of both cytotoxic and helper T cells. The class I epitopes provide the main immunogenic
target for CTLs, while class II epitopes trigger cytokine release, further augmenting the
immune response.

The 25 synthetic long peptides’ pool presents a considerable degree of redundancy,
which might be useful when performing experimental validation and reducing the risk of
loss of the initial class I- and class II-restricted epitopes during non-specific cleavage.

Ab initio three-dimensional structure prediction using Rosetta provided good-quality
models, with >90% of the residues located in the most favorable regions on the Ramachan-
dran plot, as well as QMEAN4 scores > 0.7, which suggest that the 3D-modeled decoys
adopt conformations similar to other structures found in nature.

Toll-like receptors (TLRs) play a crucial role in the innate immune response, matura-
tion of dendritic cells, and enhancement of antigen presentation. Besides cytokine secretion
and upregulation of co-stimulatory molecules, toll-like receptors (especially toll-like re-
ceptor 2) also play an important role in antigenic cross-presentation [68]. De Vos van
Steenwijk et al. showed that ex vivo stimulation of T cells from infiltrated cervical cancers
and sentinel lymph nodes with HPV-16 E6 and E7 peptides, in combination with TLR
agonists such as lipopolysaccharide or Pam3CSK4, increased IFN-γ production, suggesting
that tumor-infiltrated lymphocytes (TILs) and tumor-draining lymph node cells (TDNCs)
are present in high numbers in HPV-related tumors, but are suppressed by the tumor
microenvironment [69].

The designed synthetic long peptides expressed a good binding affinity to toll-like
receptor 2, supported by negative Gibbs free energy and low dissociation constants. These
results suggest that SLPs possess intrinsic TLR2-agonist activity, which may further reduce
the need for adjuvants.

Molecular dynamics simulations of the 25 SLPs revealed that the designed peptides
during the 100 ns simulations adopt a stable and compact conformation when dissolved in
water. Analysis of RMSF plots show that the residues present in the positions 15–25 and
51–57, corresponding to the LLSVGG linkers, express the highest flexibility. These findings
are supported by experiments conducted by de Bold et al. [70] and Waldo et al. [71], who
reported that flexible linkers are generally rich in small or polar amino acids, such as serine
or glycine. Higher flexibility allows mobility between the antigenic components and favors
TLR and HLA interactions. Residues located in positions 30–35, corresponding to the
LRMK linker, expressed the lowest flexibility. Therefore, LRMK acts as a spacer between
the 2 antigenic subunits, while maintaining the overall stability of the SLP. Kallinteris
et al. showed that linking the LRMK linker to MHC class II epitopes enhanced antigen
presentation, both in vitro and in vivo. The suggested mechanism involves the binding of
LRMK to an allosteric site on the MHC class II molecule, with a subsequent increase in
epitope loading [72].

Despite the positive in silico results, the present study has some limitations. The
main limitation of this study is the lack of experimental validation. To fully characterize
the immunogenic, allergenic, and toxic potential for the 25 SLP set, both in vitro and
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in vivo validation needs to be performed. Another limitation is that immunoinformatic
methods cannot predict factors that influence vaccine uptake, delivery, and host immune
response, but further clinical studies are able to answer the unsolved questions. The last
major limitation of the current vaccine is the requirement for a functional cellular immune
response. Patients with an impaired immune system may develop only a poor response
to this vaccine. Women with HIV infection have an increased risk to develop cervical
carcinoma; thus, the vaccine may fail to clear the HPV infection in this population group.
This limitation may affect all such vaccines.
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