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Abstract: β-glucan, one of the homopolysaccharides composed of D-glucose, exists widely in cereals
and microorganisms and possesses various biological activities, including anti-inflammatory, an-
tioxidant, and anti-tumor properties. More recently, there has been mounting proof that β-glucan
functions as a physiologically active “biological response modulator (BRM)”, promoting dendritic
cell maturation, cytokine secretion, and regulating adaptive immune responses—all of which are
directly connected with β-glucan-regulated glucan receptors. This review focuses on the sources,
structures, immune regulation, and receptor recognition mechanisms of β-glucan.
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1. Introduction

β-glucan is a kind of polysaccharide with multiple physiological functions and is
known as a “biological response regulator” because of its multiple biological functions [1].
The first defensive line of body immunity is innate immunity. In its early stage, it mainly
uses phagocytic cells such as macrophages and neutrophils to engulf and kill pathogens
invading the body and then further activates the adaptive immune system by secreting
cytokines and chemokines. β-glucan has been found to affect several types of immune
cells, including macrophages, natural killer cells, and neutrophils, resulting in various
immunological effects. In recent decades, tumor immunotherapy has made extensive
use of β-glucan as a natural biological effect regulator [2]. Current clinical applications
of β-glucans include yeast, lentinan, Coriolus versicolor polysaccharide, mycobacterium
polysaccharide, and oat. The different types of β-glucan influence the strength and immune
response, depending on the source, structure, water solubility, and molecular weight [3].
The body recognizes invading pathogenic microorganisms through the pattern recognition
receptor (PRR) and initiates the body’s immune response to pathogens through a series of
biochemical reactions. Currently, the following β-glucan receptors have been identified:
dendritic cell (DC)-associated C-type lectin-1 (Dectin-1) [4], complement receptor 3 (CR3),
cluster of differentiation 11b (CD11b)/CD18, αMβ2-integrin, macrophage differentiation
antigen-1 (Mac-1) [5,6], lactosylceramide (LacCer) [7], and scavenger receptors (SRs) [8].
In this review, the source and structure, immunoregulation, and receptor recognition
mechanism of β-glucan are discussed, which offers fresh perspectives on the development
of natural immune enhancers for anti-tumor immunotherapy.
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2. β-Glucan Sources and Properties

Glucan is a homopolysaccharide of glucose as a monomer structure. It is the most
common polysaccharide in nature, widely distributed in bacteria, fungi, and other plants,
consisting of two types depending on the difference in the stereoisomer of the glycosidic
bond as α- and β-linked glucans. The α- and β-glucans are well known to be the energy
source of the body and the indigestible fibers with obvious physiological functions [9–16]
mainly as α- and β-(1→4)-linked liner structures between glucose residues (amylose and
cellulose), respectively. The latter one, β-glucan, has been attracting attention in recent
years as an antineoplastic immunostimulant that mainly comes from yeast, barley, oats,
fungi, mushrooms, and algae [17–20]. β-Glucan is also a component of the cell wall of
certain pathogenic fungal (Pneumocystis carinii, Cryptococcus neoformans, Aspergillus fumi-
gatus, Histoplasma capsulatum, Candida albicans) and fungi (Saccharomyces cerevisiae) [21,22].
The cell wall of fungi is mainly composed of polysaccharides and glycoproteins. For
example, the cell wall of S. cerevisiae consists of three layers: the inner layer is insoluble
β-glucan (30–35%); the middle layer is soluble β-glucan (20–22%); the outer layer is glyco-
protein (30%) [23]. The β-glucan mainly exists in nature in the form of liner or branched
chains of (1→2)-, (1→3)-, (1→4)-, and (1→6)-β-glucan [24,25] (Table 1, Figure 1). In addi-
tion to abundant (1→4)-β-glucan in plant cellulose, plant hemicellulose includes linear
β-glucans with (1→3)-(1→4)-mixed linkages, containing tri-and tetrasaccharide (1→4)-
β-glucan fragments inserted in random order. In this case, the contents of β-(1→4) and
β-(1→3) linkages in the β-glucans are approximately 70% and 30%, respectively. Lichenan
(Lichenin) from Icelandic moss consists of a linear (1→3)-(1→4)-mixed linkages with [→4)-
β-glycosyl-(1→3)-β-glycosyl-(1→] repeating unit. Barley and oat glucans from Hordeum
vulgare and Avena sativa, respectively, consist of linear (1→3)-(1→4)-mixed linkages as well.
Agrobacterium tumefaciens produces a β-(1→2)-glucan structure whose function has not
been reported although cyclic β-(1→2)-glucan plays an important role for plant pathogen
in evading the host immune system [26–29]. Except for the large quantity of plant β-(1→4)-
glucan and very rare (1→2)-β-glucan as its cyclic forms, different sources of β-glucan
from algae and bacteria have certain differences in structure and function, whose glucan
structures are mainly a linear (1→3)-β-glucan. Yeast produces mainly (1→3)-β-glucan con-
taining β-(1→6)-branches. β-glucan of the fungal origin mainly contains a linear structure
with a combination of β-(1→3) and β-(1→6) linkages, and cereal-derived one has a linear
combination of β-(1→3)- and β-(1→4)-linkages [25].

Table 1. Common β-glucans.

Linkage (Glucan) Source References

β-(1→2) Mycoplasma capricolum and
Mycoplasma leachii [26–29]

β-(1→4) (cellulose) Plant (common)
β-(1→6) (pustulan) Gyrophera esculenta [18]
β-(1→3)-β-(1→4)-β-(1→6) (PSK) Trametes versicolor [30]
β-(1→6)-β-(1→4) (LC11) Lentinus edodes [20]
β-(1→6)-β-(1→4) (GLSA50-1B) Ganoderma lucidum [22]
β-(1→6)-β-(1→3) (phytoalexins) P. megasperma mycelial [31]

β-(1→3)-glucans

β-(1→3) (pachymaran) Poria cocos [32]
β-(1→3) (curdlan) Alcaligenes faecali [33]
β-(1→3) (SSG) Sclerotinia sclerotiorum [34]

β-(1→3)-β-(1→4) (hemicellulose) Plant (common)
β-(1→3)-β-(1→4) (lichenan) Cetraria islandica [21]
β-(1→3)-β-(1→4) (Barley glucan) Hordeum vulgare [33]
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Table 1. Cont.

Linkage (Glucan) Source References

β-(1→3)-β-(1→4) (Oat glucan) Avena sativa [15,16]
β-(1→3)-β-(1→6) (schizophillan) Schizophyllum commune [35]

Candida albicans [36]
β-(1→3)-β-(1→6) (lentinan) Lentinula edodes [37]
β-(1→3)-β-(1→6) (Yeast glucan) Saccharomyces cerevisiae [11–14]
β-(1→3)-β-(1→6) (scleroglucan) Sclerotium glucanicum [9,10]
β-(1→3)-β-(1→6) (laminaran) Laminaria sigitota [9,10,38]
β-(1→3)-β-(1→6) (grifolan) Grifola frondosa [39]
β-(1→3)-β-(1→6) (pachyman) Poria cocos [32]
β-(1→3)-β-(1→6) (PSGL-I-1A) Ganoderma lucidum [23]
β-(1→3)-β-(1→6) (WGLP) Ganoderma lucidum [24]
β-(1→3)-β-(1→6) (PGG) Saccharomyces cerevisiae [17]
β-(1→3)-β-(1→4)-β-(1→6) (pleuran) Pleuritus ostreatus [19]
β-(1→3)-β-(1→6) (WGP) Saccharomyces cerevisiae [25]
β-(1→3)-β-(1→6) (zymosan) Saccharomyces cerevisiae [40]

Bold linkages mean a main chain in the glucan. SSG: β-(1→3)-D-glucan from Sclerotinia sclerotiorum. PSK:
Polysaccharide K. PGG: poly-(1→6)-β-D-glucopyranosyl-(1→3)-β-D-glucopyranose glucan. WGP: Whole Glucan
Particles. LC11: Branched (1→3;1→4)-β-glucan from Lentinus edodes.
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polymers is an important determinant of receptor–ligand interactions [8]. Insoluble 
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soluble (1→3)-β-glucan can bind to these cells, it does not activate them [45]. Furthermore, 
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and level of cholesterol and other blood lipids in blood and has been utilized in the food 
and healthcare industries [57]. 

Figure 1. Example of (1→3)-β-D–glucan.

β-glucan, mostly referred to as (1→3)-β-glucan, can be divided into the single helix,
triple helix, or random helix (irregular helix) according to its three-dimensional confor-
mation [41]. The three structural formulas can be transformed into each other (Figure 2),
for example, the triple helix is opened to form a single helix structure under alkaline con-
ditions such as NaOH [42,43]. Meanwhile, the single helix also can become an irregular
helix, which is restored to a triple helix structure under heating or dialysis conditions. It is
shown that the three-dimensional structure of the (1→3)-β-glucan polymers is an important
determinant of receptor–ligand interactions [8]. Insoluble particulate (1→3)-β-glucan is
thought to activate DCs and macrophages in rats through the Dectin-1 pathway. This
activation is believed to be enhanced depending on the degree of molecular polymerization
and the content of the β-glycoside bond [44]. While water-soluble (1→3)-β-glucan can
bind to these cells, it does not activate them [45]. Furthermore, (1→3)-β-Glucan has a
wide range of physiological functions [46], including immune system enhancement [47,48],
anti-tumor [49], anti-infection [17], anti-radiation [50], metabolism regulation [51,52], anti-
inflammatory [53], antioxidant [54], hypoglycemic [55], and reductions in serum lipids [56].
Additionally, it has been used as an additive in the beauty and skincare industries due to its
anti-radiation, anti-aging, and free radical scavenging properties. Furthermore, (1→3)-β-
glucan can help to reduce body absorption and level of cholesterol and other blood lipids
in blood and has been utilized in the food and healthcare industries [57].
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3. Immunostimulatory Properties of (1→3)-β-Glucan

As a natural barrier of the human body, the immune system has the functions of im-
mune surveillance, defense, and regulation. It can be divided into adaptive immunity and
innate immunity. The former is subdivided into cellular immunity and humoral immunity,
which are respectively exerted by T lymphocytes and B lymphocytes, and the latter is
mainly exerted by innate immune cells, such as monocyte macrophages and natural killer
(NK) cells [58]. Therefore, modern medicine mainly evaluates immune function from four
aspects: cellular immunity, humoral immunity, mononuclear macrophage phagocytosis,
and NK cell activity. Carbohydrates are common surface molecules in biological systems.
Due to their rich structural diversity, carbohydrate molecules play an important role in cell
recognition and signal transduction, including immune recognition and activation [59,60].
Furthermore, (1→3)-β-glucan is a polysaccharide adjuvant widely existing in bacterial and
fungal cell walls, which can stimulate antibacterial immune response [60]. In the 1950s,
Dr. Pillemer first discovered and reported that there was a substance in the yeast cell wall
that could improve immunity [61]. In later research, Diluzio’s group discovered that the
immunity-boosting substance in the yeast cell wall was (1→3)-β-glucan, isolated from
baker’s yeast [62,63].

Yeast (1→3)-β-glucan activates various immune cells, including macrophages and
neutrophils, leading to increased production of interleukin (IL), cytokinin, and special
antibodies. This comprehensive stimulation of the immune system prepares the body
to better fight against diseases [64,65]. In addition, yeast (1→3)-β-glucan restores the
ability of lymphocytes to produce cytokines such as IL-1 and effectively regulates immune
function [66–68]. Many experiments have indicated that yeast (1→3)-β-glucan promotes
the production of IgM antibodies, improving humoral immunity. Moreover, yeast (1→3)-β-
glucan activates toll-like receptor 2 (TLR2), inducing nuclear factor (NF)- κB activation and
tumor necrosis factor (TNF)-α secretion, as well as regulatory antigen-presenting cells and
immune tolerance [69,70]. The yeast (1→3)-β-glucan-activated cells stimulate the host’s
non-specific defense mechanism and are thus being studied for their potential in cancer,
infectious disease, and wound treatment. In 2008, β-glucan extracted from S. cerevisiae’s
yeast was released by the US Food and Drug Administration (FDA) as a safe food ingredient
that can be added to general food. It is a very rare active immune substance, which can kill
harmful viruses and maintain good immunity. Many years ago, National Aeronautics and
Space Administration (NASA) listed yeast glucan as a food for astronauts to enhance their
immunity.

Many researchers have not only demonstrated the regulatory effect of yeast (1→3)-
β-glucan on immunity, such as induction of autoimmune arthritis or enhancement of
nitric oxide (NO) synthesis, through in vitro cell experiments or in vivo experiments in
mice, respectively [71–73], but also showed that β-glucan also has the effect of immune
stimulation on zebrafish [74,75].

Wu et al. reported that the addition of (1→3)-β-glucan can also lessen the inflamma-
tory response after lipopolysaccharide (LPS) stress [76]. Yeast (1→3)-β-glucan is also an
important enhancer of mucosal immunity in the digestive tract [77]. The digestive system
is the primary point of contact for many pathogens and foreign substances, and mucosal
immunity in the system plays a vital role in defending against these threats. Additionally,
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it has also been found that (1→3)-β-glucan can improve the level of lysozyme in animal
serum and the antibody titer [78]. Yeast (1→3)-β-glucan can activate neutrophils and
phagocytes in gastrointestinal tissues, thereby further activating and affecting the “immune
nerve endocrine” regulatory network, enhancing its anti-infection, anti-stress, and cellular
adaptive protection capabilities and also enhancing macrophage-mediated tissue repair,
accelerating the repair process of ulcers, and improving the repair quality [79]. Yeast
β-glucan has the ability to bind with surface receptors of macrophages, neutrophils, and
lymphocytes, which can affect the cellular signaling process, activate the immune activity
of lymphocytes, and enable them to swiftly reach the site of infection [80]. It acts as an im-
mune response booster and facilitates whey protein. Whey protein is a high-quality protein
that contains all of the essential amino acids needed by the body. Combining with β-glucan,
it can activate immune cells. While whey protein provides the building blocks necessary
for these cells to function properly, they can work synergistically to enhance the immune
response [81]. The latest research found that pre-treatment of mice with (1→3)-β-glucan
can reduce the growth of tumors and elucidated that β-glucan transcriptomically and
epigenetically rewires granulopoiesis and reprograms neutrophils towards an anti-tumor
phenotype to form a long-term innate immune memory, i.e., trained immunity. Moreover,
the anti-tumor effects of (1→3)-β-glucan-induced trained immunity can be transferred to
recipient initial mice via bone marrow transplantation [82]. Furthermore, (1→3)-β-glucan
can stimulate the innate immunity of Pagrus auratus by enhancing the respiratory burst
of macrophages [83]. Besides for humans, Chang et al. also showed that the addition of
(1→3)-β-glucan to the diet of shrimp enhanced the bacteriophage activity of blood cells,
cell adhesion, and production of reactive oxygen species [84].

Macrophages are essential to every stage of host defense and are engaged in both
innate and adaptive immune responses in case of infection. The pathogen crosses the
epithelial barrier, following phagocytosis by macrophages and digestion by lysosomal
enzymes, which are important processes for presenting antigens from the pathogens as
phagocytic activity, and lysosomal enzymes determine the function of macrophages [85].
The secretion of cytokines (IL-1, IL-6, IL-8, IL-12, TNF-a) and inflammatory mediators
(NO, hydrogen peroxide (H2O2)) are also the downstream effect of these cells. Thus, β-
glucan-activated macrophage function enhances host immune defense (Figure 3) [86,87].
Furthermore, (1→3)-β-Glucan is an effective immunomodulator [88–90], which can en-
hance the anti-tumor activity of peritoneal macrophages. In vitro studies showed that the
killing effect of monocytes and neutrophils on microorganisms in healthy volunteers was
enhanced after taking (1→3)-β-glucan. In addition to activating macrophages, T cells, and
natural killer (NK) cells, (1→3)-β-glucan also activates complement components through a
selective activation pathway. When (1→3)-β-glucan is present, it can bind to complement
component C3, which triggers a cascade of reactions leading to the activation of the alterna-
tive pathway. This results in the formation of the C3 convertase enzyme, which cleaves
C3 into iC3b. iC3b then binds to the surface of the pathogen, marking it for destruction
by immune cells [5,6]. Activation of complement components through this pathway is
important because it allows for a more targeted response to pathogens, without causing
excessive inflammation or tissue damage. Vaccine adjuvants have a variety of mechanisms,
typically including storage effects, promoting antigen presentation, increasing the secretion
of immunomodulatory cytokines to control cellular responses with T and B, stimulating
innate immunity, and indirectly modulating adaptive immune responses [91]. At present,
(1→3)-β-glucan is an attractive candidate for immune adjuvants and is used in a wide
range of vaccine development. It can activate the immune system and induce the Th1
immune response [92,93]. The potential effects of (1→3)-β-glucan as an adjuvant on the
effectiveness of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus
vaccination were discussed by Alfredo’s group (Figure 3) [94].
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4. Immunoregulatory Receptor of (1→3)-β-Glucan

The innate immune response triggers the immune system through the recognition
and phagocytosis by phagocytes. Pathogen-related molecular pattern substances (PAMPS)
activate the adaptive immune response process by recognizing and binding to the pattern
recognition receptor (PRR) on the membrane structure of phagocytes. Most cell surface
immune receptors, such as TLRS, nucleotide-binding and oligomerization domain (NOD)-
like receptors (NLRs), and major histocompatibility complexes class I and class II (MHC-I
and MHC-II), are glycoproteins. TLRs, NLRs, C-type lectin, and sialic acid-binding im-
munoglobulin (Ig)-like lectins (Siglecs), among other crucial receptors for immune cell
activation, can identify sugar-containing ligands, including sugars expressed on the surface
of many pathogenic microorganisms and cancer cells (Figure 4) [95]. As an important
pathogen-associated molecular pattern (PAMP), (1→3)-β-glucan plays an immunomodula-
tory role mainly through three types of PRR: (1) Dectin-1 receptors; (2) CR3 [96]; (3) other
receptors including scavenger receptor and LacCer [97] (Figure 4). It can be recognized
by pattern-recognition receptors (PRRS) expressed on the surface of these innate immune
cells, promoting the activation, maturation, and production of cytokines of immune cells,
thus starting the innate immune response and regulating the subsequent adaptive immune
response. Studies have shown that (1→3)-β-glucan can combine with C-type lectin Dectin-1
and CR3, promote the activation of secreted cytokines and B-cell T-cells, and enhance hu-
moral and cellular immune responses [98]. Different sources, structures, and formulations
of (1→3)-β-glucan can stimulate innate and adaptive immunity in different ways. In vitro
and in vivo studies have shown that the molecular structure, molecular weight, and the
number of branches are the key determinants of its immune activity [99].

Antigen presenting cells (APCs) can be divided into three types: DCs, macrophages,
and B cells, these three types of cells are white blood cells and originate from bone marrow
tissue [96]. DC-associated C-type lectin-1 (Dectin-1) is an important receptor of (1→3)-β-
glucan. Much progress has been achieved since it was first found on the surface of DCs in
the study of its anti-tumor mechanism [100–102]. The β-glucan receptor (β-GR) is made of
three components: a C-type lectin-like carbohydrate recognition domain, a short stalk, and
a cytoplasmic tail with a tyrosine-based immune receptor activation motif [100]. It recog-
nizes carbohydrates containing β-(1→3)-linked and β-(1→6)-linked glucan bonds [103].
The Dectin-1 (β-GR) receptor is not restricted to dendritic cells but is broadly expressed,
with the highest surface expression on myeloid cell populations (monocyte/macrophage
and neutrophil lineages). β-GR is also expressed by dendritic cells and a subset of T cells,
albeit with lower surface expression levels [104]. Many studies have demonstrated that
after recognition with (1→3)-β-glucan, Dectin-1 can trigger its own intracellular signal
transduction through the cytoplasmic immunoreceptor tyrosine-based activation motif
(ITAM)-like motif, activating immune cells to produce a series of cellular reactions, such
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as phagocytosis and endocytosis of (1→3)-β-glucan, inducing respiratory burst, matu-
ration of DCs, and producing various inflammatory cytokines TNF-α, IL-1a, IL-1b, IL-6,
and chemokines, C-X-C motif chemokine ligand 2 (CXCL2), C-C motif chemokine ligand
3 (CCL3), and granulocyte-macrophage colony-stimulating factor (GM-CSF) [105–107]. Re-
cruitment of spleen tyrosine kinase (Syk), activation of caspase recruitment domain family
member 9 (CARD9), activation of NF-κB, mitogen-activated protein kinases (MAPKs), and
activation of nuclear factor of activated T-cells (NFAT) are all components of the Dectin-1
downstream signal transduction pathway [108]. The phagocytosis of macrophages on
non-conditioned microorganisms can trigger the host’s innate immune response against
infection. Cytoplasmic phospholipase A2 (cPLA2) is activated in the process of phagocyto-
sis, releasing arachidonic acid-producing biomass, causing acute inflammation. Dectin-1
receptor can also stimulate macrophages to release arachidonic acid and cyclooxygenase
2 (COX2) expression pattern recognition receptor through pathogenic yeast and yeast cell
wall. Pure particulate (1→3)-β-glucan stimulates arachidonic acid release and enhanced
COX2 expression macrophage-activated lipopeptide-2 (MALP-2) [109]. Dependent on
TLR2, the first result on the synergistic effect of Dectin-1 and TLR2 to activate the proin-
flammatory response of macrophages to mycobacterial infection has been established [110].
The Dectin-1 receptor is a PRR widely expressed in macrophages and DCs. Furthermore,
(1→3)-β-glucan is specifically recognized by the Dectin-1 receptor, of which the activation
can also promote Th17 cell differentiation [111,112]. Although both soluble (1→3)-β-glucan
and particulate β-glucan bind to Dectin-1, the downstream signal is only triggered by the
latter [113], resulting in the release of tumor necrosis factor TNF-a, a marker of Dectin-1
activation [114]. Both (1→3)-β-glucan and (1→6)-β-glucan can effectively activate the
bypass pathway of complement components, leading to fungal conditioning and the re-
cruitment of inflammatory cells. The receptor Dectin-1 can stimulate the activation of Th1,
Th17, and cytotoxic T-cell responses, reverse immune tolerance, and restore the secretion of
cytokines [115,116].

The complement system is a kind of activated protein with enzyme activity, which
widely exists in serum, tissue fluid, or cell surface. The complement system includes
more than 30 kinds of soluble proteins and membrane-binding proteins, which can be
divided into three categories according to their different biological functions: complement
intrinsic components, complement regulatory proteins, and complement receptors (CR).
The activated complement system has a precise regulatory mechanism, and the activated
complement products have biological functions, such as cell lysis, regulating phagocytosis,
clearing immune complexes, and mediating inflammatory reaction [117]. CR3, also called
Mac-1, CD11b/CD18, or αMβ2 lectin, belongs to the family of leukocyte adhesion receptors
as an important member [118]. It is present on the surface of macrophages, NK cells, B
lymphocytes, cytotoxic T cells, and neutrophils and is also expressed on activated CD8+
T cell subsets and spleen DC membranes. By facilitating contact between effector cells
and target cells it enhances phagocytosis. It is a membrane glycoprotein composed of two
peptide chains with two distinct domains—one specifically bound to (1→3)-β-glucan and
one particularly attached to the inactivated form of C3b fragment from serum C3 (iC3b). As
a (1→3)-β-glucan receptor, CR3 has one or more exogenous lectin action sites distributed
on its α-methylene. When (1→3)-β-glucan binds to these sites, they transmit signals to the
cell to initiate the regulation of cytotoxins and phagocytic immune responses [2,119,120].
Michalek et al. reported that the leukocytes with activated CR3 on their surface have
obvious killing power against tumor cells that form immune complexes on the cells [121],
Ferreira and others found that (1→3)-β-glucan binds to CR3 on the surface of macrophages.
It can activate phosphatidylinositol-3 kinase (PI3K) and MAPK signal pathways, promote
the generation of inflammatory factors, and play its role in immune regulation [122]. The
latest research shows that blocking CR3 can significantly lower the endocytosis of (1→3)-
β-glucan by neutrophils and inhibit the production of (1→3)-β-glucan-induced reactive
oxygen species [123]. By binding with CR3 on macrophages or NK cells, (1→3)-β-glucan
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continuously triggers the cytotoxicity of cells against iC3b tumor tissues and enhances the
phagocytosis of macrophages and NK cells.

Other receptors include scavenger receptor, LacCer, etc. In the late 1970s, Goldstein
and others first reported the binding site of acetylated low-density lipoprotein (AcLDL) on
macrophages, which could mediate the uptake and degradation of AcLDL. The scavenger
receptor (SR) is a glycoprotein that mainly exists on the surface of the macrophage mem-
brane, can specifically bind and ingest oxidized low-density lipoprotein (ox-LDL), and has
the function of binding with multiple ligands. It is a glycoprotein that induces the activation
of urokinase-type plasminogen and the generation of inflammatory cytokines. NO is a
crucial effector molecule for macrophage activation. Fucose and (1→3)-β-glucan were
discovered to combine with scavenger receptor to play an immunomodulatory role [124].
Scavenger receptors play two roles in the process of the immune response: first, as pattern
recognition receptors in the immune system to clear foreign bodies by recognizing specific
pathogen-related molecular patterns; second, to clean up apoptotic nuclear fragments
in vivo by identifying damage-related molecular patterns [125]; LacCer (CDw17) is a gly-
cosphingolipid found in the plasma membrane of multiple kinds of cells. It was identified as
(1→3)-β-glucan receptor through biochemical analysis of the interaction between β-glucan
and isolated human leukocyte membrane components [126]. It has been demonstrated that
the binding of (1→3)-β-glucan with this receptor can activate macrophage inflammatory
protein (MIP)-2 and NF-κB, enhancing the oxidative burst and antibacterial function of
neutrophils. However, the mechanism by which this occurs is yet unclear.
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5. Clinical Applications of (1→3)-β-Glucans

(1→3)-β-Glucan has gained significant attention in recent years due to its potential
health benefits. Numerous studies have been conducted for a long time to investigate the
impact of (1→3)-β-glucan on various health conditions and have found many promising
results. In Table 2, the clinical research on (1→3)-β-glucan and its immunomodulatory
effects are summarized. Gudej et al. evaluated the efficacy of oat (1→3)-β-glucans in
treating gastritis and found that oat β-glucans improved the quality of life for patients with
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gastritis, suggesting that it can be a potential natural treatment for gastritis and related
gastrointestinal disorders [127]. Patients with high-risk neuroblastoma who had previously
experienced disease progression showed strong antibody responses when treated with the
GD2/GD3 vaccine in combination with (1→3)-β-glucan [128]. Medeiros et al. first studied
to investigate the impact of S. cerevisiae (1→3)-β-glucan on venous ulcer healing in humans,
and it could serve as a natural biological response modifier for wound healing [129].
Supplementing with 3 g/day of oat (1→3)-β-glucan can effectively reduce low density
lipoprotein cholesterol (LDL-C), total cholesterol (TC), and non-high density lipoprotein
cholesterol (HDL-C) levels in individuals with mild hypercholesterolemia over the medium
term [130]. It was suggested that adding insoluble (1→3)-β-glucan from Pleurotus ostreatus
to the diet may help regulate the exercise-induced alterations in NKCA observed in highly
trained athletes [131]. Administration of yeast (1→3)-/(1→6)-β-glucan on a daily basis
may provide protection against upper respiratory tract infections (URTIs) and shorten the
duration of URTI symptoms in older individuals upon infections [132]. Furthermore, (1→3)-
β-glucan has the potential to enhance serum IL-12 levels, shorten mechanical ventilation
duration, and decrease organ failure in critically ill patients with multiple trauma [133].
Lehne et al. reported about soluble barley (1→3)-β-glucan (SBG) and observed an increase
in the concentration of immunoglobulin (IG) A in saliva [134]. The preparation of yeast
(1→3)-β-glucan increased the body’s ability to protect against invading pathogens [135].
Lee et al. and Carpenter et al. found that (1→3)-β-glucan has the potential to stimulate
protective immunity without enhancing inflammation and modify immune responses after
a strenuous exercise session, respectively [136,137]. However, while all (1→3)-β-glucans
share a similar structure, the biological differences between (1→3)-β-glucans from different
sources exist due to their differences in molecular weight, solubility, and purity as well
as contents in other types of β-glucans with various branching patterns shown in Table 1.
As shown in Table 2, (1→3)-β-glucans from different sources exhibit varying biological
activities and clinical outcomes. Understanding these differences is crucial when evaluating
the potential health benefits of β-glucans from different sources.

Table 2. Clinical applications on (1→3)-β-glucans.

Study Participants Intervention Main Findings Ref.

Gudej et al. (2021) 129 participants with
dyspepsia

Oat β-D-glucan
Supplements Reduced mucosal damage [127]

Cheung et al. (2022) One hundred two patients
with HR-NB

Oral β-glucan
Supplements

Elicited robust antibody
responses in patients [128]

Medeiros et al. (2012)
12 patients who had

venous ulcers
Saccharomyces cerevisiae

(1→3)-β-glucan
Supplements

Enhanced venous ulcer
healing and increased
epithelial hyperplasia

[129]

Cicero et al. (2020)
83 Italian with a moderate
hypercholesterolemia and
a low cardiovascular risk

Oat β-glucan
Supplements

Reducing LDL-C, TC and
non-HDL-C [130]

Bobovčák et al. (2010) 20 elite athletes
Pleurotus ostreatus

β-glucan
Supplements

May play a role in
modulating exercise-induced
changes in natural killer cell

activity

[131]

Fuller et al. (2017) 49 participants Yeast β-1,3/1,6 glucan
Supplements

Prevent the occurrence or
reduce the severity of upper

respiratory tract infection
[132]

Fazilaty et al. (2018) 40 multiple trauma
patients

β-glucan
Supplements

Increase serum levels of
IL-12 [133]
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Table 2. Cont.

Study Participants Intervention Main Findings Ref.

Lehne et al. (2006) Eighteen healthy
volunteers

Yeast β-1,3-D-glucan
Supplements

Increased
the immunoglobulin A [134]

Auinger
et al. (2013) 162 healthy participants Yeast (1,3)-(1,6)-

β-D-glucan Supplements

Increased the body’s
potential to defend against

invading pathogens
[135]

Lee et al. (2016) 30 patients in critically ill β-glucan
Supplements

Increases in natural killer
(NK) cell activities [136]

Carpenter et al. (2012) 60 recreationally active
men and women

Yeast β-glucan
supplementation

Stimulated cytokine
production, increased total

(CD14+)
[137]

6. Conclusions

Among various β-glucans shown in this review, β-glucans possessing (1→3)-β-glucan
backbone are a new, safe, and effective bioregulator. They exert a wide range of immuno-
logical activities, including activating macrophages, DCs, and monocytes, inducing the
synthesis of NO, regulating cell signal transmission related to immune response, minimiz-
ing the harm caused by ionizing radiation to the body’s immune system, and promoting the
synthesis of IG. By binding pentatricopeptide repeat (PPR) of various immune cells, a series
of cascade responses of immune defense is triggered, modifying both innate and adaptive
immune responses, such as the key role of a group of (1→3)-β-glucans in regulating DC
function. Further in-depth studies are required to understand the relationship between
its various sources, complicated structure, and broad biological function. At present, the
(1→3)-β-glucans have been widely employed in daily life as well as in the fields of medicine
and biology. For instance, oral administration of (1→3)-β-glucans has been reported to
lower levels of lipid in blood, regulate immune responses, and exhibit anti-tumor prop-
erties. They are also used as pharmaceutical and cosmetic ingredients, and so on. It is
not expected to take much time, but it would show vast application prospects and huge
application value. Regulating the human body’s immune response with (1→3)-β-glucans is
promising to help improve the body’s immune status and provide new avenues for clinical
anti-tumor, anti-infection, and anti-inflammatory treatment. With ongoing research into the
immunological function and corresponding mechanism of action of the (1→3)-β-glucans,
the functionally further evaluated (1→3)-β-glucans are expected to be employed more and
more frequently.
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118. Thornton, B.P.; Vĕtvicka, V.; Pitman, M.; Goldman, R.C.; Ross, G.D. Analysis of the sugar specificity and molecular location of the

beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol. 1996, 156, 1235–1246. [CrossRef]
119. Ina, K.; Kataoka, T.; Ando, T. The use of lentinan for treating gastric cancer. Anti-Cancer Agents Med. (Former. Curr. Med.

Chem.—Anti-Cancer Agents) 2013, 13, 681–688. [CrossRef]
120. Le Cabec, V.; Carréno, S.; Moisand, A.; Bordier, C.; Maridonneau-Parini, I. Complement receptor 3 (CD11b/CD18) mediates type I

and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J. Immunol. 2002, 169, 2003–2009. [CrossRef]
[PubMed]

121. Michalek, M.; Melican, D.; Brunke-Reese, D.; Langevin, M.; Lemerise, K.; Galbraith, W.; Patchen, M.; Mackin, W. Activation of rat
macrophages by Betafectin PGG-glucan requires cross-linking of membrane receptors distinct from complement receptor three
(CR3). J. Leukoc. Biol. 1998, 64, 337–344. [CrossRef] [PubMed]

122. Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure–function relationships of immunostimulatory
polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [CrossRef] [PubMed]

123. Baert, K.; Sonck, E.; Goddeeris, B.M.; Devriendt, B.; Cox, E. Cell type-specific differences in β-glucan recognition and signalling in
porcine innate immune cells. Dev. Comp. Immunol. 2015, 48, 192–203. [CrossRef]

124. Peiser, L.; Mukhopadhyay, S.; Gordon, S. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 2002, 14, 123–128.
[CrossRef] [PubMed]

125. Means, T.K. Fungal pathogen recognition by scavenger receptors in nematodes and mammals. Virulence 2010, 1, 37–41. [CrossRef]
[PubMed]

126. Zimmerman, J.W.; Lindermuth, J.; Fish, P.A.; Palace, G.P.; Stevenson, T.T.; DeMong, D.E. A novel carbohydrate-glycosphingolipid
interaction between a β-(1–3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J. Biol. Chem.
1998, 273, 22014–22020. [CrossRef] [PubMed]

127. Gudej, S.; Filip, R.; Harasym, J.; Wilczak, J.; Dziendzikowska, K.; Oczkowski, M.; Jałosińska, M.; Juszczak, M.; Lange, E.;
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