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Abstract: The design of colchicine site ligands on tubulin has proven to be a successful strategy to
develop potent antiproliferative drugs against cancer cells. However, the structural requirements
of the binding site endow the ligands with low aqueous solubility. In this work, the benzothiazole
scaffold is used to design, synthesize, and evaluate a new family of colchicine site ligands exhibiting
high water solubility. The compounds exerted antiproliferative activity against several human
cancer cell lines, due to tubulin polymerization inhibition, showing high selectivity toward cancer
cells in comparison with non-tumoral HEK-293 cells, as evidenced by MTT and LDH assays. The
most potent derivatives, containing a pyridine moiety and ethylurea or formamide functionalities,
displayed IC50 values in the nanomolar range even in the difficult-to-treat glioblastoma cells. Flow
cytometry experiments on HeLa, MCF7, and U87MG cells showed that they arrest the cell cycle at the
G2/M phases at an early time point (24 h), followed by apoptotic cell death 72 h after the treatment.
Tubulin binding was confirmed by microtubule network disruption observed via confocal microscopy.
Docking studies support favorable interaction of the synthesized ligands at the colchicine binding
site. These results validate the proposed strategy to develop potent anticancer colchicine ligands with
improved water solubility.

Keywords: anticancer drugs; tubulin; colchicine site; antimitotic; solubility; drug resistance; glioblastoma

1. Introduction

Cancer is one of the main causes of death worldwide, responsible for approximately
one of every six deaths and accounting for nearly ten million deaths in 2020 [1]. Cancer is
defined as a group of diseases characterized by the uncontrolled division of abnormal cells
beyond their usual boundaries as a consequence of failures of the systems of regulation of
cell proliferation and homeostasis. Although cancer research in the past two decades has
allowed us to better understand the cellular mechanisms involved in the development of
the disease, and many new targets for cancer treatments were identified, the difficulties in
achieving high anticancer potency and no side effects together with good pharmacokinetic
profiles make the development of effective chemotherapy one of the biggest challenges of
pharmaceutical sciences [2].

A considerable number of anticancer drug targets are cell cycle related since it is
one of the sources of cell proliferation deregulation. The cell cycle consists of a series of
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coordinated events, aimed at the formation of two cells from one mother cell, which is
usually deregulated in cancer tissues following unscheduled cell divisions. It is composed
of four main phases, including growth phase 1 (G1/G0), the DNA synthesis phase (S),
growth phase 2 (G2), and mitosis (M), which is the most interesting phase for therapeutic
targeting against aberrant cell proliferation since it is the event when cell division takes
place. Antimitotic drugs are those that are able to perturb or inhibit cell proliferation by
targeting any kind of mitosis machinery such as mitotic kinases, (e.g., the Aurora kinase
B inhibitor Barasertib) [3], mitotic phosphatases (e.g., the phosphatase Cdc25 inhibitor
NSC95397) [4], kinesins (e.g., the kinesin KSP/EG5 inhibitor Ispenesib) [5], microtubule-
associated proteins, MAPs (e.g., the Map2 inhibitor Estracyt) [6], or tubulin (e.g., the
microtubule stabilizing agent Paclitaxel) [7]. The polymerization–depolymerization equi-
libria of tubulin dimers are responsible for the assembly and disassembly of microtubules,
which are the main components of the mitotic spindle. Tubulin-binding drugs alter mi-
crotubule dynamics, leading to mitotic arrest, which is usually followed by the induction
of cell apoptosis. Targeting tubulin has proven to be one of the most successful strate-
gies to develop antimitotic agents since many anticancer drugs in clinical use, such as
taxanes [8] (e.g., paclitaxel and docetaxel, Figure 1a) or Vinca alkaloids [9] (e.g., Vinblastine
and Vinorelbine, Figure 1a) are tubulin ligands. However, these large and hydrophobic
molecules are substrates of efflux pumps such as the P-glycoprotein, thus developing
multidrug resistance mechanisms (MDR) [10]. The structural complexity of those natural
products entails several difficulties to design and synthesize new analogs to overcome drug
resistance mechanisms.

Different from the taxanes and Vinca alkaloid sites in tubulin, the colchicine site, lo-
cated at the interface between the α and β tubulin subunits, is appropriate for the design of
ligands because it has synthetically accessible simple structures [11–13]. In recent years, the
colchicine site ligands have gained attention since they behave not only as antiproliferative
drugs with a high potency against cancer cells, but also as vascular disrupting agents [14].
According to structural studies, the colchicine site is composed of three connected sub-
pockets, namely, B–A–C [15–17]. Few examples of ligands binding simultaneously to the
three zones were reported, such as Lexibulin [18] and ABT-751 [19] (Figure 1b). The most
frequently reported colchicine ligands consist of two aromatic rings linked by different
functional groups that bind to two of the colchicine zones, usually zones A–B, such as
combretastatin A-4 (CA-4) and its derivatives [20] (Figure 1c), known as classical ligands,
which were intensively studied due to their high antimitotic potency [21–23]. However,
some concerns are involved in the clinical limitations of CA-4 derivatives such as their
low water solubility and their susceptibility to phase II metabolic transformations by
UDP-glycosyltransferases through the hydroxy groups, which is usually followed by the
development of drug resistance [24]. Structural modifications of combretastatin analogs
aimed to improve water solubility were attempted by the functionalization of the aromatic
rings with more polar groups, but this strategy is usually accompanied by a loss of an-
tiproliferative potency. For example, substitutions of the olefin bridge of combretastatins
by more water-soluble linkers, such as ketones or oximes (Figure 1c), did not succeed in
maintaining high antiproliferative potencies [25].

The incorporation of heterocyclic moieties in the design of new colchicine site lig-
ands was reported as a successful alternative to combretastatin A-4 derivatives [26].
Furthermore, the benzothiazole moiety is a versatile scaffold for the development of
new anticancer drugs [27,28] that are able to act on different targets [29]. It has played
an important role in the design of new polar compounds targeting tubulin [30], as re-
ported 2-anilinopyridinyl-benzothiazole [31], triazole-benzothiazole [32], naphthalimide-
benzothiazole [33], isoxazole-benzothiazole [34], trimethoxyphenyl-benzothiazole [35], and
bis-benzothiazole [36] derivatives; most of them are adapted to bind at the A–B zones of
the colchicine site. The benzothiazole scaffold was also used to develop photoswitchable
tubulin polymerization inhibitors that are able to spatiotemporally control the microtubule
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dynamics and target different regions of the colchicine domain depending on a photoiso-
merization process of styrylbenzothiazole derivatives [37].
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Another approach to obtain more soluble and potent tubulin ligands is the design
of molecules targeting the colchicine zones A–C since their amino acid residues are more
polar compared with zones A–B [38]. The success of this strategy can be illustrated by the
antimitotic agents nocodazole [39] and MI-181 (Figure 1d) [40], a benzothiazole derivative.

MI-181 is a potent antitumor agent acting as an inhibitor of tubulin polymerization. It
can inhibit the cell proliferation of HeLa cells with an IC50 value of 17 nM. Even though
it is more soluble than combretastatin A4 (5.6 µg/mL vs. 1 µg/mL for CA-4), its water
solubility is still limited [41]. However, its interaction in the tubulin site was investigated,
and its simple structure offers great opportunities to perform chemical modifications aimed
to improve its physicochemical and pharmacological properties.

The main objective of this work is the design, synthesis, and biological evaluation
of new colchicine site ligands with an improved aqueous solubility, together with a high
binding affinity to tubulin, that trigger an antimitotic effect on cancer cells. With this
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aim, the olefin linker of combretastatins and MI-181 was successfully substituted by a
methylamino bridge. As a combination of structural features of the benzothiazole ring of
MI-181 and the p-methoxyphenyl moiety of Combretastatin A-4, we propose 6-methoxy-
benzothiazole as the B ring. We further explored the incorporation of the following different
aromatic A rings: 2-, 3-, or 4-pyridine; benzene; 5-metyl-1H-imidazole; and naphthalene.
Finally, substitutions on the methylamino group to obtain the corresponding formamide,
acetamide, or ethylurea derivatives were undertaken (Figure 2). Some of the newly synthe-
sized compounds are more water-soluble than the references MI-181 and ABT-751. Their
antiproliferative activity was studied in a selection of human tumor cell lines representative
of the kinds of cancer that have the highest incidence worldwide, including cervix uterine,
breast, colon, liver, prostate, and brain cancer. Embryonic kidney HEK-293 cells were used
to study toxicity in healthy tissues. Multidrug resistance and the mechanism of action were
investigated for the most potent compounds. Docking studies were performed for all the
new molecules.
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2. Materials and Methods
2.1. Chemistry
2.1.1. General Chemical Techniques

Reagents were used as purchased without further purification. Solvents (toluene,
ethanol, EtOAc, CH2Cl2, MeOH) were dried and stored over molecular sieves. TLC
was performed on precoated silica gel polyester plates (0.25 mm thickness) with a UV
fluorescence indicator 254 (Polychrom SI F254). Chromatographic separations were per-
formed on silica gel columns via flash (Kieselgel 40, 0.040–0.063; Merck, Rahway, NJ, USA)
chromatography. 1H NMR and 13C NMR spectra were recorded in CDCl3, CD3OD, DMSO-
d6, or acetone-d6 on a Bruker SY spectrometer at 400/100 MHz or on a Varian Mercury
400/100 MHz spectrometer. Chemical shifts (δ) are given in ppm downfield from tetram-
ethylsilane, and coupling constants (J values) are given in Hz. IR spectra in KBr disks were
run on a Nicolet Impact 410 Spectrophotometer. A hybrid QSTAR XL quadrupole/time of
flight spectrometer was used for HRMS analyses. The aqueous solubility of the compounds
was determined in a Helios Alfa Spectrophotometer from Thermo-Spectronic.

2.1.2. Chemical Synthesis and Characterization
Method A. Reductive Amination (Compounds 1–6)

A catalytic amount of p-toluenesulfonic acid (0.1 eq) was added to a solution of 6-
methoxybenzo[d]thiazol-2-amine (1 eq) and the aromatic aldehyde derivative (1 eq) in dry
toluene (30 mL). A Dean–Stark system was used to remove the water, and the mixture was
stirred for 16 h under reflux. Then, the solvent was evaporated under reduced pressure,
and the residue was re-dissolved in absolute ethanol (20 mL). NaBH4 (1.5 eq) was added
at 0 ◦C, and the mixture was stirred at room temperature for 2 h. Then, the solvent was
removed under vacuum, and the residue was dissolved in CH2Cl2. The organic layer was
washed with saturated NaCl water, dried over anhydrous Na2SO4, filtered, and evaporated
under vacuum.
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Method B. Synthesis of Urea Derivatives (Compounds 7–12)

Ethylisothiocyanate (2.5 eq) and triethylamine (2.5 eq) were added to a solution of the
6-methoxybenzo[d]thiazol-2-amine derivative 1, 2, 3, 4, 5, or 6 in dry CH2Cl2 (12–13 mL).
The solution was stirred overnight, at room temperature, under N2 atmosphere. Then,
the solvent was removed under vacuum, and the residue was dissolved in CH2Cl2. The
organic layer was washed with saturated NaHCO3 water solution and saturated NaCl
water solution, dried over anhydrous Na2SO4, filtered, and evaporated under vacuum.

Method C. Synthesis of Formamide Derivatives (Compounds 13–18)

Formic acid (2 eq), EDC (2 eq), and HOBt (2 eq) were added to a solution containing
DMAP (2 eq), and the 6-methoxybenzo[d]thiazol-2-amine derivative 1, 2, 3, 4, 5, or 6 in dry
CH2Cl2 (20–22 mL). The mixture was stirred overnight, at room temperature, under a N2
atmosphere. Then, the solvent was removed under vacuum, and the residue was dissolved
in CH2Cl2. The organic layer was washed with saturated NaHCO3 water solution and
saturated NaCl water solution, dried over anhydrous Na2SO4, filtered, and evaporated
under vacuum.

Method D. Synthesis of Acetamide Derivatives (Compounds 19–24)

Acetic anhydride (3 eq) and DMAP (3 eq) were added to a solution of the 6-metho-
xybenzo[d]thiazol-2-amine derivative 1, 2, 3, 4, 5 or 6 in dry CH2Cl2 (12–13 mL). The
mixture was stirred for 4 h, at room temperature, under N2. Then, the solvent was removed
under vacuum, and the residue was dissolved in CH2Cl2. The organic layer was washed
with saturated NaHCO3 water solution and saturated NaCl water solution, dried over
anhydrous Na2SO4, filtered, and evaporated under vacuum.

6-methoxy-N-(pyridin-2-ylmethyl)benzo[d]thiazol-2-amine (1). Compound 1 was syn-
thesized following method A as previously described using commercial 6-methoxybenzo[d]-
thiazol-2-amine (2 g, 11 mmol) and pyridine-2-carbaldehyde (1.1 mL, 11 mmol) in dry
toluene (30 mL) and NaBH4 (624 mg, 16.5 mmol) in ethanol (20 mL). The crude residue
was purified via flash column chromatography (EtOAc/hexane 3:2–DCM/MeOH 9:1) to
yield 2.09 g (7.70 mmol, 70%) of compound 1. IR (KBr): 3239, 2899, 1623, 1471, 1421, 1335,
1219, 1030, 834 cm−1. 1H-NMR (400 MHz, MeOD): δ 3.77 (3H, s), 4.72 (2H, s), 6.84 (1H, dd,
J = 2.8 and 8.0 Hz), 7.18 (1H, d, J = 2.8 Hz), 7.30 (2H, m), 7.47 (1H, d, J = 7.6 Hz), 7.86 (1H,
td, J = 2.0 and 8.0 Hz), 8.50 (1H, bd, J = 4.8 Hz). 13C-NMR (100 MHz, CDCl3): δ 49.3 (CH2),
55.9 (CH3), 105.4 (CH), 113.4 (CH), 119.2 (CH), 121.9 (CH), 122.5 (CH), 131.5 (C), 136.8 (CH),
146.3 (C), 148.9 (CH), 155.2 (C), 156.1 (C), 165.3 (C). HRMS (C14H13N3OS) m/z: calculated
272.0852 (M + H+), 294.0672 (M + Na+); found 272.0746 (M + H+), 294.0661 (M + Na+).

6-methoxy-N-(pyridin-3-ylmethyl)benzo[d]thiazol-2-amine (2). Compound 2 was
synthesized following method A as previously described using commercial 6-metho-
xybenzo[d]thiazol-2-amine (2 g, 11 mmol) and pyridine-3-carbaldehyde (1.03 mL, 11 mmol)
in dry toluene (30 mL) and NaBH4 (624 mg, 16.5 mmol) in ethanol (20 mL). The crude
residue was purified via flash column chromatography (EtOAc/hexane 3:2–DCM/MeOH
9:1) to yield 2.24 g (8.25 mmol, 75%) of compound 2. IR (KBr): 3194, 2904, 1607, 1157, 1473,
1222, 1024, 815 cm−1. 1H-NMR (400 MHz, MeOD): δ 3.76 (3H, s), 4.64 (2H, s), 6.85 (1H, dd,
J = 2.8 and 8.8 Hz), 7.17 (1H, d, J = 2.0 Hz), 7.31 (1H, d, J = 8.8 Hz), 7.39 (1H, dd, J = 6.0 and
8.0 Hz), 7.87 (1H, bd, J = 8.0 Hz), 8.42 (1H, dd, J = 6.0 and 1.6 Hz), 8.57 (1H, bs). 13C-NMR
(100 MHz, CDCl3): δ 46.4 (CH2), 55.9 (CH3), 105.4 (CH), 113.6 (CH), 119.2 (CH), 123.7 (CH),
131.4 (C), 133.6 (C), 135.6 (CH), 146.1 (C), 148.9 (CH), 149.1 (CH), 155.2 (C), 165.5 (C). HRMS
(C14H13N3OS) m/z: calculated 272.0852 (M + H+), 294.0672 (M + Na+); found 272.0834
(M + H+), 294.0664 (M + Na+).

6-methoxy-N-(pyridin-4-ylmethyl)benzo[d]thiazol-2-amine (3). Compound 3 was
synthesized following method A as previously described using commercial 6-metho-
xybenzo[d]thiazol-2-amine (2 g, 11 mmol) and pyridine-4-carbaldehyde (1.04 mL, 11 mmol)
in dry toluene (30 mL) and NaBH4 (624 mg, 16.5 mmol) in ethanol (20 mL). The crude
residue was purified by flash column chromatography (EtOAc/hexane 3:2–DCM/MeOH
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15:1) to yield 2.12 g (7.81 mmol, 71%) of compound 3. IR (KBr): 3179, 2902, 1624, 1600,
1469, 1415, 1272, 1215, 1060, 801 cm−1. 1H-NMR (400 MHz, MeOD): δ 3.76 (3H, s), 4.67 (2H,
s), 6.84 (1H, dd, J = 2.8 and 8.8 Hz), 7.18 (1H, d, J = 2.8 Hz), 7.28 (1H, d, J = 8.8 Hz), 7.41
(2H, bd, J = 5.6 Hz), 8.45 (2H, bd, J = 4.4 Hz). 13C-NMR (100 MHz, CDCl3): δ 47.7 (CH2),
55.9 (CH3), 105.4 (CH), 113.6 (CH), 119.2 (CH), 122.2 (2CH), 131.4 (C), 146.2 (C), 147.5 (C),
149.9 (2CH), 155.2 (C), 165.7 (C). HRMS (C14H13N3OS) m/z: calculated 272.0852 (M + H+),
294.0672 (M + Na+); found 272.0765 (M + H+), 294.0667 (M + Na+).

6-methoxy-N-((4-methyl-1H-imidazol-5-yl)methyl)benzo[d]thiazol-2-amine (4). Com-
pound 4 was synthesized following method A as previously described using commer-
cial 6-methoxybenzo[d]thiazol-2-amine (2 g, 11 mmol) and 4-methyl-1H-imidazole-5-
carbaldehyde (1.21 g, 11 mmol) in dry toluene (30 mL) and NaBH4 (624 mg, 16.5 mmol)
in ethanol (20 mL). The crude residue was purified via flash column chromatography
(DCM/MeOH 30:1 to 9:1) to yield 2.08 g (7.59 mmol, 69%) of compound 4. IR (KBr): 3435,
3137, 2932, 1150, 1433, 1223, 1049, 812 cm−1. 1H-NMR (400 MHz, DMSO-d6): δ 2.15 (3H, s),
3.65 (3H, s), 4.33 (2H, d, J = 4.4 Hz), 6.77 (1H, dd, J = 2.8 and 8.8 Hz), 7.23 (1H, d, J = 2.8 Hz),
7.26 (1H, d, J = 8.8 Hz), 7.43 (1H, s), 7.93 (1H, bt, J = 4.4 Hz). 13C-NMR (100 MHz, DMSO-d6):
δ 10.45 (CH3), 38.1 (CH2), 55.9 (CH3), 105.9 (CH), 113.3 (CH), 118.7 (CH), 131.8 (C), 132.5 (C),
133.8 (CH), 134.1 (C), 146.9 (C),154.7 (C), 164.7 (C). HRMS (C13H14N4OS) m/z: calculated
275.0961 (M + H+), 297.0781 (M + Na+); found 275.0827 (M + H+), 297.0785 (M + Na+).

N-benzyl-6-methoxybenzo[d]thiazol-2-amine (5). Compound 5 was synthesized fol-
lowing method A as previously described using commercial 6-methoxybenzo[d]thiazol-2-
amine (1.7 g, 9.43 mmol) and benzaldehyde (0.677 mL, 9.43 mmol) in dry toluene (30 mL)
and NaBH4 (535 mg, 14.1 mmol) in ethanol (20 mL). The crude residue was purified via flash
column chromatography (EtOAc/hexane 1:1–DCM/MeOH 20:1) to yield 1.89 g (6.97 mmol,
74%) of compound 5. IR (KBr): 3091, 1612, 1442, 1221, 1053, 840 cm−1. 1H-NMR (400 MHz,
CDCl3): δ 3.78 (3H, s), 4.58 (2H, s), 6.85 (1H, dd, J = 2.8 and 8.6 Hz), 7.09 (bd, J = 2.4 Hz),
7.38–7.23 (7H, m). 13C-NMR (100 MHz, CDCl3): δ 45.9 (CH2), 55.8 (CH3), 105.2 (CH), 113.4
(CH), 119.1 (CH), 127.6 (2CH), 127.7 (2CH), 128.8 (CH), 131.3 (C), 137.6 (C), 146.4 (C), 155.2
(C), 166.0 (C). HRMS (C15H14N2OS) m/z: calculated 271.0900 (M + H+); found 271.0901
(M + H+).

6-methoxy-N-(naphthalen-2-ylmethyl)benzo[d]thiazol-2-amine (6). Compound 6 was
synthesized following method A as previously described using commercial 6-metho-
xybenzo[d]thiazol-2-amine (1.9 g, 10.54 mmol) and naphthalene-2-carbaldehyde (1.65 g,
10.54 mmol) in dry toluene (30 mL) and NaBH4 (598 mg, 15.81 mmol) in ethanol (20 mL).
The crude residue was purified via flash column chromatography (EtOAc/hexane 1:2–
DCM/MeOH 20:1) to yield 2.26 g (7.065 mmol, 67%) of compound 6. IR (KBr): 3435, 3196,
1613, 1454, 1219, 1052, 822 cm−1. 1H-NMR (400 MHz, DMSO-d6): 3.59 (3H, s), 4.70 (2H,
s), 6.79 (1H, dd, J = 2.4 and 8.8 Hz), 7.21–7.25 (2H, m), 7.41–7.51 (3H, m), 7.81–7.87 (4H,
m), 8.53 (1H, bt, J = 7.8 Hz). 13C-NMR (100 MHz, DMSO-d6): 47.8 (CH2), 55.8 (CH3), 105.9
(CH), 113.4 (CH), 118.6 (CH), 125.9 (CH), 126.1 (CH), 126.3 (CH), 126.6 (CH), 127.9 (2CH),
128.4 (CH), 131.8 (C), 132.7 (C), 133.3 (C), 137.0 (C), 146.8 (C), 154.8 (C), 165.3 (C). HRMS
(C19H16N2OS) m/z: calculated 321.1056 (M + H+); found 321.1055 (M + H+).

3-ethyl-1-(6-methoxybenzo[d]thiazol-2-yl)-1-(pyridin-2-ylmethyl)urea (7). Compound
7 was synthesized following method B as previously described using compound 1 (250 mg,
0.921 mmol), ethylisothiocyanate (182 µL, 2.30 mmol), and triethylamine (320 µL, 2.30 mmol)
in CH2Cl2 (12 mL). The crude residue was purified via flash column chromatography
(EtOAc/hexane 1:3–DCM/MeOH 9:1) to yield 299 mg (0.874 mmol, 95%) of compound
7. IR (KBr): 3422, 3246, 1667, 1508, 1269, 1061, 802 cm−1. 1H-NMR (400 MHz, CDCl3):
δ 1.27 (3H, t, J = 7.2 Hz), 3.44 (2H, bq, J = 7.2 Hz), 3.83 (3H, s), 5.38 (2H, s), 6.98 (1H, dd,
J = 2.8 and 8.8 Hz), 7.19 (1H, d, J = 2.4 Hz), 7.24 (1H, bt, J = 5.2 Hz), 7.63–7.70 (3H, m), 8.53
(dd, J = 4.4 and 1.2 Hz), 8.82 (1H, bs). 13C-NMR (100 MHz, CDCl3): δ 15.0 (CH3), 35.2
(CH2), 52.3 (CH2), 55.8 (CH3), 104.0 (CH), 114.4 (CH), 121.1 (CH), 123.0 (CH), 123.7 (CH),
133.8 (C), 137.3 (CH), 143.6 (C), 148.6 (CH), 155.7 (C), 156.2 (C), 156.5 (C), 160.9 (C). HRMS
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(C17H18N4O2S) m/z: calculated 343.1223 (M + H+), 365.1043 (M + Na+); found 343.1223
(M + H+), 365.1037 (M + Na+).

3-ethyl-1-(6-methoxybenzo[d]thiazol-3-yl)-1-(pyridin-3-ylmethyl)urea (8). Compound
8 was synthesized following method B as previously described using compound 2 (265 mg,
0.976 mmol), ethylisothiocyanate (193 µL, 2.44 mmol), and triethylamine (340 µL, 2.44 mmol)
in CH2Cl2 (12 mL). The crude residue was purified via flash column chromatography
(EtOAc/hexane 1:3–DCM/MeOH 9:1) to yield 301 mg (0.888 mmol, 91%) of compound 8.
IR (KBr): 3435, 3235, 1686, 1557, 1474, 1355, 1026, 835 cm−1. 1H-NMR (400 MHz, CDCl3): δ
1.29 (3H, t, J = 7.6 Hz), 3.48 (2H, bq, J = 7.6 Hz), 3.81 (3H, s), 5.20 (2H, s), 6.98 (1H, dd, J = 2.4
and 8.8 Hz), 7.15 (1H, d, J = 2.4 Hz), 7.25–7.22 (1H, m), 7.60 (1H, d, J = 9.2 Hz), 7.68 (1H,
bd, J = 8.4 Hz), 8.51 (1H, bd, J = 4.4 Hz), 8.65 (1H, bs). 13C-NMR (100 MHz, CDCl3): δ 15.0
(CH3), 35.8 (CH2), 48.9 (CH2), 55.8 (CH3), 104.2 (CH), 114.9 (CH), 121.2 (CH), 123.6 (CH),
131.7 (C), 132.4 (C), 134.9 (CH), 149.0 (2CH), 154.1 (C), 156.2 (C), 156.5 (C), 162.2 (C). HRMS
(C17H18N4O2S) m/z: calculated 343.1223 (M + H+), 365.1043 (M + Na+); found 343.1216
(M + H+), 365.1035 (M + Na+).

3-ethyl-1-(6-methoxybenzo[d]thiazol-4-yl)-1-(pyridin-3-ylmethyl)urea (9). Compound
9 was synthesized following method B as previously described using compound 3 (255 mg,
0.939 mmol), ethylisothiocyanate (186 µL, 2.35 mmol), and triethylamine (327 µL, 2.35 mmol)
in CH2Cl2 (12 mL). The crude residue was purified via flash column chromatography
(EtOAc/hexane 1:3–DCM/MeOH 9:1) to yield 312 mg (0.911 mmol, 97%) of compound 9.
IR (KBr): 3213, 2970, 1690, 1531, 1469, 1222, 1064, 807 cm−1. 1H-NMR (400 MHz, CDCl3): δ
1.30 (3H, t, J = 7.6 Hz), 3.49 (2H, bq, J = 7.6 Hz), 3.82 (3H, s), 5.20 (2H, s), 6.99 (1H, dd, J = 2.4
and 8.8 Hz), 7.14 (1H, d, J = 2.4 Hz), 7.22 (2H, bd, J = 5.6 Hz), 7.62 (1H, d, J = 8.8 Hz), 8.54
(2H, bd, J = 6.4 Hz), 9.65 (1H, bs). 13C-NMR (100 MHz, CDCl3): δ 15.0 (CH3), 35.8 (CH2),
50.3 (CH2), 55.8 (CH3), 104.2 (CH), 115.0 (CH), 121.2 (CH), 121.7 (2CH), 131.7 (C), 144.3 (C),
145.9 (C), 150.1 (2CH), 153.9 (C), 156.2 (C), 162.2 (C). HRMS (C17H18N4O2S) m/z: calculated
343.1223 (M + H+), 365.1043 (M + Na+); found 343.1223 (M + H+), 365.1023 (M + Na+).

3-ethyl-1-(6-methoxybenzo[d]thiazol-2-yl)-1-((4-methyl-1H-imidazol-5-yl)methyl)-urea
(10). Compound 10 was synthesized following method B as previously described using
compound 4 (250 mg, 0.911 mmol), ethylisothiocyanate (180 µL, 2.27 mmol), and triethy-
lamine (316 µL, 2.27 mmol) in CH2Cl2 (13 mL). The crude residue was purified via flash
column chromatography (DCM/MeOH 20:1–9:1) to yield 289 mg (0.838 mmol, 92%) of
compound 10. IR (KBr): 3210, 2937, 1649, 1516, 1469, 1271, 1063, 806 cm−1. 1H-NMR
(400 MHz, DMSO-d6): δ 1.16 (3H, t, J = 7.2 Hz), 2.37 (1H, s), 3.24 (2H, m), 3.76 (3H, s), 5.13
(2H, s), 6.94 (1H, dd, J = 2.4 and 9.0 Hz), 7.42 (1H, s), 7.56 (2H, m), 8.91 (1H, bs), 11.9 (1H, bs).
13C-NMR (100 MHz, DMSO-d6): δ 9.7 (CH3), 15.3 (CH3), 35.7 (CH2), 43.3 (CH2), 56.0 (CH3),
104.8 (CH), 114.6 (CH), 120.1 (CH), 132.1 (C), 132.5 (C), 133.8 (C), 134.4 (CH), 143.1 (C), 156.1
(C), 156.6 (C), 159.6 (C). HRMS (C16H19N5O2S) m/z: calculated 346.1332 (M + H+), 368.1152
(M + Na+); found 346.1327 (M + H+), 368.1115 (M + Na+).

1-benzyl-3-ethyl-1-(6-methoxybenzo[d]thiazol-2-yl)urea (11). Compound 11 was synthe-
sized following method B as previously described using compound 5 (260 mg, 0.962 mmol),
ethylisothiocyanate (190 µL, 2.40 mmol), and triethylamine (334 µL, 2.40 mmol) in CH2Cl2
(12 mL). The crude residue was purified via flash column chromatography (EtOAc/hexane
1:3–DCM/MeOH 20:1) to yield 308 mg (0.904 mmol, 94%) of compound 11. IR (KBr): 3263,
2930, 1686, 1552, 1526, 1357, 1230, 1061, 827 cm−1. 1H-NMR (400 MHz, CDCl3): δ 1.28 (3H,
bt, J = 7.2 Hz), 3.47 (2H, bq, J = 5.6 Hz), 5.23 (2H, s), 6.97 (1H, dd, J = 2.8 and 8.8 Hz), 7.14
(bd, J = 2.8 Hz), 7.20–7.36 (5H, m), 7.60 (1H, d, J = 9.2 Hz), 9.40 (1H, bs). 13C-NMR (100 MHz,
CDCl3): δ 15.1 (CH3), 35.8 (CH2), 51.1 (CH2), 55.8 (CH3), 104.2 (CH), 114.7 (CH), 121.0 (CH),
126.9 (2CH), 127.5 (CH), 128.7 (2CH), 132.1 (C), 136.6 (C), 144.2 (C), 154.3 (C), 153.3 (C), 162.7
(C). HRMS (C18H19N3O2S) m/z: calculated 342.1271 (M + H+), 364.1090 (M + Na+); found
342.1264 (M + H+), 364.1084 (M + Na+).

3-ethyl-1-(6-methoxybenzo[d]thiazol-2-yl)-1-(naphthalen-2-ylmethyl)urea (12). Com-
pound 12 was synthesized following method B as previously described using compound 6
(266 mg, 0.830 mmol), ethylisothiocyanate (170 µL, 2.07 mmol), and triethylamine (289 µL,
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2.07 mmol) in CH2Cl2 (12 mL). The crude residue was purified via flash column chro-
matography (EtOAc/hexane 1:4–DCM/MeOH 25:1) to yield 299 mg (0.763 mmol, 92%)
of compound 12. IR (KBr): 3378, 2932, 1684, 1525, 1456, 1230, 1062, 811 cm−1. 1H-NMR
(400 MHz, CDCl3): 1.31 (3H, t, J = 6.8 Hz), 3.51 (2H, q, J = 6.8 Hz), 3.79, (3H, s), 5.40 (2H,
s), 6.97 (1H, dd, J = 2.4 and 8.6 Hz), 7.11 (1H, d, J = 2.4 Hz), 7.40–7.47 (3H, m), 7.60 (1H, d,
J = 9.2 Hz), 7.55–7.81 (4H, m), 9.46 (1H, bs). 13C-NMR (100 MHz, CDCl3): 15.1 (CH3), 35.8
(CH2), 51.2 (CH2), 55.8 (CH3), 104.2 (CH), 114.8 (CH), 121.1 (CH), 125.0 (CH), 125.7 (CH),
125.9 (CH), 126.2 (CH), 127.7 (CH), 127.8 (CH), 128.6 (CH), 132.1 (C), 132.8 (C), 133.3 (C),
134.1 (C), 144.2 (C), 154.4 (C), 156.4 (C), 162.7 (C). HRMS (C22H21N3O2S) m/z: calculated
392.1427 (M + H+), 414.1247 (M + Na+); found 392.1427 (M + H+), 414.1231 (M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-(pyridin-2-ylmethyl)formamide (13). Compound
13 was synthesized following method C as previously described using compound 1 (269 mg,
0.992 mmol), formic acid (75 µL, 1.98 mmol), EDC (380 mg, 1.98 mmol), HOBt (268 mg,
1.98 mmol), and DMAP (242 mg, 1.98 mmol) in CH2Cl2 (22 mL). The crude residue was
purified via flash column chromatography (EtOAc/hexane 1:3–DCM/MeOH 15:1) to yield
211 mg (0.705 mmol, 71%) of compound 13. IR (KBr): 3425, 2932, 1703, 1612, 1520, 1350,
1220, 812 cm−1. 1H-NMR (400 MHz, acetone-d6): δ 3.85 (3H, s), 3.87 (s, minor), 5.32 (s,
minor), 5.48 (2H, s), 6.99 (1H, dd, J = 2.4 and 8.8 Hz), 7.24 (1H, bt, J = 7.6 Hz), 7.47 (1H, d,
J = 2.4 Hz), 7.53 (1H, d, J = 8 Hz), 7.61 (1H, d, J = 8.8 Hz), 7.76–7.69 (1H, m), 8.49 (1H, d,
J = 4.0 Hz), 9.01 (1H, s), 9.39 (s, minor). 13C-NMR (100 MHz, DMSO-d6): δ 52.0 (CH2), 55.9
(CH3), 105.1 (CH), 115.6 (CH), 121.9 (CH), 122.1 (CH), 123.5 (CH), 133.4 (CH, minor), 133.5
(C), 137.4 (CH), 138.7 (CH, minor), 141.9 (C), 149.5 (CH), 155.3 (C), 156.3 (C), 156.9 (C), 163.7
(C, minor), 164.6 (C). HRMS (C15H13N3O2S) m/z: calculated 300.0801 (M + H+), 322.0621
(M + Na+); found 300.0802 (M + H+), 322.0622 (M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-(pyridin-3-ylmethyl)formamide (14). Compound
14 was synthesized following method C as previously described using compound 2 (257 mg,
0.948 mmol), formic acid (72 µL, 1.90 mmol), EDC (363 mg, 1.90 mmol), HOBt (256 mg,
1.90 mmol), and DMAP (232 mg, 1.90 mmol) in CH2Cl2 (22 mL). The crude residue was
purified via flash column chromatography (EtOAc/hexane 1:3–DCM/MeOH 15:1) to yield
199 mg (0.664 mmol, 70%) of compound 14. IR (KBr): 3434, 2919, 1700, 1605, 1515, 1373, 1255,
1026, 801 cm−1. 1H-NMR (400 MHz, acetone-d6): δ 3.79 (3H, s, minor), 3.86 (3H, s), 5.27 (s,
minor), 5.49 (2H, s), 7.04 (1H, dd, J = 2.4 and 9.2 Hz), 7.35 (1H, dd, J = 4.5 and 7.4 Hz), 7.50
(1H, d, J = 2.8 Hz), 7.71 (1H, d, J = 9.2 Hz), 7.92 (1H, d, J = 7.2 Hz), 8.49 (1H, d, J = 5.2 Hz),
8.72 (bs, minor), 8.79 (1H, bs), 9.11 (1H, s), 9.26 (s, minor). 13C-NMR (100 MHz, DMSO-d6):
δ 44.6 (CH2, minor), 48.7 (CH2), 55.2 (CH3), 103.9 (CH), 104.7 (CH, minor), 115.2 (CH), 122.1
(CH), 124.1 (CH), 133.6 (C), 135.3 (CH), 142.1 (C), 148.9 (CH), 149.6 (CH), 154.7 (C), 157.2
(C), 161.2 (C), 162.7 (C). HRMS (C15H13N3O2S) m/z: calculated 300.0801 (M + H+), 322.0621
(M + Na+); found 300.0790 (M + H+), 322.0623 (M + Na+).

6-methoxy-N-(pyridin-4-ylmethyl)benzo[d]thiazol-2-amine (15). Compound 15 was
synthesized following method C as previously described using compound 3 (263 mg,
0.948 mmol), formic acid (73 µL, 1.94 mmol), EDC (372 mg, 1.94 mmol), HOBt (262 mg,
1.94 mmol), and DMAP (237 mg, 1.94 mmol) in CH2Cl2 (22 mL). The crude residue was
purified via flash column chromatography (EtOAc/hexane 1:3–DCM/MeOH 15:1) to yield
218 mg (0.728 mmol, 75%) of compound 15. IR (KBr): 3420, 2951, 1695, 1622, 1540, 1403,
1220, 1057, 815 cm−1. 1H-NMR (400 MHz, acetone-d6): δ 3.65 (s, minor), 3.72 (3H, s), 5.15 (s,
minor), 5.35 (2H, s), 6.91 (1H, dd, J = 2.8 and 8.8 Hz), 6.74 (d, minor), 7.37 (1H, d, J = 2.8 Hz),
7.56 (2H, d, J = 8.4 Hz), 7.72 (d, minor), 7.77 (1H, d, J = 8.8 Hz), 8.46 (2H, d, J = 8.4 Hz), 8.97
(1H, s), 9.12 (s, minor). 13C-NMR (100 MHz, DMSO-d6): δ 46.2 (CH2, minor), 47.6 (CH2),
55.9 (CH3), 105.4 (CH), 113.5 (CH), 119.2 (CH), 122.2 (2CH), 131.4 (C), 144.2 (C), 146.1 (C),
148.9 (2CH), 156.3 (C), 157.8 (C), 162.1 (C, minor), 162.8 (C). HRMS (C15H13N3O2S) m/z:
300.0801 (M + H+), 322.0621 (M + Na+); found 300.0801 (M + H+), 322.0619 (M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-((4-methyl-1H-imidazol-5-yl)methyl)formamide
(16). Compound 16 was synthesized following method C as previously described us-
ing compound 4 (250 mg, 0.911 mmol), formic acid (69 µL, 1.82 mmol), EDC (349 mg,
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1.82 mmol), HOBt (246 mg, 1.82 mmol), and DMAP (223 mg, 1.82 mmol) in CH2Cl2 (20 mL).
The crude residue was purified via flash column chromatography (EtOAc/hexane 1:1–
DCM/MeOH 9:1) to yield 190 mg (0.629 mmol, 69%) of compound 16. IR (KBr): 3400,
3140, 2948, 1605, 1541, 1463, 1224, 1049, 812 cm−1. 1H-NMR (400 MHz, CDCl3): δ 2.44
(3H, s), 3.76 (3H, s), 5.05 (s, minor), 5.18 (2H, s), 6.85 (2H, m), 7.15 (1H, d, J = 2.8 Hz), 7.45
(1H, s), 8.91 (1H, s), 9.15 (s, minor). 13C-NMR (100 MHz, MeOD): δ 10.5 (CH3), 39.4 (CH3),
54.8 (CH2), 104.9 (CH), 112.9 (CH), 117.9 (CH), 128.1 (C), 128.2 (C), 130.9 (C), 133.4 (CH),
145.8 (C), 155.4 (C), 161.9 (C), 165.9 (C). HRMS (C14H14N4O2S) m/z: calculated 303.0910
(M + H+); found 303.0915 (M + H+).

N-benzyl-N-(6-methoxybenzo[d]thiazol-2-yl)formamide (17). Compound 17 was
synthesized following method C as previously described using compound 5 (265 mg,
0.980 mmol), formic acid (74 µL, 1.96 mmol), EDC (376 mg, 1.96 mmol), HOBt (265 mg,
1.96 mmol), and DMAP (240 mg, 1.96 mmol) in CH2Cl2 (20 mL). The crude residue was
purified via flash column chromatography (EtOAc/hexane 1:1–DCM/MeOH 20:1) to yield
219 mg (0.735 mmol, 75%) of compound 17. IR (KBr): 3467, 1701, 1515, 1465, 1375, 1259,
1201, 1068, 961, 814 cm−1. 1H-NMR (400 MHz, DMSO-d6): δ 3.78 (3H, s), 5.17 (s, minor),
5.35 (2H, s), 7.00 (1H, dd, J = 2.4 and 8.4 Hz), 7.24 (1H, m), 7.33 (2H, t, J = 7.2 Hz), 7.38
(2H, d, J = 7.2 Hz), 7.56 (1H, d, J = 2.8 Hz), 7.64 (1H, d, J = 8.4 Hz), 9.01 (1H, s), 9.37 (s,
minor). 13C-NMR (100 MHz, DMSO-d6): δ 50.8 (CH2), 56.1 (CH3), 105.0 (CH), 115.6 (CH),
122.3 (CH), 127.7 (2CH), 127.9 (CH), 128.9 (2CH), 133.5 (C), 137.5 (C), 142.0 (C), 155.3 (C),
156.9 (C), 164.2 (C). HRMS (C16H14N2O2S) m/z: calculated 299.0849 (M + H+), 321.0668
(M + Na+); found 299.0865 (M + H+), 321.0666 (M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-(naphthalen-2-ylmethyl)formamide (18). Com-
pound 18 was synthesized following method C as previously described using compound
6 (260 mg, 0.811 mmol), formic acid (61 µL, 1.62 mmol), EDC (311 mg, 1.61 mmol), HOBt
(219 mg, 1.62 mmol), and DMAP (240 mg, 1.62 mmol) in CH2Cl2 (20 mL). The crude residue
was purified via flash column chromatography (EtOAc/hexane 1:3–DCM/MeOH 20:1) to
yield 198 mg (0.568 mmol, 70%) of compound 18. IR (KBr): 3435, 1674, 1515, 1469, 1263,
1210, 831 cm−1. 1H-NMR (400 MHz, DMSO-d6): 3.77 (3H, s), 5.36 (s, minor), 5.51 (2H, s),
6.99 (1H, dd, J = 2.4 and 9.0 Hz), 7.45–7.47 (2H, m), 7.53–7.56 (2H, m), 7.63 (2H, d, J = 9.0 Hz),
7.84–7.89 (4H, m), 9.09 (1H, s), 9.36 (s, minor). 13C-NMR (100 MHz, DMSO-d6): 51.1 (CH2),
56.1 (CH3), 105.0 (CH), 115.6 (CH), 122.2 (CH), 125.9 (CH), 126.2 (CH), 126.5 (CH), 126.8
(CH), 127.9 (CH), 128.1 (CH), 128.6 (CH), 132.8 (C), 133.2 (C), 133.5 (C), 135.1 (C), 142.0 (C),
155.3 (C), 156.9 (C), 164.3 (C). HRMS (C20H16N2O2S) m/z: calculated 349.1005 (M + H+),
371.0825 (M + Na+); found 349.0994 (M + H+), 371.0823 (M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-(pyridin-2-ylmethyl)acetamide (19). Compound
19 was synthesized following method D as previously described using compound 1 (260 mg,
0.811 mmol), acetic anhydride (52 µL, 1.38 mmol), and DMAP (169 mg, 1.38 mmol)
in CH2Cl2 (12 mL). The crude residue was purified via flash column chromatography
(EtOAc/hexane 1:3–3:2) to yield 280 mg (0.895 mmol, 97%) of compound 19. IR (KBr): 3436,
1672, 1603, 1472, 1280, 1227, 1030, 829 cm−1. 1H-NMR (400 MHz, DMSO-d6): δ 2.38 (3H,
s), 3.77 (3H, s), 5.58 (2H, s), 6.95 (1H, dd, J = 2.0 and 8.8 Hz), 7.26 (1H, bt, J = 6.8 Hz), 7.39
(2H, d, J = 8 Hz), 7.51 (2H, d, J = 2.4 Hz), 7.55 (1H, d, J = 8.4 Hz), 7.77 (1H, dt, J = 1.6 and
7.6 Hz), 8.46 (1H, bd, J = 5.2 Hz). 13C-NMR (100 MHz, DMSO-d6): δ 23.5 (CH3), 52.4 (CH2),
56.1 (CH3), 104.7 (CH), 115.3 (CH), 121.9 (CH), 122.0 (CH), 123.1 (CH), 134.4 (C), 137.5
(CH), 142.1 (C), 149.7 (CH), 156.2 (C), 156.7 (C), 157.6 (C), 172.1 (C). HRMS (C16H15N3O2S)
m/z: calculated 314.0958 (M + H+), 336.0777 (M + Na+); found 314.0946 (M + H+), 336.0773
(M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-(pyridin-3-ylmethyl)acetamide (20). Compound
20 was synthesized following method D as previously described using compound 2 (252 mg,
0.930 mmol), acetic anhydride (53 µL, 1.39 mmol), and DMAP (170 mg, 1.39 mmol)
in CH2Cl2 (12 mL). The crude residue was purified via flash column chromatography
(EtOAc/hexane 1:3–3:2) to yield 285 mg (0.911 mmol, 98%) of compound 20. IR (KBr):
3435, 1663, 1601, 1515, 1395, 1233, 1029, 816 cm−1. 1H-NMR (400 MHz, CDCl3): δ 2.37 (3H,
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s), 3.87 (3H, s), 5.56 (2H, s), 7.01 (1H, dd, J = 2.4 and 8.8 Hz), 7.29–7.23 (2H, m), 7.59 (1H,
bd, J = 7.6 Hz), 7.66 (1H, bd, J = 8.8 Hz), 8.53 (1H, bd, J = 4.8 Hz), 8.61 (1H, bs). 13C-NMR
(100 MHz, CDCl3): δ 23.3 (CH3), 49.2 (CH2), 55.8 (CH3), 103.8 (CH), 115.2 (CH), 122.2 (CH),
123.8 (CH), 132.1 (C), 134.4 (CH), 134.8 (C), 148.4 (C), 149.2 (2CH), 157.0 (C), 156.3 (C), 170.4
(C). HRMS (C16H15N3O2S) m/z: calculated 314.0958 (M + H+), 336.0777 (M + Na+); found
314.0948 (M + H+), 336.0779 (M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-(pyridin-4-ylmethyl)acetamide (21). Compound
21 was synthesized following method D as previously described using compound 3 (262 mg,
0.967 mmol), acetic anhydride (55 µL, 1.45 mmol), and DMAP (177 mg, 1.45 mmol)
in CH2Cl2 (12 mL). The crude residue was purified via flash column chromatography
(EtOAc/hexane 1:3–3:2) to yield 300 mg (0.967 mmol, 99%) of compound 21. IR (KBr): 3435,
1686, 1599, 1499, 1472, 1221, 1031, 815 cm−1. 1H-NMR (400 MHz, CDCl3): δ 2.32 (3H, s),
3.86 (3H, s), 5.55 (2H, s), 6.99 (1H, dd, J = 2.8 and 8.4 Hz), 7.15 (2H, d, J = 6.0 Hz), 7.27 (1H,
d, J = 2.8 Hz), 7.62 (2H, d, J = 8.4 Hz), 8.56 (2H, d, J = 6.0 Hz). 13C-NMR (100 MHz, CDCl3):
δ 23.2 (CH3), 50.5 (CH2), 55.8 (CH3), 103.7 (CH), 115.2 (CH), 122.1 (CH), 122.2 (2CH), 134.8
(C), 142.1 (C), 145.4 (C), 150.4 (2CH), 157.0 (C), 157.1 (C), 170.4 (C). HRMS (C16H15N3O2S)
m/z: calculated 314.0958 (M + H+), 336.0777 (M + Na+); found 314.0941 (M + H+), 336.0776
(M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-((4-methyl-1H-imidazol-5-yl)methyl)acetamide
(22). Compound 22 was synthesized following method D as previously described using
compound 4 (238 mg, 0.868 mmol), acetic anhydride (49 µL, 1.30 mmol), and DMAP
(159 mg, 1.30 mmol) in CH2Cl2 (12 mL). The crude residue was purified via flash column
chromatography (EtOAc/hexane 1:3–DCM/MeOH 9:1) to yield 263 mg (0.833 mmol, 96%)
of compound 22. IR (KBr): 3481, 3164, 1647, 1470, 1407, 1242, 1069, 821 cm−1. 1H-NMR
(400 MHz, DMSO-d6): δ 2.31 (3H, s), 2.72 (3H, s), 3.77 (3H, s), 5.23 (2H, s), 7.00 (1H, dd,
J = 2.4 and 8.8 Hz), 7.40 (1H, s), 7.49 (1H, d, J = 2.4 Hz), 7.62 (1H, d, J = 8.8 Hz). 13C-NMR
(100 MHz, DMSO-d6): δ 9.9 (CH3), 24.0 (CH3), 44.5 (CH2), 56.0 (CH3), 104.7 (CH), 115.3
(CH), 121.8 (CH), 134.0 (CH), 134.4 (C), 134.4 (C), 135.6 (C), 142.2 (C), 156.6 (C), 157.1
(C), 172.3 (C). HRMS (C15H16N4O2S) m/z: calculated 317.1067 (M + H+); found 317.1066
(M + H+).

N-benzyl-N-(6-methoxybenzo[d]thiazol-2-yl)acetamide (23). Compound 23 was synthe-
sized following method D as previously described using compound 5 (260 mg, 0.959 mmol),
acetic anhydride (54 µL, 1.43 mmol), and DMAP (176 mg, 1.43 mmol) in CH2Cl2 (13 mL).
The crude residue was purified via flash column chromatography (EtOAc/hexane 1:3–2:1)
to yield 297 mg (0.950 mmol, 99%) of compound 23. IR (KBr): 3448, 1663, 1601, 1512, 1443,
1234, 1029, 817 cm−1. 1H-NMR (400 MHz, CDCl3): δ 2.33 (3H, s), 3.86 (3H, s), 5.57 (2H,
bs), 7.00 (1H, dd, J = 2.4 and 8.8 Hz), 7.20–7.41 (6H, m), 7.66 (1H, d, J = 8.8 Hz). 13C-NMR
(100 MHz, CDCl3): δ 23.3 (CH3), 51.3 (CH2), 55.8 (CH3), 103.8 (CH), 115.0 (CH), 122.2 (CH),
126.3 (CH), 127.6 (2CH), 128.9 (2CH), 134.9 (C), 136.4 (C), 142.3 (C), 156.8 (C), 157.2 (C), 171.0
(C). HRMS (C17H16N2O2S) m/z: calculated 313.1005 (M + H+), 335.0825 (M + Na+); found
313.0995 (M + H+), 335.0821 (M + Na+).

N-(6-methoxybenzo[d]thiazol-2-yl)-N-(naphthalen-2-ylmethyl)acetamide (24). Com-
pound 24 was synthesized following method D as previously described using compound 6
(270 mg, 0.843 mmol), acetic anhydride (48 µL, 1.26 mmol), and DMAP (154 mg, 1.26 mmol)
in CH2Cl2 (12 mL). The crude residue was purified via flash column chromatography
(EtOAc/hexane 1:3–2:1) to yield 299 mg (0.826 mmol, 98%) of compound 24. IR (KBr):
3435, 1664, 1511, 1400, 1235, 1030, 818 cm−1. 1H-NMR (400 MHz, CDCl3): 2.36 (3H, s), 3.87
(3H, s), 5.73 (2H, s), 7.01 (1H, dd, J = 2.4 and 9.0 Hz), 7.30 (1H, d, J = 2.4 Hz), 7.39 (1H, d,
J = 8.4 Hz), 7.44–7.46 (2H, m), 7.61 (1H, s), 7.63 (1H, d, J = 9.2 Hz), 7.74 (1H, m), 7.81 (2H,
m). 13C-NMR (100 MHz, CDCl3): 23.4 (CH3), 51.5 (CH2), 55.8 (CH3), 103.8 (CH), 115.0
(CH), 122.2 (CH), 124.4 (CH), 124.7 (CH), 126.1 (CH), 126.4 (CH), 127.7 (CH), 127.8 (CH),
128.9 (CH), 132.8 (C), 133.6 (C), 133.9 (C), 134.9 (C), 142.0 (C), 156.9 (C), 164.3 (C), 171.1
(C). HRMS (C21H18N2O2S) m/z: calculated 363.1162 (M + H+), 385.0981 (M + Na+); found
363.1165 (M + H+), 385.0978 (M + Na+).
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2.2. Determination of Aqueous Solubility

The aqueous solubility of compounds was measured in a Helios Alfa Spectropho-
tometer. Calibration lines at the maximum wavelength of absorbance were determined for
each compound. Then, following the shake-flask method, a suspension of 5 mg of each
compound in 500 µL in pH 7.0 buffer was stirred for 72 h at room temperature. The mixture
was then filtrated over a 45 µm filter to remove the insoluble fraction. The concentration
of the compound in the resulting saturated solution was determined via UV absorbance
measurement and interpolation in the calibration line. The aqueous solubility values are
given as the average of three independent measurements.

2.3. Calculation of Properties

The total polar surface area (TPSA) and the logarithm of the partition coefficient (Log
Po/w) were calculated using SwissADME software [42,43]. TPSA calculations follow a
methodology based on a sum of fragment-based contributions [44]. The consensus Log
Po/w, which is the arithmetic mean of the values predicted by the five proposed methods
applied by Swiss-ADME, was used in this work.

2.4. Biology
2.4.1. Cell Culture Conditions

The cell lines were obtained from ATTC (Manassas, VA, USA). HeLa (human cervix
epithelioid carcinoma), MCF7 (human breast adenocarcinoma), HepG2 (human hepato-
cellular carcinoma), U87 MG (human glioblastoma), T98G (human glioblastoma), GL261
(murine glioma), LNCaP (human prostate cancer), PC-3 (human prostate cancer), and
HEK-293 (human embryonic kidney) were grown in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco, Waltham, MA, USA), supplemented with 10% (v/v) heat-inactivated fetal
bovine serum (HIFBS, Sigma-Aldrich, St. Louis, MO, USA)), 2 mM L-glutamine, 100 µg/mL
streptomycin, and 100 units/mL penicillin (Gibco, Waltham, MA, USA) at 37 ◦C in sat-
urated humidity atmosphere containing 95% air and 5% CO2. Cell line HT-29 (human
colon carcinoma) was grown in Roswell Park Memorial Institute (RPMI) 1640 medium
(Gibco, Whaltman, MA, USA) supplemented with 10% HIFBS, 100 µg/mL streptomycin,
and 100 units/mL penicillin (Gibco, Whaltman, MA, USA) at 37 ◦C in humidified 95% air
and 5% CO2 atmosphere. MycoAlert kit (Lonza, Norwest, Australia) was used to routinely
check the presence of mycoplasma, and only mycoplasma-free cells were employed in the
experiments.

2.4.2. Cell Growth Inhibition Assay

Cells were plated in 96-well plates (100 µL/well) at the following concentrations:
30,000 cells/mL (HepG2, U87 MG, T98G, C6, LNCaP, PC3, and HT-29 cells) or 15,000 cells/mL
(HeLa and MCF-7 cells). Previous experiments were performed to choose the optimal cell
concentration (70–80% confluence) and avoid the formation of cell aggregates. Cells were
incubated in complete DMEM or RPMI 1640 medium (see above) at 37 ◦C and 5% CO2
atmosphere for 24 h to allow for cell attachment to the plate. Then, every compound was
added (10 µL/well) to a final concentration of 10 µM. Non-treated cells were used as neg-
ative controls. The antiproliferative activity of compounds was measured 72 h after the
treatments using the MTT reagent (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide), (MTT Thiazolyl Blue Tetrazolium Bromide, Sigma-Aldrich, St. Louis, MO, USA)
dissolved in PBS at 5 mg/mL. Compounds showing antiproliferative effects at 10 µM were
selected to determine their IC50 value. For that purpose, compounds were used at different
concentrations ranging from 10−10 to 10−2 M. Measurements were performed in triplicate,
and each experiment was repeated three times. The IC50 value was determined for every
compound using Origin software (OriginLab, Washington, USA). To study the sensitivity to
MDR efflux pumps of compounds, the IC50 values were determined by following the same
procedure but in the presence of verapamil (final concentration of 10 µM).
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2.4.3. Tubulin Polymerization Inhibition

Microtubular protein was isolated from calf brain following the modified Shelanski
method, based on temperature-dependent assembly/disassembly of tubulin [45]. The
protein was stored at −80 ◦C, and its concentration was determined using the Bradford
method before each use. Tubulin polymerization, which occurs when heating a buffered
tubulin sample from 4 ◦C to 37 ◦C, is accompanied by an increase in the absorbance (at
450 nm) of the sample that was monitored by a Helios α spectrophotometer. The samples
containing 1.5 mg/mL of microtubular protein at pH 6.7 buffer (0.1 M MES, 1 mM β-ME,
1 mM EGTA, 1 mM MgCl2, and 1.5 mM GTP) and the ligand at 10 µM (except for control
samples) were incubated at 20 ◦C for 30 min to allow for the ligand to bind to the tubulin,
and were subsequently cooled on ice for 10 min to make sure that polymerization did
not take place at the initial time point. Then, the temperature was adjusted to 4 ◦C, and
the temperature being shifted to 37 ◦C allowed for the assembly process of tubulin. The
turbidity caused by tubulin polymerization was measured by the increased absorbance at
450 nm. The increase in absorbance obtained for the control sample (without the ligand),
which we considered to be 100% tubulin polymerization (0% inhibition), compared with
the increase in absorbance determined for the sample containing ligands yielded the degree
of tubulin polymerization inhibition (TPI), which is expressed as a percentage value. For
the compounds displaying TPI values over 50% at 10 µM, the IC50 value for TPI was
calculated. Measurements were performed in triplicate in two independent experiments
using microtubular protein from different preparations.

2.4.4. Immunofluorescence Experiments

The 8 × 104 HeLa, MCF7, and U87 MG cells were seeded on 0.01% poly-L-lysine
pre-coated square glass coverslips (22 mm2) deposited on 6-well plates (1 coverslip/well)
and incubated in complete DMEM medium (see above) at 37 ◦C and 5% CO2 atmosphere
for 24 h. Then, the culture medium was replaced by fresh complete DMEM, and cells were
incubated in the presence or absence of selected compounds for 24 h. Untreated cells were
used as negative controls. The concentration of the compounds was selected according to
their IC50 value for the antiproliferative activity in each cell line as follows: 50 nM if IC50 is
in the low nanomolar range (below 10 nM); 100 nM when IC50 is in the two-digit nanomolar;
200 nM when IC50 is near 100 nM, and 500 nM for compounds with IC50 near 200 nM.
In that way, compounds with similar antiproliferative potencies were tested at the same
concentrations. HeLa cells were treated with 200 nM of compounds 8 and 14 and 500 nM
of compound 9; MCF7 cells were treated with 100 nM of compounds 8 and 14 and 500 nM
of compound 9; and U87 MG cells were treated with 50 nM of compound 8 and 100 nM of
compounds 9 and 14. After incubation, medium was removed and coverslips were washed
three times with PBS, fixed in 4% formaldehyde in PBS for 10 min, permeabilized with 0.5%
Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) in PBS for 90 s at 4 ◦C, and blocked with
10% BSA in PBS for 30 min. After four washes with PBS, the coverslips were incubated
for 1 h with anti-α-tubulin mouse monoclonal antibody (Sigma-Aldrich, St. Louis, MO,
USA), and diluted 1:200 in PBS containing 3% BSA. After four washes wish PBS, coverslips
were incubated, in darkness, with fluorescent secondary antibody Alexa Fluor 488 goat
anti-mouse IgG (Molecular Probes, Invitrogen, Eugenen, OR, USA), and diluted 1:400 in
PBS containing 1% BSA for 1.5 h. After four washes with PBS, a drop of ProLong™ Gold
Antifade Mountant containing DAPI (ThermoFisher, Waltham, MA, USA) was added for
cell nuclei staining. Samples were analyzed via confocal microscopy using a LEICA SP5
microscope DMI-6000V model coupled to a LEICA LAS AF software computer.

2.4.5. Cell Cycle Analysis

An amount of 8 × 104 cells/mL (HeLa, MCF7, or U87 MG cells) were seeded in 6-well
plates (2 mL/well) and incubated in complete DMEM medium (see above) at 37 ◦C and 5%
CO2 atmosphere for 24 h. Then, the medium was replaced with fresh complete DMEM in
the presence or absence of the selected compounds (8, 9, and 14). The concentration of the
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compounds was selected according to their IC50 value for the antiproliferative activity in
each cell line (see above, Section 2.4.4). HeLa cells were treated with 200 nM of compounds
8 and 14 and 500 nM of compound 9; MCF7 cells were treated with 100 nM of compounds
8 and 14 and 500 nM of compound 9; and U87 MG cells were treated with 50 nM of
compound 8 and 100 nM of compounds 9 and 14. Untreated cells were used as negative
controls. Cells were harvested 24, 48, or 72 h following treatment and fixed in ice-cold
ethanol/PBS (7:3) overnight. Cells were then washed twice with PBS, suspended in PBS,
and incubated overnight in darkness with 0.2 mg/mL RNase A (Sigma-Aldrich, St. Louis,
MO, USA), 50 µg/mL propidium iodide (Sigma-Aldrich, St. Louis, MO, USA), and Triton
10× at room temperature. BD Accuri™ C6 Plus Flow Cytometer (BD Biosciences) was used
to analyze samples, and BD Accuri™ C6 Software (version 1.0.264.21) was used for data
analysis.

2.4.6. Apoptotic Cell Death Quantification

Annexin V-FITC/PI apoptosis detection kit (Immunostep, Salamanca, Spain) was used
to quantify HeLa, MCF7, or U87 MG cells by following the manufacturer’s guidelines. An
amount of 5 × 104 cells/mL were seeded in 12-well plates (1 mL/well) and incubated in
complete DMEM medium (see above) at 37 ◦C and 5% CO2 atmosphere for 24 h. Then, the
medium was replaced with fresh complete DMEM in the presence or absence of the selected
compounds (8, 9, and 14). The concentration of the compounds was selected according to
their IC50 value for the antiproliferative activity in each cell line (see above, Section 2.4.4).
HeLa cells were treated with 200 nM of compounds 8 and 14 and 500 nM of compound 9;
MCF7 cells were treated with 100 nM of compounds 8 and 14 and 500 nM of compound 9;
and U87 MG cells were treated with 50 nM of compound 8 and 100 nM of compounds 9
and 14. Untreated cells were used as negative controls. After 72 h of incubation, cells were
collected, centrifugated, resuspended in the Annexin V binding buffer, and stained with
Annexin V-FITC/PI. Cells were then incubated in darkness for 15 min at room temperature.
Samples were analyzed using BD Accuri™ C6 Plus Flow Cytometer (BD Biosciences), and
acquired data were analyzed using BD Accuri™ C6 Software (version 1.0.264.21).

2.4.7. Lactate Dehydrogenase Assay

CytoTox96® Non-Radioactive Cytotoxicity Assay kit (Promega, Madison, WI, USA)
was used to measure the release of lactate dehydrogenase (LDH) by following the previ-
ously described method in [46]. Briefly, U87 MG or HEK-293 cells were incubated for 72 h
with compounds 8, 9, or 14 at concentrations ranging from 10−9 to 10−6 M for U87 MG
cells, and from 10−4 to 10−3 M for HEK-293 cells. After treatment, the supernatants were
collected, and the intact attached cells were lysed using 0.1% (w/v) Triton X-100 in (0.9%)
NaCl solution. Both the LDH released to culture media, as well as the LDH content within
the cells, were determined spectrophotometrically at 490 nm on a 96-well plate reader
(Infinite 200, Tecan, Salzburg, Austria) by following the manufacturer’s instructions. LDH
release was defined by the ratio of LDH released/total LDH present in the cells, with the
total LDH being 100%. All the samples were run in quadruplicate.

2.5. Computational Studies

Structural preferences for the unsubstituted scaffolds (N-benzylbenzothiazole-2-amine,
N-benzyl-N-(benzothiazole-2-yl)formamide, N-benzyl-N-(benzothiazole-2-yl)acetamide,
and N-benzyl-N-(benzothiazole-2-yl)-N’-ethylurea) were calculated by means of RB3LYP
DFT calculations at the 6-31G(D) level with Spartan 08 software package. The structures of
every possible isomer for each ligand were built and subjected to conformational searches
at the molecular mechanics (MMFF force field) level. The retrieved conformations were
then minimized with RB3LYP DFT calculations at the 6-31G(D) level, and the lowest energy
configurations amongst all the possible outcomes were selected as the most stable forms
for every compound.
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We carried out ensemble docking studies as previously described, with the tubulin
flexibility accounted for by the use of different complexes that sample the protein con-
formational space [16,47]. Briefly, we docked the compounds into the colchicine sites
of 65 different tubulin structures from complexes of tubulin with colchicine site ligands
deposited in the pdb, and 5 representative structures from a previous molecular dynamics
simulation run on a tubulin–podophyllotoxin complex. We performed parallel docking
studies using AutoDock 4.2 with the Lamarckian genetic algorithm (LGA) 100−300 times
for a maximum of 2.5 million energy evaluations, 150 individuals, and a maximum of
27,000 generations, and used PLANTS with default settings and 10 runs per ligand. For
ligands with amide bonds and urea groups, we used all the possible configurations in the
docking runs, and selected the best scored one as the docking results for every ligand. We
converted the scores of the different programs into Z-scores to allow for the comparison
of the different scoring scales. We selected the common poses for the two programs with
the best consensus Z-scores as the docking results. For every pose, we automatically as-
signed them to the colchicine subzones using in-house KNIME pipelines [48]. The RMSD
between every pose and model scaffolds with no substituents and with the colchicine
binding site ligands representative of the binders occupying different subzones were calcu-
lated using LigRMSD [49]. Docked poses were analyzed using Chimera [50], Marvin [51],
OpenEye [52], and JADOPPT [53].

3. Results and Discussion
3.1. Chemistry and Properties
3.1.1. Chemical Synthesis

The N-arylmethylbenzothiazole amines 1–6 were prepared via reductive amination
in two steps. First, the imines were synthesized under acid catalysis (p-toluenesulphonic
acid, pTsOH), and then sodium borohydride was used for the reduction in the intermediate
imines. The structural modifications on the linker connecting the aromatic rings were
accomplished via acylation of the secondary amino group of the benzothiazole derivatives,
leading to the following three families of compounds: urea (7–12), formamide (13–18), and
acetamide (19–24) derivatives (Scheme 1).

Pharmaceutics 2023, 15, x FOR PEER REVIEW  15  of  37 
 

 

We carried out ensemble docking studies as previously described, with the tubulin 

flexibility accounted for by the use of different complexes that sample the protein confor-

mational space [16,47]. Briefly, we docked the compounds into the colchicine sites of 65 

different tubulin structures from complexes of tubulin with colchicine site ligands depos-

ited in the pdb, and 5 representative structures from a previous molecular dynamics sim-

ulation run on a tubulin–podophyllotoxin complex. We performed parallel docking stud-

ies using AutoDock 4.2 with the Lamarckian genetic algorithm (LGA) 100−300 times for a 

maximum of 2.5 million energy evaluations, 150 individuals, and a maximum of 27,000 

generations, and used PLANTS with default settings and 10 runs per ligand. For ligands 

with amide bonds and urea groups, we used all the possible configurations in the docking 

runs, and selected the best scored one as the docking results for every  ligand. We con-

verted the scores of the different programs into Z-scores to allow for the comparison of 

the different scoring scales. We selected the common poses for the two programs with the 

best consensus Z-scores as the docking results. For every pose, we automatically assigned 

them to the colchicine subzones using in-house KNIME pipelines [48]. The RMSD between 

every pose and model scaffolds with no substituents and with the colchicine binding site 

ligands representative of the binders occupying different subzones were calculated using 

LigRMSD [49]. Docked poses were analyzed using Chimera [50], Marvin [51], OpenEye 

[52], and JADOPPT [53]. 

3. Results and Discussion 

3.1. Chemistry and Properties 

3.1.1. Chemical Synthesis 

The N-arylmethylbenzothiazole amines 1–6 were prepared via reductive amination 

in two steps. First, the imines were synthesized under acid catalysis (p-toluenesulphonic 

acid, pTsOH), and then sodium borohydride was used for the reduction in the intermediate 

imines. The structural modifications on the linker connecting the aromatic rings were ac-

complished via acylation of the secondary amino group of the benzothiazole derivatives, 

leading to the following three families of compounds: urea (7–12), formamide (13–18), and 

acetamide (19–24) derivatives (Scheme 1). 

 

Scheme 1. Synthesis of benzothiazole derivatives. Reagents and conditions: (a) 1. pTsOH, toluene, 

reflux, 16 h; 2. NaBH4, EtOH, 0 °C—rt, 2 h. (b) EtNCO, Et3N, DCM, 16 h, rt. (c) HCOOH, HOBt, EDC, 

DMAP, DCM, rt, 16 h. (d) Ac2O, DMAP, DCM, rt, 16 h. 

Scheme 1. Synthesis of benzothiazole derivatives. Reagents and conditions: (a) 1. pTsOH, toluene,
reflux, 16 h; 2. NaBH4, EtOH, 0 ◦C—rt, 2 h. (b) EtNCO, Et3N, DCM, 16 h, rt. (c) HCOOH, HOBt,
EDC, DMAP, DCM, rt, 16 h. (d) Ac2O, DMAP, DCM, rt, 16 h.
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The transformations of the secondary amino groups into ethylurea to obtain com-
pounds 7–12 were performed by the reaction between derivatives 1–6 and ethylisocyanate
under basic conditions. The formamide derivatives 13–18 were obtained via the amide
coupling reaction between the secondary amines of compounds 1–6 and formic acid, 1-
ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 1-hidroxybenzotriazole (OHBt), and
4-dymethylaminopyridine (DMAP). The acetylation of the amines 1–6 with acetic anhy-
dride afforded the acetamide derivatives 19–24 in a reaction catalyzed by DMAP. All the
products were obtained in good or excellent yields. In the NMR spectra of the formamide
derivatives, it was possible to distinguish the signals corresponding to both the cis and
trans isomers. This can be explained by the energetic barrier to interconversion in the
formamides that allows for the observation of both isomers in the NMR chemical shift
timescale [54].

3.1.2. Aqueous Solubility and Calculated Properties

One of the main drawbacks of the classical colchicine ligands is their low aqueous
solubility. The high hydrophobicity of zones A and B in the colchicine site in the tubulin
implies that the ligands with a high binding affinity, such as combretastatin A-4, exhibit
non-drug-like physicochemical properties as a consequence of their hydrophobic structure.
The development of moleculesadapted to interact with the more polar zone C is usually
related to the design of polar ligands, such as the MI181, which binds zones A–C, or the
sulfonamide ABT-751, which targets zones B–A–C. One of the goals of the design of 6-
methoxybenzothiazol-2-amine derivatives prepared in this work is the substitution of the
olefin bridge of combretastatins and MI-181 by amino, amido, or urea groups to improve
the aqueous solubility. The thermodynamic water solubility of the synthesized compounds,
in the phosphate buffer at pH 7.0, was determined using the shaking flask methodology.
Combretastatin A4, MI-181, and ABT-751 were used as references, and the results are
summarized in Table 1. The topological polar surface area (TPSA) and the logarithm of
partition coefficient (Log P) were computationally calculated as descriptors related to water
solubility, toxicity, and the ability of compounds to cross biological barriers (Table 1) [55].

The nature of the second aromatic ring of the benzothiazole derivatives was the main
factor affecting the aqueous solubility. The presence of the naphthalene ring imposed
low water solubilities below 9 µg/mL in all cases (e.g., compounds 6, 12, 18, and 24),
similar to the less soluble reference compounds MI-181 and CA-4. The substitution of the
large hydrophobic naphthalene ring by a phenyl moiety increased the solubility by about
two-fold (e.g., compare compound 5 with 6; 11 with 12; 17 with 18; and 23 with 24) with
water solubilities between 5 and 16 µg/mL for the phenyl derivatives. The replacement
of the phenyl ring by the pyridine greatly increased the water solubility, ranging from
6- to 11-fold (e.g., compare compound 5 with 2; 11 with 9; 17 with 14; and 23 with 20),
yielding values of 48–57 µg/mL for the aminomethyl-pyridine derivatives (1–3) and about
90–100 µg/mL for the amido- and urea-pyridine derivatives.

The position of the nitrogen of the 2-, 3-, or 4-pyridyl moieties did not make significant
differences in the solubility values (e.g., compare compounds 13, 14, and 15; or 7, 8, and
9). The best solubility results were obtained with a 5-methyl-1H-imidazole moiety, with
improvements between 1.5- and 2-fold (e.g., compare compound 3 with 4, and 22 with 19).
The substitution on the amino group of benzothiazole derivatives was the second factor
affecting the water solubility. Introducing an ethylurea group caused an increase in the
water solubility of about 2-fold in comparison with the amino series. For the pyridine
derivatives, the water solubility improved from around 50 µg/mL in the amino series to
near 100 µg/mL in the urea family (e.g., compare compound 7 with 1; 8 with 2; or 9 with
3). Similar trends were obtained for the substitutions of the amino groups by formamide
(e.g., compare compound 13 with 1; 14 with 2; and 15 with 3, showing improvements from
1.6- to 1.8-fold). The behavior of the acetamide derivatives was similar to their formamide
analogs (e.g., compare compound 13 with 19; 15 with 21; and 16 with 22). Therefore, the
introduction of the ethylurea, formyl, or acetyl groups was favorable in terms of water



Pharmaceutics 2023, 15, 1698 16 of 34

solubility, which is probably explained by the higher topological polar surface area (TPSA)
of the substituted derivatives with respect to the non-substituted ones (e.g., compare TPSA
values of 1, 7, 13, and 19), as well as by the greater possibilities of the substituted derivatives
to form hydrogen bonds with water. This last feature is the most relevant in the case of the
urea derivatives having the highest solubility values (e.g., compare compound 7 with 13 or
19; 8 with 14 or 20; and 9 with 15 or 21). Anywhere, all the synthesized compounds were
more soluble than the references MI-181 and CA-4, and those with pyridine or imidazole
rings showed higher solubilities than ABT-751. By comparing the structure of MI-181 with
the 3-pyridyl derivatives (compounds 2, 8, 14, and 20), we can conclude that replacing
the olefin with an amino, formamido, acetamido, or ethylurea group, together with the
substitution of two methyl groups in positions 5 and 6 by a methoxy group in position 6 of
the benzothiazole, results in large water solubility improvements.

Table 1. Experimental aqueous solubility, calculated topological polar surface area (TPSA), and
calculated logarithm of the partition coefficient (Log P).
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1 Water solubilities were measured using the shaking flask methodology in buffered media at pH 7.0. Data are
shown as the mean of three independent experiments. Standard deviations were, in all cases, below 1% of the
mean values. 2 TPSA and LogPo/w values were calculated using SwissAdme software [42].

The calculated TPSA values are consistent with the measured solubility since higher
TPSA values were obtained for the more soluble molecules. The TPSA correlates well with
the passive molecular transport through membranes, and it is also a good predictor of
non-specific toxicity, since below the threshold of 75 Å2, the molecules are suspected to
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display unspecific cytotoxicity [55]. For all the pyridine and imidazole derivatives, the
calculated TPSAs were over 75 Å2, with values ranging from 91 to 111 Å2 for the latter;
83–95 Å2 for the pyridine derivatives with urea, formamide, and acetamide groups; and
75 Å2 for the rest of the pyridine derivatives (compounds 1, 2, and 3). The phenyl and
naphthyl derivatives not only showed the lowest water solubility, but also unfavorable
TPSA values below 70 Å2.

The partition coefficient between n-octanol and water (Log Po/w) is the classical
descriptor for lipophilicity. A good cell permeability is associated with LogPo/w values
between two and three [55]. The calculations predicted LogPo/w values within that range for
most of the soluble compounds. The only exception is compound 7, with a higher LogPo/w
than its analogs, which is consistent with the possible formation of an intramolecular
hydrogen bond between the endocyclic nitrogen of pyridine and the urea group.

3.2. Biology
3.2.1. Antiproliferative Activity

The MTT method was used to measure the effect of the synthesized compounds
1–24 on the in vitro cell viability 72 h after drug exposure. The compounds were tested
against a panel of ten different cell lines. Eight of them were human tumor cell lines
representative of some of the cancers with the highest incidence worldwide, including
HeLa cervix epithelioid carcinoma, MCF7 breast adenocarcinoma, U87MG glioblastoma,
T98G temozolomide resistant glioblastoma, HepG2 hepatocellular carcinoma, HT-29 colon
adenocarcinoma, and LNCaP and PC-3 prostate cancer. LNCaP is a hormone-sensitive
cell line and represents an early stage of prostate cancer, whereas PC-3 is more resistant to
chemotherapy and is a model for hormone-refractory prostate cancer. The compounds were
also tested against the GL261 mice glioblastoma cell line that is usually studied previously
to glioblastoma xenograft experiments in mice, and against the non-tumorigenic HEK-293
cell line from human embryonic kidney tissue to evaluate the selectivity of compounds
between healthy cells and tumor cells. The compounds inhibiting cell proliferation by at
least 40%, with respect to the negative control at 10 µM, were evaluated at concentrations in
the range between 0.1 nM and 20 µM, and the half-maximal inhibitory concentrations (IC50)
were calculated (Table 2). ABT-751, docetaxel (DTX), and temozolomide (TMZ) were used
for comparative purposes since the first one is an example of an antimitotic agent binding
at the colchicine site with moderately good water solubility, DTX is a tubulin-binding agent
in clinical use, and TMZ is the only approved treatment for glioblastoma. The results are
summarized in Table 2.

With regard to the effect of the other aromatic rings of the benzothiazole derivatives
on antiproliferative activity, the pyridyl derivatives were the best-performing compounds
within each series. The phenyl analogs were less potent than the equivalent pyridines, with
most of them showing IC50 values in the low µM range. The imidazoles were all inactive,
as well as the naphthalenes, with the only exception being the unsubstituted naphthyl
methylamine 6, with antiproliferative values in the low µM range.

The pyridines exerted antiproliferative activities in all tumor cell lines with IC50 va-
lues ranging from micromolar to low nanomolar depending on the substituent on the
amino group and the cell line. The pyridyl derivatives with an unsubstituted amino group
(compounds 1, 2, and 3) showed potencies in the one-digit micromolar range, circa 1 µM
for HeLa, HepG2, MCF7, and U87MG, and between 2 and 3 µM for the rest of the tumor
cell lines. Some differences were found for the different isomers of the pyridine analogs
since the 3-pyridyl derivatives showed, in general, a lower IC50 than the 4-pyridyl isomers,
which, in turn, showed higher potencies than the 2-pyridyl derivatives (e.g., compare
compound 1, 2, and 3; 7, 8, and 9; 13, 14, and 15; or 19, 20, and 21).
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Table 2. Antiproliferative activity against human tumor cell lines and the non-tumorigenic cell line
HEK-293, expressed as the IC50 in µM 1.
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TMZ >10 >10 >10 135 241 179 >10 >10 >10 >10
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1 IC50 is the required drug concentration to inhibit the growth of the corresponding cell line by 50% with respect
to the untreated cells (negative controls) 72 h after drug exposure. Values were obtained from concentration–
response curves using the MTT assay as described in the experimental section. Data are shown as the mean of
three independent experiments performed in triplicate. Standard deviations were, in all cases, below 1% of the
mean values.

For the pyridyl derivatives, the substitutions on the amino group greatly improved the
antiproliferative potencies, particularly in the ethylurea (7, 8, and 9) and formamide series
(13, 14, and 15), whereas a smaller improvement was observed in the acetylated analogs (19,
20, and 21). The functionalization with the ethylurea group decreased the IC50 values from
micromolar to submicromolar or nanomolar in most cell lines (compare 1, 2, and 3 with
7, 8, and 9, respectively), reaching higher potencies than the reference ABT-751 in all the
cell lines. In the case of the 3-pyridyl derivatives, the changes were higher when moving
from the amino (2) to the urea (8) derivative, resulting in double-digit nanomolar IC50
values for compound 8, ranging from 25 to 94 nM in HeLa, HepG2, MCF7, T98G, GL261,
and LNCaP, and rising to submicromolar values only for the more resistant cell lines PC-3
(161 nM) and HT-29 (208 nM). Interestingly, compound 8 was especially potent to inhibit
cell proliferation in the glioblastoma cell lines, with an IC50 value of 9 nM in U87MG. For
the less sensitive glioblastoma cell line T98G, the IC50 value was 52 nM, and 25 nM for
GL261. These results are especially relevant, considering that the IC50 of the only approved
drug for the treatment of glioblastoma, TMZ, is over 100 µM in these glioblastoma cell
lines. Compound 8 also showed lower IC50 values than DTX against the U87 MG, T98G,
GL261, and HT-29 cells. The ethylurea-pyridyl derivatives in compounds 7 and 9 also
displayed lower IC50 values than their non-substituted counterparts in compounds 1 and 3,
respectively, showing between 6- and 20-fold decreases in the IC50 values with potencies
lower or similar to ABT-751. Their behavior was similar to that observed for compound 8 in
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the sense that higher potencies were obtained for the glioblastoma cell lines (double-digit
nanomolar range in U87MG and GL261) compared with the rest of the cell lines (IC50
values between 0.1 and 0.3 µM). However, in all the cell lines, compound 8 performed
better than its analogues 7 and 9. The higher sensitivity of the glioblastoma cell lines is
also remarkable when compared to the HeLa cells, which are usually highly sensitive
to microtubule inhibitors [56]. These results suggest that the glioblastoma cells have a
special sensitivity to this class of microtubule drugs. Besides the high sensitivity of the
glioblastoma cell lines, the breast cancer cell line MCF7 also shows a higher sensitivity to
these compounds, which is in agreement with the previous results for the colchicine site
tubulin inhibitors [57,58].

The amine formylation also increased the antiproliferative potencies (compare com-
pounds 13, 14, and 15 with 1, 2, and 3, respectively), shifting the IC50 values from the
micromolar range for the unsubstituted compounds 1–3 to at least the submicromolar
range for the formamide derivatives in compounds 13–15, thus performing better than or
similar to the reference ABT-751. As observed in the ethylurea series, the 3-pyridyl isomer
in compound 14 was also the most potent in all the cell lines, demonstrating a particularly
strong effect not only in the glioblastoma cell lines, reaching IC50 between 37 and 75 nM,
but also in the MCF7 cells (15 nM). Similar trends were observed for the 2- and 4-pyridyl
analogues (compounds 13 and 15), with submicromolar IC50 values in all the cell lines
(0.3–0.5 µM) and slightly lower values in the glioblastoma and MCF7 cells (near 0.2 µM).

The amine acetylation enhanced the IC50 values with respect to the non-substituted
analogs (e.g., compare compounds 1, 2, and 3 with 19, 20, and 21, respectively), but the effect
was less pronounced than in the ethylurea or formamide series, since the improvements
did not change the order or magnitude of the IC50 values in most cases. The 3-pyridyl
derivative of the acetamide series (compound 20) was again the most potent compound
of the family, reaching submicromolar IC50 values against the HepG2, MCF7, U87MG,
T98G, and GL261 cells. The superiority of the 3-pyridyl isomers (when the amino group
is substituted) in the glioblastoma cells was also maintained in this family. The 2- and
4-pyridyl analogs (compounds 19 and 21) led to little improvements with respect to their
non-substituted counterparts (compounds 1 and 3, respectively), with IC50 values in the
low micromolar range.

Regarding the nature of the linker connecting the aromatic rings, the phenyl and
pyridyl derivatives behave differently from the naphthalenes and imidazoles. For the
first group, the amine acylation always results in potency improvements, while for the
second one, acylation is detrimental. This suggests a size, shape, and probably polarity
origin for the observed different behavior. For the six-membered rings, a higher effect is
observed for the pyridines, which suggests the implication of a favorable polar interaction
of the target with the azine nitrogen. The maximal effect within the pyridines is obtained
for the 3-pyridyl isomers, with a geometry dependency that is also consistent with a polar
directional interaction with the target that is optimal for the nitrogen in that position.
The lower improvement observed for the 2- and 3-pyridyl isomers suggest a less optimal
disposition for the directional bond, while the lower enhancement observed for the phenyl
analogs is also consistent with the loss of such a favorable interaction.

All the compounds were also tested against the non-tumorigenic HEK-293 cell line,
and all of them showed lower potencies than when they were tested against the tumor cell
lines. Most of the compounds displayed no cytotoxic effect below 10 µM (compounds 1–6,
10–12, 16–18, 19, and 21–24). Interestingly, the most potent antiproliferative compounds
against the tumor cells (the pyridyl derivatives in compounds 7–15, 13–15, and 20) showed
a low cytotoxicity toward the HEK-293 cells, with IC50 values between 8 and 10 µM and
selectivity indexes between 25 and 100 for most of the cell lines, displaying selectivity
indexes near 900 and 500 for the best-performing compounds (compound 8 against U87MG
and compound 14 against MCF7, respectively). The selectivity indexes are much better
than those for the reference compound ABT-751 and DTX, which had selectivity indexes
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between three and six for the tumor cells. These results suggest that the new benzothiazole
derivatives have a significant safety profile for their use as antitumor agents.

3.2.2. Sensitivity to MDR Efflux Pumps

The compounds exhibited higher IC50 values against the HT-29 cells compared with
the rest of the cell lines, which agrees with the previously reported data for the colchicine
site ligands. The low sensitivity of the HT-29 cells to the tubulin polymerization inhibitors
were related to autophagy [59], activity blockage by UDP-glucuronidation [60], or mul-
tidrug resistance mechanisms (MDR efflux pump-like P glycoprotein, P-gp) [61]. The
compounds lack functional groups that are compatible with glucuronidation reactions.
Since an acquired resistance to antitumor drugs is one of the more important limitations
of chemotherapy, we studied the possibility that these compounds are substrates of MDR
efflux pumps. For that purpose, the IC50 values of the benzothiazole derivatives against
the HT-29 cells pre-treated with verapamil, a P-glycoprotein 1 and multidrug resistance
protein 1 inhibitor (MDR1), at 10 µM, which is a concentration that does not affect cell
proliferation, were compared with the values in absence of the inhibitor. If a compound is
susceptible to MDR efflux, its IC50 values will be significatively lower in the presence of
verapamil. No differences were observed between the two experiments with or without
verapamil (Table 3), as well as the reference compound ABT-751, thus suggesting that they
are not MDR substrates.

Table 3. Antiproliferative activity against human tumor HT-29 cells, expressed as the IC50 values in
µM, in the presence of 10 µM verapamil.
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1 2-Pyr H 3.47 13 2-Pyr CHO 0.540
2 3-Pyr H 2.15 14 3-Pyr CHO 0.307
3 4-Pyr H 3.27 15 4-Pyr CHO 0.459
4 Imid H >10 16 Imid CHO >10
5 Ph H >10 17 Ph CHO >10
6 Naph H >10 18 Naph CHO >10

7 2-Pyr CONHEt 0.315 19 2-Pyr COMe 2.93
8 3-Pyr CONHEt 0.215 20 3-Pyr COMe 1.48
9 4-Pyr CONHEt 0.305 21 4-Pyr COMe 2.55
10 Imid CONHEt >10 22 Imid COMe >10
11 Ph CONHEt >10 23 Ph COMe >10
12 Naph CONHEt >10 24 Naph COMe >10

ABT-751 0.250 TMZ >10
1 IC50 value determined in human colon adenocarcinoma HT-29 cell line in the presence of 10 µM verapamil, a
P-gp/MDR1 inhibitor. Data are shown as the mean of three independent experiments performed in triplicate.
Standard deviations were, in all cases, below 1% of the mean values.

3.2.3. Tubulin Polymerization Inhibition (TPI)

To determine whether the tubulin polymerization inhibition (TPI) is the mechanism of
action responsible for the antiproliferative effect of the active compounds, their effect on
the in vitro assembly of bovine brain tubulin was studied. The degree of tubulin polymer-
ization in the presence or absence (negative control) of the compounds was determined via
turbidimetry. All the compounds were assayed at a concentration of 10 µM, and for those
inhibiting tubulin polymerization by more than 50% compared to the untreated control,
the IC50 values were determined.

The TPI and the antiproliferative activity were strongly correlated, since compounds
with TPI IC50 values lower than 5 µM showed IC50 values in the submicromolar range,
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and the non-cytotoxic compounds were not able to inhibit tubulin polymerization at
10 µM (Table 4). This is in agreement with tubulin inhibition being the mechanism of the
antiproliferative effect. Additionally, this lack of TPI activity for the non-antiproliferative
compounds is due to a lack of activity on tubulin and not to a reduced uptake, which is in
good agreement with the antiproliferative and verapamil cotreatment experiments.

Table 4. Effect of the compounds on tubulin polymerization inhibition (TPI).

No. Ar R % TPI IC50 No. Ar R % TPI 1 IC50
2

1 2-Pyr H 37 >10 13 2-Pyr CHO 80 5.0
2 3-Pyr H 42 >10 14 3-Pyr CHO 87 4.1
3 4-Pyr H 29 >10 15 4-Pyr CHO 85 4.5
4 Imid H 0 >10 16 Imid CHO 0 >10
5 Ph H 0 >10 17 Ph CHO 4 >10
6 Naph H 7 >10 18 Naph CHO 0 >10

7 2-Pyr CONHEt 87 4.2 19 2-Pyr COMe 43 >10
8 3-Pyr CONHEt 100 2.9 20 3-Pyr COMe 57 8.1
9 4-Pyr CONHEt 96 3.8 21 4-Pyr COMe 41 >10

10 Imid CONHEt 0 >10 22 Imid COMe 0 >10
11 Ph CONHEt 6 >10 23 Ph COMe 3 >10
12 Naph CONHEt 0 >10 24 Naph COMe 0 >10

ABT-751 4.4 MI-181 4.6
CA-4 2.8

1 Percentage of TPI, with respect to the negative control, for compounds tested at 10 µM. Data are shown as the
mean of two independent experiments performed in triplicate. Standard deviations were, in all cases, below 1%
of the mean values. 2 Concentration inhibiting 50% of microtubular protein polymerization in vitro.

The pyridine derivatives behaved as the most potent inhibitors, following the same
trends as in the antiproliferative activity. The pyridine derivatives with no substituents
on the amino group (1, 2, and 3), showing micromolar antiproliferative activities, inhib-
ited tubulin polymerization below 50% at 10 µM, whereas the pyridine derivatives with
ethylurea (7, 8, and 9) or formamide functionalities (13, 14, and 15), whose antiproliferative
IC50 values where submicromolar or nanomolar, exhibited TPI IC50 values between 2.9
and 5.0 µM, which is similar to or better than the reference compounds ABT-751 (4.4 µM),
MI-181 (4.6 µM), and CA4 (2.8 µM). The acetylation of the bridge amino group did not
greatly improve the TPI (e.g., compare 19, 20, and 21 with 1, 2, and 3, respectively), nor
did it decrease the antiproliferative IC50 by orders of magnitude. The best-performing
ligands as tubulin polymerization inhibitors were again the most cytotoxic, namely, the
3-pyridyl derivatives in all series (compounds 2, 8, 14, and 20), and the most potent of
them (compound 8) showed a TPI IC50 value below that of the ABT-751 (2.9 vs. 4.4 µM). In
the acetyl series, the 3-pyridyl derivative (20) was the only ligand with a TPI IC50 value
below 10 µM, and it was also the only compound in that series with submicromolar an-
tiproliferative activity. This correlation strongly suggests that tubulin inhibition is behind
the observed antiproliferative effects. The differences in the TPI values for the pyridine
isomers also parallel the observed differences in the antiproliferative potency, which is in
good agreement with the ranking order due to different interactions with the target and is
consistent with the proposed directional polar interaction of the pyridine nitrogen with
tubulin. Again, the potency drops in the TPI for the phenyl analogs; the putative lack of
this interaction further supports this argument.

The naphthyl and imidazolyl derivatives (4, 6, 10, 12, 16, 18, 22, and 24), the less
potent cytotoxic compounds, were not able to inhibit tubulin polymerization at 10 µM
regardless of the substituents on the amino group, thus confirming that the replacement
of pyridine by 5-methyl-imidazole or naphthalene hinders the interaction with tubulin,
probably because an imidazole ring is too small and/or too polar to fit in the tubulin
pocket, whereas the naphthalene moiety is too hydrophobic and/or too large. Even though
compound 6 showed antiproliferative activity in the micromolar range in some cell lines, it



Pharmaceutics 2023, 15, 1698 22 of 34

failed to inhibit tubulin polymerization at 10 µM. The differences in the order of magnitude
between the two experiments can be explained by the fact that the observation of the
antiproliferative effect only needs the alteration of the tubulin polymerization dynamics
at a low drug concentration, whereas the polymer mass changes at high protein and
compound (micromolar) concentrations, which are required in TPI assays.

3.2.4. Effects on Cellular Microtubules

To confirm that the antiproliferative activity of the compounds in tumor cells is
caused by the interference with tubulin polymerization, the effects of the representative
compounds on cellular microtubules were investigated. For that purpose, we selected three
of the most potent pyridyl derivatives with a substituent on the amino group, which are the
ethylurea derivatives 8 (3-pyridyl derivative) and 9 (4-pyridyl derivative), and the 3-pyridyl
formamide 14. We studied the effects of the three compounds on the microtubule networks
of the HeLa, MCF7, and U87MG cells 24 h after the treatment via immunofluorescence
confocal microscopy, labeling α-tubulin and the nuclei in comparison with the untreated
cells (Figure 3).
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Figure 3. Effects of the treatment with compounds 8, 14, and 9 on the microtubule network in
HeLa, MCF7, and U87MG cells as observed via confocal microscopy 24 h after incubations. For im-
munofluorescence labeling, α-tubulin was stained in green, and nuclei were stained in blue. Different
concentrations were used according to the different antiproliferative IC50 values of compounds in
HeLa (200 nM for compounds 8 and 14, and 500 nM for compound 9), MCF7 (100 nM for compounds
8 and 14, and 500 nM for compound 9), and U87MG cells (50 nM for compound 8, and 100 nM for
compounds 9 and 14). Scale bar: 25 µm.

In the negative controls, for every kind of tumor cell, a characteristic morphology with
hairy microtubule filaments, in green, covering all the cytoplasm around the nucleus, in
blue, is observed. In the samples treated with compounds 8 and 14, besides a decrease in the
cell numbers due to the antiproliferative effect, a disruption of the microtubule network can
be observed in the three cell lines. After treatment with compounds 8 and 14, the HeLa and
MCF7 cells acquired a rounded shape, whereas the U87MG cells lost their typical trigonal
shape and adopted broader polygonal shapes. In the three cases, no microtubule fibers
except for a green diffuse mass with no defined structure was observed in the treated cells.
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This loss of microtubules and the cell morphology changes are in good agreement with the
compounds affecting tubulin. Compound 9 caused similar effects in the microtubule in the
MCF7 and HeLa cells. It also caused a microtubule network disruption in the U87MG cells,
but to a lesser extent than compounds 8 and 14 since some tubulin fibers remained, and the
cell shapes were not affected. The MCF7 cells treated with compounds 8 and 14 exhibited
multilobulated nuclei, thus supporting the argument that the mitotic arrest caused by the
impairment of the microtubule assembly is the mechanism at play [57].

3.2.5. Effects on the Cell Cycle

The effect of the selected compounds 8, 9, and 14 on the cell cycle distribution in the
HeLa, MCF7, and U87MG cancer cell lines was studied via flow cytometry at different time
points after the treatments (24, 48, and 72 h). The time-course analyses of the cell cycle
showed different evolution depending on the compound and the cell line.

The non-treated HeLa cells (negative controls) showed similar cell cycle profiles
regardless of the time point, with most of the cell population in the G0/G1 phases (50–69%),
24–37% of cells in the G2/M, and only 0.4–1.1% of cells at the subGo/G1 region (Figure 4).
High percentages of cells were arrested at G2/M (80, 56, and 85% for compounds 8, 14, and
9, respectively) 24 h after the treatments. Besides these differences, 48 h after incubation,
the mitotic arrest was similar for the three compounds (58, 60, and 72% for compounds 8,
14, and 9, respectively), and the subG0/G1 populations reached 14–18%. At a later time
point of 72 h, the G2/M population decreased at the expense of an accumulation of sub
G0/G1 fractions, which is indicative of cell death; this consisted of 52, 43, and 39% of cells
in the subG0/G1 region for compounds 8, 14, and 9, respectively. This reveals that the
antiproliferative effect of the three compounds on the HeLa cells is due to a mitotic arrest
that begins only 24 h after the treatment and is followed by cell death induction.

The cell cycle profiles of the untreated MCF7 cells (negative controls) at 24, 48, and
72 h were similar to the HeLa profiles (Figure 5). However, the effects of the selected
compounds on this cell line were different than on the HeLa cells. The three compounds
triggered mitotic arrest 24 h after the treatments (32, 40, and 56% for compounds 8, 14,
and 9, respectively). Compound 9 was able to maintain the cell populations at G2/M,
but the subG0/G1 fraction only reached 11% 72 h after the treatment, thus indicating that
compound 9 disrupts mitosis in the MCF7 cells, but the cell death induction is not so
strong. The profiles for compounds 8 and 14 evolved differently. The mitotic arrest caused
24 h after the treatment by compound 14, the most potent against the MCF7 cells, slowly
declined at 48 and 72 h (30–35%), accompanied by an accumulation of 27% of the cells at
subG0/G1 48 h after incubation that increased to 33% at the final time point of 72 h. The
mitotic arrest caused by compound 8 had a slow start as well as the cell death induction;
48 h and 72 h after incubation, the subGo/G1 population changed from 9 to 26%. The
MCF7 cells are deficient in caspase-3, which can explain the difficulties of the compounds
in inducing cell death compared to the HeLa cells [62].

The untreated U87MG cells displayed similar cell cycle histograms to those of the
HeLa and MCF7 cells at 24, 48, and 72 h (Figure 6). The most potent compound 8 caused
a severe mitotic arrest (39% in G2/M) and cell death induction (41% in subG0/G1) only
24 h after the treatment, followed by a progressive increase in the latter at the expense
of the former over time, with the combined populations staying roughly constant at 85%.
Compound 14 showed a maintained G2/M arrest and cell death induction at the three
time points, staying globally at roughly 75%. Compound 9, after a slower start with a
global G2/M (41%) plus subG0/G1 (17%) of 58%, also stabilized at later time points at
75%, again with the increased contribution of the apoptotic subG0/G1 population (46%
at 48 h and 51% at 72 h) at the expense of the G2/M population (30% at 48 h and 26% at
72 h) observed for the other two compounds. This could explain the immunofluorescence
results (observed 24 h after the treatments), where the U87MG cells did not appear to be
too affected by compound 9 in comparison with the cells treated with compounds 8 and 14.
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Figure 4. Histograms of the cell cycle of HeLa cells after 24, 48, or 72 h of treatment with compounds
8 (200 nM), 14 (200 nM), or 9 (500 nM). Untreated control cells were run in parallel. The positions of
the subG0/G1 (pink), G0/G1 (blue), S (orange), and G2/M (green) peaks are indicated by bars of
different colors. The histograms are representative of three independent experiments.

In summary, although different cell cycle profiles were registered, the three com-
pounds, 8, 9, and 14, were able to arrest the cell cycle at G2/M in the HeLa, MCF7, and
U87MG cells 24 h after the treatments. Then, a certain level of mitotic arrest was maintained
for 48 and 72 h while the SubG0/G1 population gradually increased until it reached maxi-
mum values at the 72 h time point, which is in good agreement with the antiproliferative
IC50 measurements.

3.2.6. Cell Death Mechanistic Studies

To elucidate the cell death mechanism suggested by the accumulation in the subGo/G1
region 72 h after the treatments with compounds 8, 9, and 14, we studied the mechanism of
cell death via dual channel flow cytometry experiments using double staining by fluorescein
isothiocyanate-labeled Annexin V (AnV) and propidium iodide (PI). The HeLa, MCF7,
or U87MG cells were incubated with compounds 8, 9, or 14 for 72 h, stained with AnV
and PI, and analyzed via flow cytometry (Figure 7). The untreated cells were used as
negative controls. The apoptotic cells are Annexin V positive due to the translocation
of phosphatidylserine from the inner leaflet to the surface of the plasmatic membrane,
whereas necrosis causes membrane disintegration, leading to PI permeation. The response
of the cells to both stains allow us to determine if they are viable (PI−, AnV−), early
apoptotic (PI−, AnV+), late apoptotic, secondary necrotic (PI+, AnV+), or only necrotic
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(PI+, AnV−). The untreated (negative control) HeLa, MCF7, and U87MG cells showed live
cell populations of over 92%.
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In agreement with the cell cycle results, most of the treated HeLa cells suffered from
apoptotic induction 72 h after the treatments, and the three compounds had similar behav-
iors. A total of 93% of the HeLa cells treated with the most potent compound 8 underwent
early and late apoptosis, whereas nearly 75% of apoptosis was observed for the less potent
compound 9, and 86% of apoptotic cells were caused by compound 14 (Figure 7).

The percentages of the early and late apoptotic cells were higher than the fractions
of the cells in the subG0/G1 phase, which can be explained by the different techniques
employed in each assay. For the cell cycle experiments, a single PI staining after permeabi-
lization is used. This means that many of the cells whose DNA content corresponds to the
G2/M or even G0/G1 phases are probably beginning the phosphatidylserine translocation,
but since their DNA is not yet affected, PI staining does not discriminate apoptotic cells.
When double PI/AnV staining is performed, the apoptotic cells that were included in the
G2/M or G1/G0 fractions in the cell cycle analysis respond positively not only to PI, but
also to Annexin V.
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Regarding the MCF7 cells (Figure 7), only compound 14 was able to induce apoptosis
to a similar degree as observed for the HeLa cells (71%). Compound 8 also caused cell
apoptosis, but to a lesser extent (47%), showing 46% of alive cells, and compound 9
displayed a very similar profile to the control cells since only 12% of cells underwent
apoptosis. These results are consistent with the cell cycle profiles whose analyses revealed
that mitotic arrest in MCF7 is not always followed by cell death. This behavior of the MCF7
cells can be attributed to their deficiency in caspase-3, which plays an essential role in the
signal cascade of apoptosis.

Higher levels of apoptosis were registered for the treated U87MG cells compared
with the MCF7 cells, but for the three treatments, 12–16% of cells were still alive at 72 h.
As expected, a strong apoptotic response was observed after the treatment with the most
potent compound 8, showing most cells in early or late apoptosis (80%). A lower response
to Annexin V was displayed by the cells treated with compounds 9 and 14 (71% and
67%, respectively), showing similar profiles, which is in agreement with their similar
antiproliferative potencies.

For the HeLa and MCF7 cells, the percentage of alive cells after 72 h of treatment
correlates with the antiproliferative IC50 values. On the other hand, the percentage of
alive U87MG cells remains at a roughly constant value irrespective of the potency of the
compounds.
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Figure 7. Annexin V-FITC and propidium iodide (PI) profiles in HeLa, MCF7, and U87MG cells 72 h
after treatment with compounds 8, 14, or 9. Different concentrations were used according to the
different antiproliferative IC50 values of the compounds in HeLa (200 nM for compounds 8 and 14
and 500 nM for compound 9), MCF7 (100 nM for compounds 8 and 14 and 500 nM for compound 9)
and U87MG cells (50 nM for compound 8 and 100 nM for compounds 9 and 14). Untreated cells were
used as negative controls.

3.2.7. Lactate Dehydrogenase Assays

An analysis of treated cells via flow cytometry after simple (PI) or double (PI/AnV)
staining, together with the immunofluorescence experiments, revealed that the antiprolifer-
ative effects of the selected compounds through MTT assays are explained by the induction
of mitotic arrest, which occurs 24 h after incubation, which leads to apoptotic cell death
72 h later. All these experiments are complementary and accounted for different aspects of
the cell damage caused by the compounds. The LDH leakage assay measures the release of
lactate dehydrogenase (LDH) into the culture medium after cell membrane damage. It is a
very interesting experiment because it can detect low levels of cell membrane damage that
are not detected by other methodologies. The selected compounds 8, 14, and 9 showed to be
particularly potent against glioblastoma cell lines. This is an important issue, considering
that the only approved drug for glioblastoma treatment, temozolomide, has a very low
antitumoral effect and is associated with resistance mechanisms.

To further study the effects caused by the compounds in glioblastoma cells and
their capacity to discriminate between tumor and healthy cells, LDH experiments were
carried out in both the glioblastoma U87MG cells and non-tumorigenic HEK-293 cells. The
U87MG cells were treated for 72 h with concentrations of compounds from 1 nM to 1 µM,
whereas the HEK-293 cells were incubated at higher concentrations, from 0.1 µM to 1 mM.
These experiments revealed that the selected compounds caused further cellular damage
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than what was inferred by previous experiments, even at low nanomolar concentrations
(Figure 8). An amount of 1 nM of compound 8 caused nearly 40% of LDH release in the
U87MG cells, which was increased to over 60% at 10 nM and reached 100% at 100 nM,
meaning that total cell death is achieved at that concentration. Compounds 9 and 14 also
provoked 100% of cell death above 100 nM. Although the antiproliferative IC50 values of
compounds 9 and 14 were in the double-digit nanomolar range, considerable amounts
of released LDH, around 10% and 20%, were registered at concentrations as low as 1
and 10 nM, respectively, for both compounds, thus demonstrating a strong capacity to
damage tumor cells. The LDH release values are consistent with the antiproliferative values
obtained using the MTT method.
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Figure 8. Dose–response experiments of LDH assays on U87MG (a) and non-tumoral HEK-293
(b) cells after 72 h of incubations with compounds 8, 9, or 14. Concentrations are expressed in
different units for each cell line. Untreated cells were used as negative controls. LDH release is
defined by the ratio of LDH released/total LDH present in the cells, with the total LDH being 100%.
The results are expressed as the mean of experiments run in quadruplicate.

Consistent with the antiproliferative assays, the HEK-293 cells were less sensitive to the
selected compounds than the U87MG cells. No significant cytotoxic effects were observed
for the HEK-293 cells 72 h after the treatment with compound 14 in a concentration range
between 0.1 and 1 µM, whereas the three compounds displayed roughly 10% of LDH
release at 10 µM. It is important to note that the three compounds reached their maximum
cytotoxic effect in the U87MG cells at 100 nM and, for that concentration, no significant
cell damage was detected by the LDH assays. At a higher concentration of 100 µM, the
LDH release was only 20% for compound 9, and nearly 30% for compounds 8 and 14.
Interestingly, the maximum levels of cytotoxicity were not above 40% at concentrations as
high as 1 mM. These results confirm the high selectivity of the compounds, with the ability
to cause a higher cytotoxic effect in tumor cells compared with healthy cells.

3.3. Computational Studies
3.3.1. Structural Effects of the Bridge Modifications

The DFT calculations show that the amines preferentially adopt an extended confor-
mation. On the other hand, the preferred dispositions for the acylated analogs correspond
to a folded arrangement that places the aromatic moieties in a close, non-planar disposition
similar to that observed for Z-stilbenes, such as the active configuration of combretastatin
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A-4 and most ligands occupying sites A and B of the colchicine site [63]. These dispositions
are those found as the preferred docked poses (see later), thus suggesting that it has an
important role in the different observed binding modes. Furthermore, the pre-arrangement
of the free ligands in the bound disposition should favor binding and result in a potency
increase.

3.3.2. Docking Studies

The binding modes of the synthesized compounds (Figure 9) at the colchicine site of
the tubulin were studied via ensemble docking experiments. X-ray crystal structures of
the colchicine site ligands bound to the tubulin have shown that it can bind compounds
of varied sizes and nature, more than what was initially thought, occupying different sub-
pockets even for structurally related ligands [63]. Therefore, we accounted for the colchicine
site flexibility by using in the docking experiments an ensemble of X-ray structures of
tubulin in complexes with a set of diverse colchicine site ligands that represent different
protein arrangements and ligand pharmacophore configurations, and therefore, efficiently
explored the possible interaction space in the docking experiments [64]. We selected
60 X-ray crystal structures [65], plus 6 additional ones from a previous molecular dynamics
simulation [66] obtained as described, to represent the different possible configurations of
the colchicine site of the tubulin.
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Figure 9. Docking poses for compounds 2 (panel (A)), 8 (panel (B)), 14 (panel (C)), and 20 (panel (D))
in complex with tubulin (5YL4 in blue, panel (A), and 5H7O in sepia, panels (B–D)). The colchicine
site zones are indicated by letters, along with interacting sidechains.

Two docking programs with very different scoring functions (PLANTS [67] and
AutoDock 4.2 [68]) were used for the docking experiments. For every docked ligand,
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we took the binding pose as the common pose that was the best scoring combination for
the two docking programs as assessed via automated geometry and scoring comparison
procedures. The geometry assessment consisted of the following: (a) sub-pocket occupancy
assignments for each ligand pose calculated by measuring the lowest distances to the sub-
pocket geometrical centers as determined by the pharmacophores derived from the X-ray
structures of the colchicine site ligands in complex with tubulin; (b) RMSD calculations
between the poses and unsubstituted scaffolds with the same bridges that place the phenyl
rings at the centers of the A, B, or C sites of the colchicine site of the tubulin; and (c) the
RMSDs of the poses with those of the pdb [69] X-ray structures of combretastatin A-4 (for
A-B binding), MI-181 (for A-C binding), or ABT-751 (for A-B-C binding) (pdb IDs 5LYJ,
4YJ2, and 3HKC, respectively). Accordingly, every pose for every ligand is allocated to the
corresponding sub-pockets. To make the inter program scores comparable, the individual
scores were converted to relative scales where they rank between zero (worse) and one
(best) and to Z-scores. Subsequently, we assigned a consensus binding mode for each
ligand to the pair of poses common to the two programs with the best possible Z-values
for each. The control experiments with representative colchicine site ligands of the known
X-ray structures in complex with tubulin correctly retrieved the same experimental poses
as before [16].

Amines 1 to 6 bind at the A (placed above sheets S9, S8, and S10 along the A to C
direction and below helix H8) and C (placed with sheets S5, S6, and S7 below and helix H7
above) zones of the colchicine site of the tubulin (Figure 9A) [17]. The methoxy benzoth-
iazole amines bind with the methoxy phenyl ring deepest in the β subunit occupying a
hydrophobic pocket surrounded by the sidechains of Phe20β (H1), Phe169β (S5), Met235β
(H7), the thiazole nitrogen, and the amine contacting Glu200β (S6) and Tyr202β (S6) at the
C zone, and with the other aromatic rings occupying the A pocket, above the sidechains of
Ile378β (S10), Ala316β (S8), and Ile318β (S8) and behind Leu255β (H8).

The acylation of the methoxy benzothiazole amines 1–6 to formamides 13–18, ac-
etamides 19–24, and ethylureas 7–12 results in an alternative binding mode at the B and A
zones (Figure 9C,D). This change is due to the steric hindrance of the acyl moieties and the
induction of a preference for a “folded” arrangement of the two aryl systems, a disposition
required for the binding to the A–B zone, and a well-documented requirement for related
systems. In these series, the methoxy-benzothiazole occupies the B zone, stacked behind
helix H8 and with the sidechain of Asn258β (H8) piled above the phenyl ring that makes
hydrophobic contacts with Met259β (H8), Thr314β (S8), and the methylenes of Lys352β
(S9). The acyl moieties protrude toward the interfacial space between the subunits, and
the other aromatic moieties occupy the A zone, filling from above the pocket formed by
the sidechains of Ala316β (S8), Ile318β (S9), Lys352β (S9), and Ala354β (S9), capped by
Ala250β (H7), Leu255β (H8), and with the pyridine ring orienting its nitrogen atoms to-
ward the thiol group of Cys241β (H7). The optimal arrangement of the pyridine nitrogen is
observed for the 3-pyridyl analogs, which is in good agreement with the biological results.

The ensemble docking approach used not only selects the most favorable poses for
each ligand, but also provides information about the preferred protein structures that give
these poses. In this respect, the amine derivatives 1–6 binding at zones A–C are selected for
the protein structures that have ligands in these same sub-pockets. The most frequent pdb
ID retrieved is 5YL4, whose ligand is a benzophenone analog of plinabulin (Figure S25 in
the Supplementary Material) that deeply inserts the benzophenone moiety in the subunit.
For the acyl derivatives binding within the A and B zones, the most retrieved structures are
5H7O, with a 2-(1H-indol-4-yl)-4-(3,4,5-trimethoxyphenyl)-1H-imidazo [4,5-c]pyridine lig-
and; 5JVD, with a (2E)-3-(3-hydroxy-4-methoxyphenyl)-1-(7-methoxy-2H-1,3-benzodioxol-
5-yl)-2-methylprop-2-en-1-one; and 5LYJ, the complex of tubulin with combretastatin A-4
(Figure S25 in the Supplementary Material). These three have a trimetho-xyphenyl ring
or related moiety within the A pocket. Additionally, as previously observed, the proteins
in every pair of consensus poses are different for AutoDock and PLANTS, which proba-
bly reflects that the different scoring functions of both programs select different protein
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configurations. These results validate the use of as many protein structures as possible
in the docking experiments (ensemble docking strategy) and reinforce the application of
consensus scoring approaches. In summary, the docking studies support the argument
that ligands can bind to the colchicine site on the tubulin, targeting zones A–C for amines
1–6 and zones A–B for the rest of the amide derivatives. The most favorable interactions
were found for the pyridine derivatives with ethylurea and formamide functionalities, thus
explaining the antimitotic activity and the structure–activity relationships observed for
each series of compounds.

4. Conclusions

One of the main limitations of the colchicine site ligands is their low aqueous solubility
due to the hydrophobic nature of the binding site. We succeeded in synthesizing a new se-
ries of water-soluble benzothiazole derivatives that are able to target the colchicine binding
site, inhibit tubulin polymerization, and behave as antiproliferative agents in different kinds
of cancer cells. The replacement of the olefin linker of MI-181 or CA-4 by methylamine,
acetamide, formamide, or ethylurea functionalities was proven to significantly increase, in
most cases, the polar surface area and the water solubilities of the synthesized 6-methoxy
derivatives with respect to the reference compounds. The structure–activity relationship
studies revealed that the combination of 6-methoxibenzothiazole with a pyridine ring pro-
vides an optimal potency as antiproliferative agents and tubulin polymerization inhibitors,
particularly when combined with ethylurea or formamide groups. Whereas the pyridine
derivatives with amino groups (1–6) showed antiproliferative IC50 values in the micro-
molar range, the best performing compounds (pyridine-based formamide and ethylurea
derivatives) reached nanomolar values for some cell lines, showing an especially potent
antiproliferative profile against the difficult-to-treat glioblastoma cell lines. The studies
on the mechanism of action of the most potent compounds revealed that compounds 8,
9, and 14 disrupt the microtubule network of treated cancer cells and arrest the cell cycle
at the G2/M phase 24 h after the treatment, followed by the induction of apoptotic cell
death. The compounds exhibited a high selectivity toward cancer cells with respect to the
non-tumoral HEK-293 cells and were not susceptible to multidrug resistance efflux pumps
such as MDR1/P-gp. Binding at the colchicine site is supported by computational studies
that suggest highly favorable interactions at the A–B zones for the most biologically active
compounds and provide a structural explanation for the structure–activity relationships.
The ensemble of results sustains the success of the strategy of design and provides new
possibilities to discover synthetically accessible anticancer drugs, targeting the colchicine
site of the tubulin, with improved water solubility. The acylation of the amino group of the
benzothiazole derivatives was favorable in terms of water solubility and biological activity,
so the incorporation of new polar functionalities on the amino group could lead to new
active colchicine site ligands. The pharmacodynamic and pharmacokinetic properties of the
obtained compounds show a high potential for further development. According to the high
potency, aqueous solubility, and selecti-vity against glioblastoma cell lines of compounds 8
and 14, they are good candidates to be used in a glioblastoma mouse orthotopic xenograft
model to study their capacity to reduce the volume of the tumor. This could open new
doors in the development of novel chemotherapy agents for the treatment of glioblastoma.
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