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Abstract: Transdermal administration can be considered as an interesting route to overcome the
side-effects inherent to oral intake. Designing topical formulations with maximum drug efficiency
requires the optimization of the permeation and the stability of the drug. The present study focuses
on the physical stability of amorphous drugs within the formulation. Ibuprofen is commonly
used in topical formulations and then was selected as a model drug. Additionally, its low Tg
allows easy, unexpected recrystallization at room temperature with negative consequence on skin
penetration. In this study, the physical stability of amorphous ibuprofen was investigated in two
types of formulations: (i) in terpenes-based deep eutectic solvents (DES) and (ii) in arginine-based
co-amorphous blends. The phase diagram of ibuprofen:L-menthol was mainly analyzed by low-
frequency Raman spectroscopy, leading to the evidence of ibuprofen recrystallization in a wide range
of ibuprofen concentration. By contrast, it was shown that amorphous ibuprofen is stabilized when
dissolved in thymol:menthol DES. Forming co-amorphous arginine–ibuprofen blends by melting is
another route for stabilizing amorphous ibuprofen, while recrystallization was detected in the same
co-amorphous mixtures obtained by cryo-milling. The mechanism of stabilization is discussed from
determining Tg and analyzing H-bonding interactions by Raman investigations in the C=O and O–H
stretching regions. It was found that recrystallization of ibuprofen was inhibited by the inability to
form dimers inherent to the preferential formation of heteromolecular H-bonding, regardless of the
glass transition temperatures of the various mixtures. This result should be important for predicting
ibuprofen stability within other types of topical formulations.

Keywords: low-frequency Raman spectroscopy; co-amorphous; hydrogen-bonding; deep-eutectic
solvents; cryo-milling

1. Introduction

During the early stages of the drug development process, scientists are often faced
with a set of challenges to provide the target product profile. In this context, bioavailability
can be considered as a major concern. Many new drug candidates synthesized in the
crystalline state are poorly soluble in water, with inherent low bioavailability. Another
problem comes from the possible polymorphic phase transformations that the crystal can
undergo subjected to various constraints inherent to the drug manufacturing process [1–3].
It is now well recognized that converting crystal into the amorphous state significantly
improves the aqueous solubility and the drug efficacy [4,5]. Unfortunately, the amorphous
state is thermodynamically unstable and unexpected crystallization can occur during stor-
age, manufacturing processes, or administration [6]. In a first step, solid dispersions were
developed with the aim of increasing the glass transition temperature (Tg) by mixing the
drug with a polymer of high Tg [7,8]. Ensuring the stability of the amorphous drugs
within the polymer carrier needs the knowledge of the solubility curves, which requires
specific experimental methods [9,10] that are not easy to implement. Indeed, there is a
lack of standardized method for measuring drug/polymer solubilities, mainly because
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of the high viscosity of polymers, which makes solubility equilibrium difficult to reach
and the determination of solubility curves very time-consuming. Since the late 2000s, a
new strategy was developed to produce binary amorphous mixtures composed of two
small molecular weight compounds [11–13], ensuring drug stability. Amino acids were
recognized as co-amorphous stabilizers and promising excipients in co-amorphous for-
mulations [14], because of their capabilities to form strong solid-state interactions with
co-formers, including H-bonding, π-π, or ionic interactions [15]. These formulations can
be easily prepared [16], mostly by ball milling [14], but also by classical manufacturing
processes such as spray drying [17]. Despite numerous investigations on co-amorphous
formulations [16] aiming to analyze the preparation methods, the capabilities of amino
acids (AAs) to form co-amorphous blends, there are only a few studies focusing on the
molecular interactions between co-formers reported in the literature [18], and no general
description of physical mechanisms responsible for the stability of the co-amorphous blends
has been proposed. Intriguingly, it was found that Tg of indomethacin–arginine amorphous
blends was higher than that of both individual components [18]. Such a behavior has been
considered as resulting from an amorphous salt formation during milling. However, there
is no information about the mechanism of salt formation and the physical properties of the
individual component inherent to salt formation.

Another strategy, also based on binary mixtures, has been developed since the late
1990s to design eutectic systems. In contrast to co-amorphous blends, it is recognized that the
formation of eutectic systems results from the association of hydrogen-bond donor (HBD)
with hydrogen-bond acceptor (HBA) molecules. The main difference with co-amorphous
blends is that the active pharmaceutical ingredient (API) is systematically in the liquid state
at room temperature. The formation of eutectic systems was developed for transdermal
delivery of ibuprofen (IBP) [14,18,19] associated with terpenes (menthol, thymol, etc.) serv-
ing as permeation enhancers. Maintaining the mixture at temperatures above the eutectic
temperature ensures the stability of amorphous APIs within the liquid formulations. This
stability should not be subjected to temperature fluctuations because of the extreme difficulty
of recrystallization around the eutectic point in relation with the specific microstructure
of the eutectic composition [19]. In this context, it is useful to prepare formulations close
to eutectic compositions for maximum decrease in the melting temperature, which then
requires accurate determination of the binary phase diagram. This condition has motivated
the recent revision of the phase diagram based on racemic ibuprofen (IBP) with L-menthol
(M) which revealed the absence of eutectic reaction in the L-menthol-rich side [20]. More
specifically, it is possible to design eutectic systems with eutectic temperature well below
that predicted for ideal liquid mixtures [7,9], using natural and green solvents to enhance
dissolution of APIs and to improve their bioavailability [2,21]. This class of solvents, called
natural Deep Eutectic Solvents (DES), can be composed of one API [1,6], or can be used
to dissolve a poorly water-soluble API [1,4]. It was shown that IBP solubility in aqueous
solution can be significantly increased by using green co-solvents such as polyols and others
(propylene glycol, polyethylene glycol, etc.) [22]. As a consequence, IBP solubility in DES
designed from these co-solvents is also increased compared to IBP solubility in water [1]. It
was also shown that IBP can be dissolved in large proportion (20 wt%) in the xylitol–citric
acid DES and can be maintained in the amorphous state on a wide temperature range [4].

Despite the common use of IBP in topical formulations [23–26], the physical stability of
IBP was not investigated. However, IBP easily recrystallizes [27] at room temperature with
a negative effect on skin penetration. The present study aims to determine the most stable
formulations among the strategies presented above for placing and maintaining a significant
amount of IBP in the amorphous state, i.e., either (i) by forming co-amorphous blends or (ii)
by designing eutectic mixtures or dissolving IBP in deep eutectic solvents. In the first case,
the eutectic mixture ibuprofen–menthol was analyzed to better describe the controversial
phase diagram [14,18]. Dissolution of ibuprofen in the thymol–L-menthol mixture, previously
recognized as DES [10], was also analyzed since both components of the eutectic mixture
are considered as permeating enhancers. In the second case, L-arginine (ARG) was selected
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for preparing co-amorphous blends, given the well-known capabilities of this AA to form
co-amorphous blends [17,28]. In both cases, special attention was focused on molecular
interactions between IBP and co-formers in order to understand the physical properties of the
different types of mixtures responsible for the stability of amorphous IBP. Combined analyzes
of molecular interactions in eutectic mixtures and in co-amorphous blends were discussed for
providing a better understanding the stabilization mechanism of amorphous IBP.

These investigations were performed by using a single experimental tool, namely
Raman spectroscopy in a wide spectral region covering the low-frequency region, very
sensitive to the physical state of molecular materials, the mid- and high-frequency regions
more sensitive for the detection and the analysis of H-bonding [29].

2. Materials and Methods
2.1. Materials

Racemic ibuprofen (designated herein as IBP) was purchased from Sigma (CAS num-
ber 15687-27-1, purity ≥99.8% GC assay) and was used without further purification. L-
menthol (M) was purchased from Sigma (99.5% purity) and used as received. L-arginine
(ARG, C6H14N4O2, purity ≥98%) was purchased from Sigma Aldrich and used as received.

2.2. Methods
2.2.1. Preparation of Co-Amorphous Blends by Cryogenic Ball Milling

Mixture blends (IBP:ARG) were prepared by cryo-milling for 45 min at 30 Hz using
Retsch CryoMill. Mixtures of typical mass of 1 g were milled at −196 ◦C. IMC and ARG
were placed in a ZrO2 jar and milled using one ball (Ø = 20 mm) of the same material.
A procedure alternating milling periods of 5 min with pause periods (milling at 5 Hz) of
1 min was used to limit mechanical heating.

2.2.2. Preparation of Crystallized IBP:M Mixtures

The various molar fraction mixtures were firstly heated to obtain homogeneous liquid
mixtures, and directly quenched in liquid nitrogen in order to produce cracks in the
undercooled liquid mixtures. The mixtures were then kept at −10 ◦C for 1 to 7 days
depending on the composition. The physical state of mixtures was determined from
low-frequency Raman spectroscopy.

2.2.3. Raman Spectroscopy

Low-frequency Raman spectroscopy (LFRS) experiments were performed on the high-
dispersive XY-Dilor spectrometer composed of three gratings configured with a focal length
of 800 mm, and using the 660 nm line of a Cobolt laser. Opening the slits at 150 µm makes
it possible to detect a Raman signal down to 5 cm−1 in high resolution configuration (lower
than 1 cm−1). All samples were loaded in spherical Pyrex cells and hermetically sealed.
The temperature of each sample was regulated using an Oxford nitrogen flux device that
keeps temperature fluctuations within 0.1 ◦C. Low-frequency Raman spectra were collected
between 5 and 200 cm−1 in 1 min, in situ, during the heating ramp at 1 ◦C/min. It is well
known [29] that the LFRS requires specific data processing because of the high sensitivity
of the low frequency to thermal fluctuations through the Bose factor. The Raman intensity
(IRaman(ω, T)) was firstly transformed into reduced intensity (Ir(ω)) according to [29,30]

Ir(ω) =
IRaman(ω, T)

[n(ω, T) + 1].ω

where n(ω, T) is the Bose factor. The low-frequency spectrum represented in reduced
intensity is dominated by a very intense component, named quasielastic scattering, de-
tected in the very low-frequency range (<50 cm−1), reflecting local rapid motions [31], or
monomolecular reorientations as observed in rotator phases [32]. This representation of
the low-frequency Raman spectrum is very well suited for detecting disorder traces via the
increase in the very low-frequency intensity corresponding to the quasielastic scattering
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intensity (IQES). It was used for recognizing the absence of amorphous component and for
detecting the first traces of melting in IBP:M mixtures. The reduced intensity was also used
for determining Tg values of IBP:M mixtures and IBP-ARG co-amorphous formulations
from the change in the slope detected in the IQES(T) plots [27]. LFRS is used for giving a
structural description of molecules from the short-range order (in the amorphous state) to
the long-range order (crystalline state), and most importantly makes it possible to detect
and identify nanocrystalline signatures within an amorphous matrix [33,34].

The second part of Raman investigations was focused on the mid- and high-frequency
domain covering the C=O stretching region between 1550 and 1750 cm−1 and the O/C–H
stretching region lying between 2900 and 3700 cm−1. Spectra were collected using the InVia
Renishaw spectrometer. The 785 nm line emitted from a Fandango Cobolt laser was focused
on the powder sample via an achromatic lens for analyzing the largest possible volume of
material (about 1 mm3). The sample temperature was controlled by placing the sample in a
THMS 600 Linkam temperature device. The acquisition time of each spectrum was 1 min, and
they were collected in situ during heating ramps at 1 ◦C/min. Analyzing the C=O and O–H
stretching regions makes it possible to detect molecular associations via C=O. . .H bonding.

2.2.4. Differential Scanning Calorimetry (DSC)

Experiments were performed with the DSC 3 star system analysis of Mettler Toledo
equipped with the immersion cooler Huber TC100. The samples (typical mass of 10 mg) were
systematically placed in an aluminum pan hermetically sealed and were flushed with highly
pure nitrogen gas. All data were collected upon heating ramps performed at 1 ◦C/min.

3. Results
3.1. Exploring the Phase Diagram of the Binary Mixture Ibuprofen–Menthol (IBP-M)

The phase diagram of the ideal liquid phase model was plotted (in Figure 1) from the
consideration that the solid–liquid equilibrium lines of each component are described by
the equation [35]:

ln (xiγi) =
∆Hm,i

R
.
(

1
Tm,i

− 1
T

)
where xi, γi are the mole fraction and the activity coefficient of the component i, and ∆Hm,i, Tm,i
the enthalpy and temperature of melting. In the frame of the ideal liquid phase model activity
coefficients of the two components are set to unit (γi = 1). The phase diagram plotted in Figure 1
shows that the eutectic composition corresponds to the mole fraction of IBP, XIBP = 0.25.
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3.1.1. Experimental Determination of the Phase Diagram from LFRS and DSC Investigations

The crystallized IBPx:M(1−x) mixtures were systematically analyzed by step of x = 0.1

upon heating (
.
T = 1 ◦C/min) from −50 ◦C up to 80 ◦C, and directly quenched down to

−100 ◦C for analyzing the temperature behavior (Tg, recrystallization) of vitrified mixtures
upon heating up to 80 ◦C with the same scanning rate. Raman spectra of crystalline
ibuprofen, menthol, and several IBP:M mixtures were plotted in Figure A1 in Appendix A.

Raw spectra collected upon heating were converted into reduced intensity and the
quasielastic scattering of each spectrum was integrated in the very low-frequency range
between (ω < 30 cm−1) for obtaining the temperature dependence of the quasielastic inten-
sity IQES(T) which was used to accurately determine melting temperatures. This method
was firstly described for the mixture corresponding to XIBP = 0.3 in Figure 2. Figure 2a
presents the temperature dependence of the LFRS while the temperature dependence of the
quasielastic intensity IQES(T) was plotted and compared with the DSC trace in Figure 2b.
The single and sharp endotherm was observed at the same temperature (T ≈ 19 ◦C) as the
sudden increase in the quasielastic intensity. It is the indication that this mixture is very
close to the eutectic composition, given that the shoulder detected on high-temperature
side of the endotherm can be interpreted as arising from a small amount of crystalline
matter in excess with respect to the eutectic mixture. At this concentration (XIBP = 0.3),
both crystalline components (ibuprofen and menthol) melt strictly at the same temperature
(TE ≈ 19 ◦C). Consequently, the signature of the eutectic melting must be observed in all
mixtures, even for compositions far from the eutectic mixture. The same analysis performed
on a ibuprofen-rich mixture (XIBP = 0.8) is presented in Figure 3. In this case, the proportion
of eutectic mixture is relatively weak compared to that of ibuprofen, inducing a less intense
endotherm associated with a very small intensity increase in IQES compared to the DSC
and Raman signals detected above TE. The dissolution of the excess of crystalline material
(with respect to the eutectic proportion) starts just above TE, as observed in Figure 3b via
the broad endotherm ending around 70 ◦C, rigorously corresponding to the very spread
out increase in the quasielastic intensity.
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cannot strictly be considered as deep eutectic. The negative deviation from ideality is 

Figure 2. Heating process of crystalline IBPX:M(1−X) (XIBP = 0.3); (a) temperature dependence of the
low-frequency—the red arrows localize the beginning and the end of the melting; (b) comparison
of IQES(T) plot with the DSC trace. The red arrows show the comparison between Tm determined
from DSC and LFRS data. The black arrow highlights the dissolution of the very small amount of
crystalline matter in excess with respect to the eutectic composition.
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Figure 3. Heating process of crystalline IBPX:M(1−X) (XIBP = 0.3); (a) temperature dependence of
the low-frequency; (b) comparison of IQES(T) plot with the DSC trace. The blue arrow localizes the
beginning of the IQES increase corresponding to the endotherm of the eutectic melting.

The analysis of the temperature dependence of the LFRS of mixture richer in menthol
(XIBP = 0.1) was presented in Figure A2 in Appendix A. IQES(T) curves were systematically
plotted for mixtures corresponding to hypo-eutectic and hyper-eutectic concentrations in
Figure 4a and 4b, respectively. Two set of experimental points were thus determined and
reported in Figure 1, forming the experimental phase diagram of the binary system. It is
clearly observed that the eutectic composition (XIBP ~ 0.3) is slightly shifted with respect to
that corresponding to ideality, accompanied with a slight depressed eutectic temperature
(∆T ≈ 6◦C). Despite the eutectic mixture is liquid at room temperature, the IBP:M system
cannot strictly be considered as deep eutectic. The negative deviation from ideality is
mainly observed in the hyper eutectic concentration range, in the close neighboring of the
eutectic concentration. A detail inspection of Figure 4a shows a two-step increase in IQES(T)
for the mixture XIBP = 0.1, reflecting the melting of the eutectic mixture followed by the
dissolution of the excess of crystalline menthol. This supports the absence of solid solution
on the menthol-rich side, as previously suggested [14,18].
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3.1.2. Stability Degree of Ibuprofen versus Location in the Phase Diagram

Transdermal delivery of ibuprofen requires avoiding unexpected recrystallization. In
this context, after melting crystalline IBPX:M(1−X) mixtures, samples were rapidly cooled
down to −100 ◦C for collecting LFRS upon a second heating in order to determine Tg and to
detect possible recrystallization signatures. A set of LFRS collected upon the second heating
of three mixtures (XIBP = 0.2, 0.3, 0.6) was plotted in Figure A3 in Appendix A. The DSC
traces were compared with the IQES(T) curves for the same mixtures in Figure 5. Signatures
of crystallization were clearly observed, both from DSC traces and LFRS. It is worth noting
that the eutectic composition (XIBP = 0.3) exhibits very light crystallization signatures,
compared with other compositions in Figures 5 and A3. For menthol-rich mixtures (XIBP =
0.2, 0.3) two exothermic peaks were observed corresponding the successive recrystallization
of menthol and ibuprofen detected in Figure 5, and better highlighted in Figure A4 in
Appendix A for XIBP = 0.2. Figure 5c show that only IBP recrystallizes in IBP-rich mixtures
(XIBP = 0.6), and the degree of crystallization increases with the IBP content.
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3.1.3. Analysis of H-Bonding in IBP:M Mixtures

H-bonding in IBP:M mixtures can be analyzed both in the C=O and O–H stretching
regions. The spectra taken in various IBP:M mixtures were, respectively plotted in these
regions in Figure 6a and 6b. From the chemical structures of ibuprofen and menthol plotted
in Figure 1, menthol and ibuprofen can be identified as H-bond donor (HBD) and H-bond
acceptor (HBA), respectively [14]. Consequently, only the C=O stretching region of IBP
contains information about C=O. . .H H-bonding. Figure 6a highlights the emergence of a
Raman band around 1700 cm−1 by addition of menthol to the detriment of the band located
at 1650 cm−1 in IBP. A concomitant intensity increase is observed in the O–H stretching
region around 3450 cm−1. These spectral features can be interpreted as resulting from the
formation of O–H(M). . .O=C(IBP) H-bonding interactions between heteromolecules to the
detriment of C=O . . . H homomolecular interactions between IBP molecules. The fitting
process of the C=O stretching region is shown in Figure A5a in Appendix A. This procedure
provides information on the strength of H-bonding interaction via the frequency of the
stretching band and its temperature dependence. Positive temperature dependence in the
stretching band frequency is generally considered as typical behavior of the stretching
of intramolecular bonds involved in H-bonding [4,36]. The temperature dependences of
the C=O stretching band related to C=O. . .H H-bonding are plotted in Figure 7a for IBP
and various amorphous mixtures. A quick look at Figure 7a clearly shows that the band
frequency is significantly lower in IBP than in IBP:M mixtures. The increase in the band
frequency and the concomitant less-marked positive temperature dependence observed
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by adding a small amount of menthol confirm the disorganization of the H-bond network
of IBP to the detriment of weaker H-bonding interactions between heteromolecules. The
two-step temperature behavior observed for hyper eutectic mixtures (XIBP ≥ 0.3) reflects
the competition between two types of H-bonding (homomolecular and heteromolecular)
interactions. The weaker H-bonding interactions between ibuprofen and menthol break
upon heating making it possible dimer formation of ibuprofen molecules.
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Heteromolecular H-bonding interactions are clearly revealed by the enhanced intensity
in the O–H stretching region, centered around 3400 cm−1 only observed in mixtures (see
Figure 6b) not existing in pure compounds. This additional intensity gives rise to a broad
band characterized by a positive temperature dependence of its frequency (see Figure 7b).
Contrasting to the other broad band detected at lower frequencies which is temperature
independent in co-amorphous blends (see Figure 7b), the high frequency band can be
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interpreted as reflecting weak O–H(M) . . .O(IBP) H-bonding between menthol and ibuprofen
molecules [4].

Although the low degree of crystallization detected upon heating IBP-M mixtures
close to the eutectic composition, there is no domain in the phase diagram that guarantees
the absence of unexpected recrystallization of the amorphous blends at room temperature.
These cold recrystallization phenomena are promoted by the low Tg values of the various
amorphous blends, systematically below −50 ◦C, as shown in Figure A6 in Appendix A,
and the presence of very weak H-bonds between ibuprofen and menthol molecules.

3.2. Dissolving IBP in Thymol–Menthol DES

Thymol–menthol was initially known as DES, while more recent investigations have
revealed the formation of co-crystals for various mixture compositions [20]. However, the
eutectic mixture is in the liquid state at room temperature and both thymol and menthol
are recognized to be permeation enhancers. Consequently, Raman investigations were
performed on an amorphous blend composed of 25 wt% of IBP dissolved in the eutectic
mixture of thymol–menthol, in order to monitor possible unexpected recrystallization of
IBP. The low-frequency spectra of IBP dissolved in the DES were collected upon heating at
1 ◦C/min from −120 ◦C up to 90 ◦C (about 14 ◦C above the melting temperature of IBP) and
plotted in Figure 8a after transformation into reduced intensity. No trace of crystallization
can be detected in this figure. The absence of crystallization signatures reflects the stability
of amorphous IBP dissolved in the eutectic composition of the DES. This stability of
amorphous IBP cannot be explained by Tg of the ternary mixture significantly higher than
Tg in IBP:M mixtures, since the plot of IQES(T) in Figure 8b shows Tg < −50 ◦C.
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Figure 8. Thermal stability of amorphous IBP dissolved in thymol:menthol analyzed from (a) the
LFRS of the ternary mixture collected upon heating at 1 ◦C/min, (b) IQES(T) plot of the ternary
mixture determined from integrating LFRS, compared with IQES(T) plots of thymol:menthol and
glassy IBP obtained by quenching the liquid state. FII and FI indicate the metastable form and stable
form of crystalline IBP corresponding to minima of IQES(T) plot.

Molecular H-bonding associations in the amorphous ternary mixture (thymol–menthol–
ibuprofen) are analyzed from the Raman spectra of the C=O and O–H stretching vibrations
plotted in Figure 9a,b, respectively. Figure 9a shows that the H-bond network of IBP is
disrupted by dissolving IBP in thymol:menthol amorphous blend, via the shift towards
the high frequencies of the 1650 cm−1 band, as observed in the IBP3:M7 amorphous blend.
However, Figure 9b shows that the O–H. . .O H-bond network in thymol:menthol remains
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similar after dissolving IBP, maintaining stable amorphous IBP by preventing the formation
of the H-bond network of crystalline IBP.
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3.3. Co-Amorphous Ibuprofen–Amino Acid Systems

Recent studies [17] have shown the high capabilities of arginine (ARG) to form stable
co-amorphous systems with indomethacin by milling and spray-drying, compared with
other amino acids (AAs). To better understand the properties of AAs that promote the
formation of stable co-amorphous blends, binary mixtures based on ibuprofen and arginine
were analyzed. Given that Tg of ibuprofen is well below room temperature (~−50 ◦C),
by contrast to indomethacin (Tg = 42 ◦C), cryomilling was used to successfully prepared
co-amorphous blends. Low-frequency Raman investigations were firstly performed on
co-amorphous formulations upon heating from −100 ◦C to temperatures above melting
of IBP (>76 ◦C), in order to assess the degree of stability and Tg of the formulations. In a
second step, Raman investigations were also performed at higher frequencies in the C=O
stretching region for analyzing H-bonding molecular associations.

3.3.1. Low-Frequency Raman Investigations

The cryomilled IBPxARG(1−X) mixtures were directly loaded in spherical pyrex con-
tainers and placed under the N2 gas stream of the Oxford device regulated at −100 ◦C. The
spectra collected at −100 ◦C were converted in reduced intensity and plotted in Figure 10
for mixtures whose IBP content is ranging between 0.9 and 0.5.
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Figure 10 shows that mixtures have been amorphized by cryomilling except for high
IBP content (XIBP = 0.9). The spectrum of the IBP0.9ARG0.1 mimics the broadened phonon
peaks of crystalline IBP with the presence of the enhanced low-frequency intensity with
respect to the crystal spectrum, mostly inherent to the ARG amorphization. For lower IBP
contents, the spectra of mixtures reflect the density of vibrational states without detection
of any trace of phonon peaks. This indicates that the cryomilled mixtures (XIBP < 0.9)
were successfully amorphized. The stability of the co-amorphous blends was analyzed by
heating from −100 up to 100 ◦C, knowing that IBP melts at 76 ◦C. The quasielastic intensity
(IQES) was plotted against temperature in Figure 11a for various IBP:ARG co-amorphous
blends. IQES was calculated by integrating the low-frequency spectra collected upon heating
and plotted in Figure A8 in Appendix B for XIBP = 0.5 and 0.8.
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values, increasing with XIBP decrease.

The IQES(T) plots of co-amorphous blends are compared with that obtained by heating
glassy IBP. Figure 11a reveals the partial recrystallization of IBP-rich co-amorphous blends.
For XIBP ≥ 0.5, the IQES(T) plots of mixtures do not exhibit any trace of recrystallization.
After a first heating up to 100 ◦C, IBP:ARG blends were recooled down to −100 ◦C at
6 ◦C/min (maximum cooling rate) and spectra were taken again during a second heating
ramp at 1 ◦C/min. The IQES(T) plot obtained by integrating the LFRS collected in the
second heating ramp is compared in Figure 11b to that corresponding to the first heat
for the IBP0.8:ARG0.2 blend which exhibits the more marked crystalline signatures. It is
clearly observed that no trace of crystallization can be detected upon heating the solid
co-amorphous blend prepared by cooling the melt, contrasting with the IQES(T) plot of the
first heating ramp. These two different temperature behaviors of IQES reveal two different
amorphous states.

3.3.2. Raman Investigations in the C=O Stretching Region

It was shown in Figure 7a that the C=O stretching band detected around 1650 cm−1

in IBP reflected molecular associations via H-bonding. Consequently, this region was
investigated for analyzing the H-bonded network of IBP within various IBPX:ARG(1−X)
blends. Spectra of C=O stretching vibrations were plotted in Figure 12.
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Figure 12. Analysis of H-bonding in various IBPX:ARG(1−X) mixtures (a) in the C=O stretching region
(b) in the narrower region centered on Raman bands involved in H-bonding.

The intensity of the 1650 cm−1 band reflecting C=O. . .H H-bonding interactions in
IBP is clearly decreasing with the increase in the ARG content. The 1650 cm−1 band is
transforming into a very broad component as XIBP decreases toward 0.5, which is induced
by the shoulder growing on the high frequency side of the band. In the spectrum of
IBP0.4:ARG0.6, there is no remaining trace of additional Raman bands reflecting C=O. . .
H molecular associations between IBP molecules. This behavior can be explained by the
disruption of the H-bond network as the ARG content increases. The crystallization of
IBP is therefore inhibited by the disruption of its H-bond network inherent to the addition
of ARG.

The low-frequency and the C=O stretching spectra taken at −100 ◦C just after cryo
milling and after cooling the liquid were compared in Figure 13 for the blend corresponding
to XIBP = 0.8, in order to understand the origin of the stability of the amorphous blend
in the second heating ramp. Figure 13a shows similar molecular organization in the
short-range in the two amorphous states prepared by direct cryomilling or by cooling the
melt, via the rigorous superimposition of the low-frequency spectra. It can be noticed
that the presence of a small amount of ARG (XARG = 0.2) significantly modifies the low-
frequency spectrum of IBP and therefore the organization of IBP molecules. By contrast to
the low-frequency spectrum, the C=O stretching region distinctive of C=O. . .H molecular
associations between IBP molecules is irreversibly modified after the first heating of the
cryomilled blend into the liquid state. The intensity of the 1650 cm−1 band was measured
and plotted against temperature in Figure 14 for the first heating ramp. Figure 14 reveals a
drastic intensity decrease in the band above 30 ◦C, at the same temperature as the increase
in IQES(T) observed in Figure 11b, reflecting the melting of crystallized IBP. The low melting
temperature of the blend, detected well below the melting temperature of IBP (76 ◦C),
indicates recrystallization in a nanocrystalline state. The 1650 cm−1 band being closely
related to the H-bond network of IBP, its intensity decrease with the addition of ARG reflects
the disruption of the H-bond network of IBP. The disappearance of this band indicates the
irreversible and complete disruption of the H-bond network of IBP upon heating above
30 ◦C, inhibiting the crystallization of IBP after cooling the melt.
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Figure 13. Comparison between Raman spectra of the XIBP = 0.8 blend taken at −100 ◦C just after
cryomilling and after a first heating ramp up to 100 ◦C (a) in the low-frequency region, (b) in the
C=O stretching region; the arrow localizes the Raman band distinctive of the H-bond network of IBP.
These spectra are compared with those of glassy IBP at the same temperature.
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4. Discussion

The present study explores different routes for improving the bioavailability of IBP
used for transdermal administration inherent to the physical state of the API. IBP was
selected as a model drug because of its poor solubility in aqueous media leading to poor
bioavailability, and therefore requiring amorphization of the drug for achieving better
therapeutic action. The glass transition temperature of IBP is well below room temperature
(Tg~−50 ◦C) promoting topical administration in its undercooled liquid state but making
IBP highly metastable with easy recrystallization at room temperature. Additionally, the
poor skin permeability of IBP limits its administration from transdermal delivery systems.
Recrystallization of IBP within formulations would be an additional obstacle to the skin
penetration of the API. In this context, the results presented above can be discussed to
better understand the stabilization mechanism of the undercooled liquid state of IBP.

In a first step, menthol–ibuprofen eutectic system was carefully investigated for an-
alyzing the stability of the undercooled liquid state of IBP within the formulation. The
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physical state of IBP was monitored upon two successive heating ramps at 1 ◦C/min of
various IBPX:M(1−X) mixtures. The first heating ramp performed from the crystalline state
of the mixture has provided data used for plotting the phase diagram of the binary mixture.
Results are very similar to those recently published with the eutectic composition slightly
below XIBP = 0.3, and the eutectic temperature very close to 20 ◦C. The aim of this study
focused on the thermal stability of the liquid formulation. Consequently, a special attention
was given to the second heating ramp for measuring Tg, monitoring the physical stability
of IBP and probing various (homomolecular, heteromolecular) H-bonding networks. It was
found that any mixtures undergo successive partial recrystallization of menthol (around
−25 ◦C) and ibuprofen (around 0 ◦C for mixtures close to the eutectic composition and
around room temperature for ibuprofen-rich mixtures, see Figure 5).

The recrystallization can be obviously explained from consideration of H-bonding
interactions. The C=O stretching region can be used for monitoring H-bonding between
ibuprofen molecules via the 1650 cm−1 band and heteromolecular IBP–M H-bonding inter-
actions via the 1700 cm−1 band. This spectral region was plotted at various temperatures for
two binary mixtures in Figure 15. For menthol-rich mixtures close to eutectic composition
(see Figure 15a), the two types of H-bonding can be detected in the low-temperature range
(−50 ◦C) from the presence of the two bands. The weak intensity of the 1650 cm−1 band
is related to the low content of ibuprofen in the mixture. However, the detection of this
band indicates that all IBP molecules are not interacting with menthol molecules, and some
dimers of IBP molecules are preserved in the liquid formulations at low temperatures. The
higher intensity of the 1700 cm−1 band is induced by the contribution of the Raman band
of pure menthol and the additional contribution inherent to ibuprofen–menthol H-bond
interactions (see Figure 6a). Only a few menthol molecules are associated with ibuprofen
molecules via H-bonding, making recrystallization of not associated menthol molecules
possible. The small amount of IBP dimers detected at 0 ◦C around 1650 cm−1 makes partial
recrystallization of IBP possible. Upon further heating, the disruption of the two types of
H-bonding networks is observed via the disappearance of the 1650 cm−1 band and the
shift towards the high frequencies of the 1700 cm−1 band. For ibuprofen-rich mixtures, e.g.,
XIBP = 0.7 (Figure 15b), most of menthol molecules are H-bonded with ibuprofen molecules.
As a consequence, menthol does not recrystallize as observed in Figure 5c for XIBP = 0.6 via
the detection of only one exotherm with a concomitant decrease in the quasielastic intensity
slightly above 25 ◦C, corresponding to the partial recrystallization of IBP (see Figure A7
in Appendix A). At low temperature (−10 ◦C), Figure 15b shows a very weak amount
of ibuprofen dimers, increasing with temperature to the detriment of heteromolecular
H-bonding. The formation of IBP dimers promotes ibuprofen recrystallization, shifted
towards higher temperatures than that determined in menthol-rich mixtures (below 0 ◦C).

An alternative to the formation of a eutectic IBP:M binary system for avoiding recrys-
tallization of IBP within the liquid formulation is to dissolve IBP in natural deep eutectic
solvents (DES). Knowing the remarkable properties of terpenes for enhancing permeation
of drugs across the skin [14,19], and the opportunity to form DES by mixing them [10,19],
the dissolution of IBP in the eutectic composition of thymol:menthol system was carefully
analyzed. Despite the recent evidence of cocrystal formation in its phase diagram [20],
the mixture prepared in equimolar proportion is liquid at temperatures well below room
temperature. The maximum mass of IBP which can be dissolved in thymol:menthol (1:1)
was estimated to 25 wt% with respect to the DES. Figure 8 shows the total absence of
crystallization signature of IBP dissolved in the DES, via the absence of phonon trace in the
LFRS and the monotonic temperature dependence of IQES(T), despite the low Tg (~−70 ◦C)
of the formulation induced by the plasticization effect of the DES. The stability of IBP can
be explained by the absence of the 1650 cm−1 band reflecting the absence of ibuprofen
dimers dissolved in the DES inherent to the H-bond formation between IBP and the DES
components. The C=O stretching region, plotted at −50 and 50 ◦C in Figure 16 shows
the absence of the 1650 cm−1 band distinctive of IBP dimers. By contrast, the 1700 cm−1

band shifting towards the high frequencies upon heating, shows H-bonding interactions
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between ibuprofen and menthol/thymol molecules. This study shows that dissolving IBP
in the DES composed of terpenes should be a better route for avoiding IBP recrystallization
than forming eutectic mixtures (ibuprofen–menthol or ibuprofen–thymol).
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In a second step, the stability of amorphous IBP was analyzed within co-amorphous
blends prepared by cryomilling ibuprofen with amino acids. Arginine was selected because
of its remarkable properties for stabilizing amorphous indomethacin (IMC). However,
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Tg of IBP is significantly lower than Tg of IMC (Tg(IMC)–Tg(IBP) ≈ 90 ◦C). Tg values of
various mixtures determined from low-frequency Raman data are compared, in Figure A9
in Appendix B, to the Tg curve calculated from the Gordon-Taylor law. This figure shows
that Tg of IBP-rich mixtures (XIBP ≥ 0.4) is below room temperature. However, no recrys-
tallization was detected in the mixture prepared by cryomilling ARG and IBP in equimolar
proportion. Additionally, no recrystallization was detected in previously melted IBP-rich
mixtures. Consequently, this study reveals that Tg is not the relevant parameter for predict-
ing the physical stability of amorphous IBP within co-amorphous blends by contrast to the
results recently obtained from investigations in AA:IMC blends [13,16,37]. For IBP-based
mixtures, the inability to form ibuprofen dimers by adding ARG seems the main cause for
inhibiting IBP recrystallization, even for low content of ARG, after melting of the cryomilled
mixture. After melting, the short-range molecular organization is similar to that obtained
just after cryomilling, but no trace of IBP dimers can be detected after melting contrary
to what is observed after milling. Consequently, the inhibition of IBP dimer formation by
heteromolecular H-bonding formation seems to be the required condition for avoiding
partial recrystallization of ibuprofen.

5. Conclusions

The main goal of this study was to analyze the physical stability of amorphous IBP
within various formulations designed for transdermal administration. Most of investi-
gations reported in the literature aims to estimate the efficacy of IBP for skin penetra-
tion [23–25] without consideration of the physical state of IBP. However, unexpected recrys-
tallization of IBP should have negative consequence on skin penetration of the API. This
paper reports the first analyses of the physical stability of ibuprofen in topical formulations.
It was shown that partial recrystallization of ibuprofen was detected in the two types of
analyzed formulations. However, the method used for preparing the two types of prepa-
ration has a direct impact on the stability of amorphous ibuprofen. It can be concluded
that dissolving IBP in terpenes-based DES and preparing co-amorphous IBP:ARG blends
obtained by melting are the best routes for avoiding the partial recrystallization of IBP.
Despite the antiplasticizing effect of ARG leading to Tg of IBP:ARG mixtures well above
Tg (~−60 ◦C) of the ibuprofen–menthol:–hymol formulation, the stabilization mechanism
of IBP is more likely related to the inhibition of IBP dimer formation by heteromolecular
H-bond associations between IBP and ARG or DES components. Consequently, the pres-
ence of IBP dimers within formulations can be considered as a precursor of unavoidable
recrystallization. This study shows that ibuprofen easily recrystallizes within these two
analyzed formulations. This suggests the possible recrystallization of ibuprofen within
various types of topical formulations, and careful attention should be paid to this issue.
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Figure A2. Low-frequency spectra of a menthol-rich mixture (XIBP = 0.1) collected upon at 1 ◦C/min.

This mixture is close to the eutectic composition, and then mainly composed of the
eutectic mixture which melts slightly below 20 ◦C, and a small excess of crystallized
menthol progressively dissolving up to about 35–40 ◦C.
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heating at 1 ◦C/min. the green arrows localize Tg, while the red arrows localize recrystallization of
M and IBP.
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Figure A4. Low-frequency spectra of the co-amorphous blend (IBPX:M(1−X), XIBP = 0.2) collected at
(a) T = −30 ◦C and (b) T = −5 ◦C upon heating the co-amorphous blend from −100 ◦C at 1 ◦C/min.
The spectra are compared with those of M and IBP taken at the same temperature for identifying the
crystalline signatures.

The subtle structuration of the spectrum of the co-amorphous blend plotted at −30 ◦C
in Figure A4a can be identified as corresponding to the partial crystallization of menthol
while the more marked crystalline signatures observed at −5 ◦C show correspond to the
crystallization of ibuprofen. It is worth mentioning that the Raman signal scattered by
ibuprofen is significantly enhanced compared to that scattered by menthol because of the
presence of π-bonds in IBP.

It can be outlined that there is a systematic difference between Tg values determined
by Raman and DSC experiments, induced by the method used for detecting and measuring
Tg. Using low-frequency Raman spectroscopy, Tg is detected from the change in the signal
of the dynamics of the frozen motions in the glassy state into the signal of anharmonic
motions in the undercooled liquid.
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Figure A7. Low-frequency spectra of the IBP0.6:M0.4 mixture collected upon heating from the glassy
state compared with the spectrum of crystalline IBP taken at 35 ◦C. Recrystallization signatures
detected in the spectrum of the mixture taken at 35 ◦C can be identified to phonon peaks of crystalline
ibuprofen, reflecting the partial recrystallization of IBP within the IBP:ARG mixture.
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