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Abstract: The number of published studies on curcuminoids in cancer research, including its lead
molecule curcumin and synthetic analogs, has been increasing substantially during the past two
decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways
involved in carcinogenesis and tumor progression have been provided. As this wealth of data was
obtained in settings of various experimental and clinical data, this review first aimed at presenting
a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are
many interesting questions linked to their pleiotropic effects. One of them, a growing research topic,
relates to their ability to modulate metabolic reprogramming. This review will also cover the use of
curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs
to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three
complementary research fields raise several important questions that will be put among the prospects
for the future research related to the importance of these molecules in cancer research.

Keywords: curcuminoids; curcumin; cancer; signaling pathways; metabolic reprogramming;
chemosensitization

1. Introduction

Turmeric (Curcuma longa) was used for thousands of years in traditional Indian and
Eastern Asian medicine. Its cultivation in the Middle East was documented since the 18th
century BC in the gardens of Babylon, well before its transfer to Africa, mainly through
Arabic influences [1]. Finally spread to Europe thanks to Marco Polo, and then to America
and Oceania via the international spice trade, it is one of the best examples of how the
exchange of knowledge between different parts of the world benefited humankind in
improving the health of millions of people. Among natural anticancer products, it also
represents a fascinating and continuous link between past, present and future [1]. Its
benefits as a food additive for the prevention of many diseases worldwide began to be
documented through the report, in 1949, of the antibacterial action of its main component,
curcumin [2]. However, a short report published in 1876 [3] demonstrated that a great
portion of empirical knowledge accumulated over centuries in Asia was not fully valorized
between these two dates. Nevertheless, its potential anticancer activity was originally
demonstrated against the development of tumors in animals [4].The relief produced by a
topical application of curcumin ointment in patients with external cancerous lesions was
also revealed [5].

At the beginning of 2023, the number of publications related to the use of turmeric’s
main phytochemical as an anticancer agent reached 7267 in the PubMed database. Although
curcumin represents “the leading” molecule, a significant part of these articles refers to
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“curcuminoids” [6].The term also covers other plant secondary-metabolites belonging to the
diarylheptanoids class [7], semi-synthetic structures such as prodrugs consisting of promoi-
eties attached to the phenolic hydroxyl groups [8] and synthetic chemical molecules [9] that
were initially produced for optimizing pharmacological potency [10]. Synthetic chemistry
based on curcumin represents an exciting field of research, one that started with initial
attempts: incorporating parts of the curcumin structure into an elaborate chemical scaffold,
or trying to shorten or lengthen the aliphatic chain linking the two aromatic rings [11]. It
has been developing since 2008 [11], and continues to grow [12].

Ten years ago, the diversity of inhibitory effects produced by these molecules on a
multitude of molecular targets (e.g., enzymes, transcription factors and nucleic acids) and
pathways involved in carcinogenesis and tumor progression started to be documented.
The interest for curcuminoids in cancer research, with relation to diversity of targets and
consequences, was explained by the different conformations they adopt to maximize these
interactions, mainly through the keto-enol tautomer, flexible α, β-unsaturated β-diketo
dimer, and the terminal o-methoxyphenolic groups [13].

This background event was the milestone for interesting prospects in the search for
alternative and less toxic therapies against the most common malignancy worldwide and
leading cause of cancer-related deaths, lung cancer [14]. However, at that date, most data
were preclinical, including many in vitro studies. This weakness has been overcome during
the last decade through insights provided by numerous in vivo and ex vivo investigations
conducted on diverse experimental tumor models in laboratory rodents, or on clinical
tumor tissue explants. Thus, this review will first aim at providing an update on this field.
The potential of curcuminoids to reverse the deleterious consequences of the epithelial-
to-mesenchymal transition (EMT) in invasive cancers was also recently reviewed [15].
However, among the many remaining unanswered questions regarding pleiotropic effects
of curcuminoids, investigations focused on their suppressive effects on metabolic repro-
gramming, which were first documented ten years ago [16], represent a current growing
research topic [17].

To avoid the consequences of curcumin’s hydrophobicity and low bioavailability,
considerable efforts have been made in the production of a great diversity of drug delivery
systems, which were recently extensively reviewed [18–21]. To reverse multidrug resistance,
curcuminoids can be used in combination with many other drugs as chemosensitizer
in cancer chemotherapy [22]. Thus, this crucial research field that continuously opens
increasing potential will also be covered in this review. In this review, we have tried to
profile available data very carefully, especially when interpreting data with respect to cell
lines used, as there is an increasing problem with propagating and publishing results using
the cell lines that are commonly contaminated with HeLa [23].

2. Evidence of Multi-Targeted Action of Curcuminoids against Cancers In Vivo:
Historical Overview and Recent Findings

The main signaling pathways/pharmacological actions affected by curcuminoids in
cancer are summarized in Table 1.

Table 1. The main studies reporting in vivo curcumin effects on experimental tumor models and
cancer patients.

Major Findings Tumor Type Adm. Route Hist. Ref.

Symptomatic relief, ↓ lesion size Patients with external cancers topical − [5]

Tumor growth inhibition Head and neck carcinoma (M) topical − [24]

↓ CD31 and HIF-1α expression Head and neck carcinoma (M) p.o. + [25]

↑ IFN-γ and granzyme expression Head and neck carcinoma (M) i.p. + [26]

↑ T-cell proliferation, ↓ PD-1 expression Head and neck carcinoma (M) i.p. + [27]

Humoral response (+immunization) Melanoma B16-R (M) i.p. − [28]
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Table 1. Cont.

Major Findings Tumor Type Adm. Route Hist. Ref.

↓ ATP-synthase activity, ATP/AMP ratio Melanoma B16-R (M) i.v. + [29]

↓ Foxp3+ Tregs in tumor Melanoma B16-F10 (M) i.p. GO-Y030 * − [30]

↓ Tumor formation Dalton’s lymphoma (M) i.p. (liposomes) − [4]

Downregulation of DNMT1 Acute myeloid leukemia (M) i.p. − [31]

↓MMP2, MMP9, vimentin expression Monocytic leukemia (M) i.p. + [32]

↓ EZH2, H3K4me3, H3K27me3 Myelodysplastic syndrome (M) - − [33]

Apoptosis induction Colon adenocarcinoma (R) p.o. (diet) + [34]

Inhibition of colon tumorigenesis Colon adenocarcinoma (R) p.o. (diet) − [35]

Tumor prevention, ↑ CD4+ T-cells, B cells Genetic colon cancer (M) p.o. (diet) + [36]

Inhibition of proteasome activity Colon cancer HCT-116 (M) p.o. + [37]

↓ PCNA, β-catenin, Axin-2 Colon cancer (M) ? + [38]

↑ Oxidative stress, mitochondrial Ca2+ Colorectal cancer (M) i.p. + [39]

Inhibition of tumor-induced Immune cell ↓ Ehrlich’s ascites carcinoma (M) p.o. + [40]

No peritoneal bulge + survival Histiocytic tumor AK-5 (R) i.p. − [41]

ER stress-associated apoptosis Liposarcoma (M) i.p. + [42]

↓MDSCs, lL-6, Il-1β, GM-CSF secretion Hepatocarcinoma HepG2 (M) p.o. + [43]

Inactivation of JAK2/STAT3 pathway Hepatocellular carcinoma (M) i.p. GL63 * − [44]

Suppression of Wnt/ β-catenin signaling Gastric carcinoma (M) p.o. − [45]

Inhibition of β-catenin and STAT3 Genetic gastric cancer (M) p.o. (diet) GO-Y031 * + [46]

Activation of ER stress pathway Adrenocortical carcinoma (M) i.p. + [47]

Induction of cleaved caspase-3 and PARP Prostate cancer PC-3 (M) i.p. + [48]

↑ Apoptosis, ↓ tumor angiogenesis Prostate cancer LNCaP (M) p.o. (diet) + [49]

↓ Lung metastasis Prostate cancer PC-3 (M) p.o. (diet) + [50]

↑Membrane localization of β-catenin Prostate cancer C4-2 (M) intratumoral + [51]

NF-κB and p-STAT3 suppression, ↓ Il-8 Ovarian cancer (M) p.o. + [52]

Synergically↑ IFN-β inducedapoptosis Breast cancer (M) p.o. − [53]

↓ Tumor incidence, DNA adducts Mammary carcinoma (R) i.p. − [54]

Inhibition of SERCA2, ER stress Breast cancer (M) i.p. (RL71) * + [55]

Inhibition of STAT3 phosphorylation Breast cancer (M) i.p. Curcumin-BTP
hybrid * + [56]

N-cadherin, MMP2, MMP9 suppressed Breast cancer (M) i.p. WZ35 * + [57]

↓ HIF1α/mTOR/VEGF cascade Lewis lung cancer (M) ? − [58]

↑ Expression of FOXO3a, p27, p21 Lung cancer A549 (M) i.p. + [59]

Activation of p53-miR-192-5p/215-XIAP Lung cancer (M) p.o. + [60]

↓ Circ-PRKCA, ITGB1 expression Lung cancer A549 (M) p.o. − [61]

Induction of ferroptosis via autophagy Lewis Lung carcinoma (M) i.p. + [62]

Immune response (CD8+ T cells), ↓ Il-6 Mesothelioma (R) i.p. + [63]

↑ p38, MAPK and CARP-1 Patient mesothelioma (M) p.o. + [64]

Proteome changes (liver invasion) Mesothelioma (R) i.p. + [65]

Proteome changes (residual tumors) Mesothelioma (R) i.p. + [66]
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Table 1. Cont.

Major Findings Tumor Type Adm. Route Hist. Ref.

↓ Tumor volume, hemorrhage Glioblastoma C6 (R) i.p. + [67]

↑ PTEN and P53 expression Glioblastoma U87 (M) i.p. + [68]

↑ HSP70, ER stress, immune cells Glioma GL261 (M) i.p. + [69]

* Curcumin analogs. Abbreviations: p.o., per os, i.p., intraperitoneal; i.v., intravenous injection; Hist., histological
data included (+), not included (−). Animal models, M (mouse), R (rat).

2.1. Historical Overview

Three successive research phases can be distinguished when studying the findings
reported in in vivo models over the decades that followed the pioneering works of Kut-
tan et al. [4,5].

2.1.1. Chemopreventive Properties

At the beginning of the 1990s, the role of curcumin as a potent inhibitor of arachidonic
acid-induced inflammation in vivo in mouse skin was revealed, together with an associ-
ated suppression of chemical-induced tumor promotion [70]. In parallel, another research
effort, one that included rats fed by curcumin and then exposed to two different carcino-
gens administered intraperitoneally (i.p.), demonstrated its strong antimutagenic action
in vivo [71]. Subsequently, studies on chemical-induced forestomach and skin tumors in
mice reported that the anticarcinogenic activity of different natural curcuminoids could be
explained in part by an alteration of the activation of the carcinogen metabolism [72]. One
important discovery was a significant decrease in the number of both chemical-induced
mammary tumors and in vivo formation of adducts in rats that were receiving curcumin
intraperitoneally [54]. The chemopreventive properties of curcumin given orally during
the initiation and/or post-initiation stage against azoxymethane-induced colon tumors in
rats were also correlated to an increased rate of apoptosis in tumor cells (i.e., shrinkage,
nuclear condensation and presence of apoptotic bodies) [34]. The previously mentioned
inhibition of the arachidonic acid metabolism was then attributed to a stimulatory effect
of curcumin on the expression of genes encoding three stress proteins: Hsp27, Hsp70
and αB crystallin [73]. Finally, the action of orally administered curcumin during the
promotion/progression stage of colon carcinogenesis in rats was demonstrated, and the
modulation of apoptosis associated with the molecular action of curcumin was confirmed
in colon tumors [35]. During that period, the apoptotic process in cancer cells, as induced
by curcumin, was also reported to involve the activation of caspase-3 and the generation of
reactive oxygen species (ROS) in a rat model of histiocytic tumor [41].

2.1.2. Modulation of Immune Functions and Inhibition of Signaling Pathways

The second phase started with an important finding in the field of immuno-oncology.
Using the AK-5 rat tumor model (histiocytoma), Bhaumik et al. revealed a differential
activation status in host macrophages and NK cells induced by curcumin during the
spontaneous regression of the tumor after subcutaneous injection of AK-5 cells [74]. This
study represented a bridge within investigations focused on the pharmacology of these
molecules, investigations that were previously conducted separately in the fields of in-
flammation/immunology and oncology. Other reports made a functional link between the
modulation of lymphocyte-mediated immune functions produced by curcumin and the
induction of curcumin-related antitumor response in a mouse strain that spontaneously de-
veloped multiple intestinal adenomas [36]. Another breakthrough was the demonstration
of curcumin’s action in the protection of the host (tumor-bearing mice) from tumor-induced
immunosuppression and toxicity [40].

The hypothesis that curcumin may suppress tumor promotion through inhibition of
different signal transduction pathways was also proposed, while questions regarding the
pharmacological activities of its major metabolites after biotransformation emerged [75].
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In this context, one of the first reviews of the anti-carcinogenic activity of curcumin in
animal models suggested that its action includes suppression of oncogenes expression and
impairment of the ubiquitin–proteasome pathway [76]. Curcumin was reported to induce
histones H3 and H4 hypoacetylation in glioblastoma cells, leading to hypoacetylation-
enhanced apoptotic cell death. On the other hand, its application induced neurogenesis of
neural progenitor cells (NPCs) through suppressing differentiation into astrocytes while
promoting differentiation into neurons. These two neurogenic phenomena were confirmed
in vivo [77]. Interestingly, these findings on the anti-carcinogenic effects of curcumin
resonated with preliminary studies conducted 12 years earlier, in China [78]. In the same
year, the inhibition of NF-κB activation and increased apoptotic rate was documented after
i.p. administration of curcumin to nude mice bearing xenografts of human prostate cancer
(PC-3 cells) [48]. This work was closely related to the previous research conducted by
another research group showing the inhibition of angiogenesis associated with orally given
curcumin in another type of prostate cancer (LNCap) grown in nude mice [49]. Evidence of
a decreased expression of cyclin D1 and phospho-IκB-α after curcumin treatment of mice
bearing head and neck squamous cell carcinoma was published four years later [24].Over
the next 8 years, these discoveries were further confirmed in many other rodent and human
tumor models, and the number of reports published annually increased exponentially.
Meanwhile, the signaling pathways affected by curcuminoids were extended to TP53,
MAPKs, Akt, Notch-1, Nrf2, JAK/STAT, Wnt/β-Catenin, AMPK/COX-2 and others [79].
From 2008, these in vitro data started to extend into the clinic through clinical trials [80],
which have also been recently reviewed [17].

2.1.3. Extension of Preclinical Studies and First Clinical Trials

This stage corresponded to an extension of investigations in the field of immuno-
oncology, joined with the research focused on the diverse signaling pathways previously
shown to be targeted by curcuminoids. During that period, the rationale of using a
single cancer drug for a single target was also questioned [28]. Attempts to use curcumin
combined with immunization, using soluble proteins isolated from viable tumor cells,
led to an increase of the anti-tumor humoral immune response and inhibition of B16-
R melanoma cells’ growth in mice [28]. Such research approaches led to the positive
assessment of the potential of this phytochemical to enhance the cytotoxicity of CD8+ T
cells against lymphoma cells in mice, and to increase the accumulation of transferred T cells
in target tumors and caspase-3-mediated apoptosis [81]. Immunocompetent rats bearing a
syngeneic peritoneal mesothelioma tumor model and treated with multiple injections of
curcumin had residual tumors infiltrated with many CD8+ T cells and decreased intensity of
immunohistochemical staining of IL-6 and vimentin [63]. Immunohistochemical analyses
of xenografted tumor biopsies of curcumin-treated mice bearing a murine mesothelioma
revealed apoptosis that was stimulated via an increase of the pro-apoptotic signals mediated
by phosphorylated p38, MAPK and CARP-1 proteins [64].

In a model of human liposarcoma, important insights into curcumin-induced apop-
tosis included discovery of ER stress which preceded the apoptosis and was induced by
interaction with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) [42].
The same process of activation of the ER stress-signaling pathway was further confirmed
for a synthetic curcuminoid in a mouse model for human lung carcinoma [82]. Finally,
the inhibition of SERCA2 activity by a second-generation synthetic curcuminoid was later
confirmed in two different models of triple-negative breast cancer in mice. In triple negative
breast cell tumor tissues, an induction of SERC2-related autophagy was also reported after
application of a second-generation curcumin analog, RL71 [55].

Meanwhile, the understanding of the mechanisms of inhibition of other signaling
pathways targeted by curcuminoids was improved. In ovarian carcinoma-bearing mice, cur-
cumin treatment was shown to suppress pathways mediated by NF-κBand phosphorylated
STAT3. These phenomena were associated with a decrease in VEGF, IL-8 and MMP-9 [52].
Curcumin-related reduction of the metastatic potential of prostate xenografts in mice is
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connected with inhibition of the feedback loop between NF-κB and the proinflammatory
cytokines CXCL1/2 [50]. Neutrophil elastase was identified as a direct protein-target of
curcumin in the process of lung cancer angiogenesis. Targeting neutrophil elastase was
shown to have a negative impact on the signaling cascade HIF1α (hypoxia inducible factor
1 subunit alpha)/mTOR/VEGF/VEGFR [58].

During that period, curcumin was shown to inhibit the growth of a great diversity
of human tumors in xenotransplant or ortho-transplant animal models. These studies
were reviewed, together with the results of the first clinical trials [83]. Moreover, curcumin
was shown to affect the growth of a rat experimental glioblastoma [67]. Head and neck
squamous cell carcinomas represented one of the first cancer types in which curcumin appli-
cation showed promising features relevant for the proposed therapeutic activity [84]. These
effects were systematically reviewed [85]. Insights into curcumin’s effect on mammary
cancer progression were provided through the demonstration of its synergistic action with
β-interferon-induced upregulation of the anti-oncogenic protein GRIM-19 and inhibition
of STAT3 transcription [53]. The increase of the reactive oxygen species and activation
of FOXO3a, a member of the Forkhead Box Class O transcription factor, was reported as
being closely related to the apoptosis induced by a curcumin synthetic analog T63 in a
lung cancer model in mice [59]. With different curcumin analog, C-150, another report
demonstrated that the modulation of the Notch/Akt signaling pathway was involved
in curcumin-mediated effects in vivo [86]. An interesting observation was the enriched
membrane localization of β-catenin, which correlated with the inhibition of tumor growth
of a prostate cancer xenograft [51]. Subsequently, a confirmation of the suppression of
the Wnt/β-catenin signaling pathway by curcumin was provided, showing a decreased
expression of Wnt3a, LRP6, phospho-LRP6 and phospho-β-catenin, as well as C-myc, and
surviving in gastric carcinoma xenografts [45]. Another independent study highlighted
curcumin-related inhibition of both STAT3 andβ-catenin in gastric carcinogenesis [46]. The
inhibition of STAT3, which was previously well documented in the chemoprevention of
lung cancer [87], was investigated in more detail through hybridization of curcumin with a
synthetic moiety to increase the ROS level. Using this hybrid, the treatment of nude mice
bearing human MCF-7 breast cancer cells led to suppression of p-STAT3 and a decrease in
Ki-67 immunostaining in the tumor tissues [56]. Regarding tp53, curcumin administration
led to an increased expression and nuclear accumulation of tp53, and upregulation of p21
in mice bearing tp53 wild-type H460 xenografts, but not in those bearing tp53-null H1299.
It was later shown that curcumin has an activating effect on the axis tp53-miR-192-5p/215-
XIAP in lung cancer [60], which is relevant, and contributes to apoptosis. Another work
complemented these findings by showing curcumin-induced apoptosis of head and neck
squamous cell carcinoma in vivo through the ATM/Chk2/tp53-dependent pathway [25].

To end this section: three other major breakthroughs characterized this period. The
first one was the discovery of curcumin’s ability to inhibit proteasome activity, a discovery
which was originally obtained in colon cancer and confirmed later in other cancer types [37].
The second was a confirmation of the functional connection between the inhibition of the
NF-κB pathway and epigenetic modulation induced by curcumin, through downregulation
of DNA methyltransferase 1, which was discovered in a mouse model of acute myeloid
leukemia [31]. The third finding was curcumin’s effect on ATP synthase [29], a crucial point
related to the reprogramming of tumor metabolism, which will be developed in the second
part of this review.

2.2. Recent Findings, and New Developments

Among recent findings, important improvements were reported at the interface of
the immune system and cancer cells through research in immuno-oncology. Curcumin
treatment contributed to the reinvigoration of defective T cells via multi-level immune
checkpoint axis suppression in xenograft tumor models of head and neck cancer in nude
mice [26]. Our understanding of the complexity of curcumin’s actions against this cancer
type also benefited from ex vivo studies on tumor tissue explants from patients. These
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studies confirmed curcumin’s role in the inhibition of NF-κB nuclear translocation and its
immune stimulatory effect in the tumor microenvironment [88]. Using the same method-
ological approach, another interesting study showed how curcumin changed immune
cell composition and localization in colorectal cancer and in adenoma-patient-derived ex-
plants [89]. In a liver cancer xenograft model in mice, curcumin treatment impacted another
population of immune cells involved in immunosuppression, myeloid-derived suppres-
sor cells (MDSCs) and inhibited the TLR4/NF-κB signaling pathway and the expression
of inflammatory factors, including IL-6, IL-1β, prostaglandin E2 and cyclooxygenase-2
(COX2) [43]. These findings were complemented by the demonstration that a curcumin
analog prevented the growth of a melanoma through the reduction of the population of
Foxp3+Tregs tumor-infiltrating lymphocytes [30]. At this immuno-oncology interface, other
insights were provided through the combined use of a model of aggressive peritoneal
mesothelioma in immunocompetent rats [63] and high-throughput proteomic analyses ap-
plied to formalin-fixed paraffin-embedded tissues. In a first step, an analysis of abundance
changes in 1411 liver proteins identified a set of proteins associated with the curcumin-
induced immune response which included the purine nucleoside phosphorylase (PNPH),
the enzyme that is involved in T cell functions [65]. Secondly, comparison of the mesenteric
lymph node and liver proteomes obtained from the same rats revealed a high level of
similarity with respect to the abundance of PNPH [90]. Finally, proteome analyses of tumor
tissues from curcumin-treated rats revealed specific changes measurable through the abun-
dance of 22 proteins regulating the tumor microenvironment, including a continuous rise
in caveolin-1, a protein regulating immune cell infiltration, T cell activation and dendritic
cell maturation [66].

Improvements are apparent when one follows the diversity of signaling pathways
targeted by these molecules. The inhibition of growth and invasion of a human mono-
cytic leukemia in mice was joined with alteration of MAPK and MMP-signaling [32]. In
a glioblastoma model, the inhibitory action of curcumin on tumorigenesis in vivo was
characterized by an inhibition of the p-AKT/mTOR pathway and enhancement of the
expression of the tumor suppressor protein tp53 [68]. The mechanism of inhibition of the
Wnt signaling pathway induced by curcumin in vivo was reported to involve the down-
regulation of axin2, a negative feedback regulator of this pathway [38]. The knowledge
on the role of non-coding RNAs has been also progressing. In this field, a first insight
related to curcumin was provided through discovery of its influence on the axis that in-
cludes hsa_circ_0007580 (circ-PRKCA), miR-384 and integrin subunit beta 1 (ITGB1) in the
non-small cell lung cancer (NSCLC) model. Curcumin decreases circ-PRKCA, a sponge for
miR-384, resulting in miR-384 increase and ITGB1 decrease, which, all together, leads to a
decrease of the biological aggressiveness of cancer cells [61]. A second report documented
the inactivation of the JAK2/STAT3 pathway in a liver cancer model, in a similar fashion: a
curcumin analog, GL63, contributes to a decreased expression of circZNF83, a sponge for
miR-324-5p, whose target is cyclin-dependent kinase 16 (CDK16) [44].

Important findings were also revealed in four additional fields. In relation to mitochon-
dria dysfunction, a first finding corresponded to the generation of ROS and subsequent
YAP-mediated JNK activation produced by a curcumin analog (while low protein levels
of YAP were observed in breast cancer tissues) [57]. The accumulation of ROS, which,
together with intracellular iron, represents a hallmark of ferroptosis, was reported to be
specific for the action of curcumin in lung cancer in vivo [62]. To explain the strong effect
of both curcumin and inhibitors of the mitochondrial sodium–calcium–lithium exchanger
(NCLX) on colon cancer in vivo, a common mitochondria calcium overload was suggested
as leading to mitochondrial membrane depolarization [39]. A second axis, represented
by the activation of ER stress produced by curcuminoids, received additional insights
through the report that demonstrated an increase of the expression of ATF4 and CHOP [47].
Two enhanced signaling pathways, PERK-eIF2a and IRE1a-XBP1, were also identified in
glioma xenografts in mice following radiotherapy-induced immunogenic cell death [69]. A
third research field was represented by curcumin’s inhibitory effect on proteasome activity,
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which, at the molecular level, benefited from the demonstration of the involvement of the
p300/miR-142-3p/PSMB5 axis [27]. In the fourth research field, which included transcrip-
tion regulation, curcumin was found to produce a reduction of the expression of the histone
methyltransferase EZH2 in a xenograft mouse model of myelodysplastic syndrome [33]. An
activation of the Nrf2 protein and the expression of its target, Hmox-1, was also observed
in vivo in mice after topical treatment [91]. In a work dedicated to the understanding
of the mechanism of interleukin 17-A mediated acute lung injury in mice, a proteomic
analysis revealed that the increased level of several mini chromosome maintenance proteins
associated with increased level of IL-17A can be reversed by curcumin [92].

Although strongly cytotoxic for cancer cells originating from various types of cancer,
curcumin is not cytotoxic for non-tumorigenic cell lines in vitro, although some exceptions
exist (Table 2).

Table 2. Effect of curcumin on non-tumorigenic cell lines in vitro.

Major Cellular Findings Cell Line Formulation Solvent Ref.

Cellular viability ↓,
proliferation ↓, necrosis ↑,

apoptosis ↑

Primary Human Dermal
Fibroblast

(ATCC®PCS-201-012™)

Curcumin
(10 µM/24 h) * DMSO [93]

Lack of apoptosis

Primary cultures of: rat
hepatocytes, lymphocytes and

skin fibroblasts, Chinese
hamster ovary cells

Curcumin
(50 µM/24 h) ** Ethanol [94]

Reversible inhibition (4–24 h)
of cell

cycle progression without
apoptosis

Normal Human Mammary
Epithelial Cell Clonetics®

Curcumin
(10 mM/48 h) ** Unknown [95]

Lack of apoptosis
Human lung epithelial
(Beas2b) and prostate
epithelial (PrEC) cells

Curcumin
(30 µM/48 h) ** DMSO [96]

No change in cellular
viability

Normal human gingival
fibroblasts (HGF) and normal

human oral
keratinocytes (OKs)

PLGA nanoparticles
loaded with curcumin

(80 µM/48 h) *
- [97]

Lack of apoptosis

Immortalized cell lines: Vero
(kidney of a normal adult
African green monkey);

F111 (rat)

Curcumin
(50 µM/24 h) ** Ethanol [94]

No change in cellular
viability

Immortalized human
fibroblasts WI-38

Curcumin
(50 µM/72 h) ** Ethanol [98]

Cellular viability ↓
Immortalized embryonic
human kidney cell line

HEK293

Curcumin
(20 µM/72 h) * DMSO [96]

Minimal change in cellular
viability (more than 90% of

viable cells)

Non-tumorigenic mesothelial
rat cell line F1-0e

Curcumin
(75 µM/4 h and

50 µM/6 h)
DMSO [63]

* minimal effective concentration and exposure time; ** maximal applied concentration and exposure time.

3. Curcumin and Chemosensitization through Metabolic Reprogramming

In 2013, Vishvakarma et al. showed a decreased response of cancer cells (DL—Dalton’s
lymphoma) to cisplatin and methotrexate if they were exposed to a high concentration of
glucose. This phenomenon was associated with the high production of lactate, acidification
of the medium, and increased expression of one of glucose transporters, GLUT1. Although
the authors did not perform mechanistic studies, they concluded that the increased rate
of cancer cells’ glycolysis contributes to a decreased rate of therapy response [99]. In a
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recently published paper [100], availability of glucose (up to 30 mM) and overexpression of
GLUT1 were shown to be crucial for development of chemoresistance against doxorubicin
and methotrexate in liver-cancer-originating cells HepG2.

One of the two provisional “emerging hallmarks” introduced in 2011 [101]—“cellular
energetics”—is now described as “reprogramming cellular metabolism” or, commonly,
“metabolic reprogramming” [102]. The metabolic reprogramming is a well-known feature of
the cancer cell, a feature which develops for securing numerous cancer-specific properties.
Cancer cells must sustain the activity of its biosynthetic machinery to support its own
replication capacity and high mitotic rate. Its ability for metabolic reprogramming depends
highly on availability of two major growth-supporting substrates: glucose and glutamine.

In non-transformed cells, the precise regulation of glucose intake is under the strict
control of growth factors [103] that develop a molecular communication network which ex-
tends to PI3K/AKT/mTOR pathway and results in an increased expression of transporters
for glucose and amino acids [104]. The activity of this pathway is sufficient to increase the
size of resting cells (G0). Malignant cells do not have to rely on this physiological regulation.
Instead, their specific oncogenotype allows them to adapt their metabolism with regard to
available nutrients in order to sustain their biomass and proliferation capacity through an
increased rate of glycolysis.

Glycolysis takes place in the cytoplasm through a cascade of several enzymatic reac-
tions, producing pyruvate which can be fermented to lactate in the cytoplasm or further
oxidized in a series of reactions dependent on mitochondrial respiration. Fermentation
of glucose to lactate is less efficient in terms of energy production, generating only two
molecules of ATP per molecule of glucose. If oxygenation is sufficient, non-transformed
cells convert glucose-derived pyruvate into acetyl-CoA and direct it into the citric acid
cycle. Complete oxidation of glucose by oxidative phosphorylation (OXPHOS) follows,
generating 36 ATPs from one glucose molecule.

If there is not sufficient oxygen, lactate dehydrogenase A (LDH-A), the enzyme that is
commonly overexpressed in malignant tumors [105] converts pyruvate into lactate. It has
been known for a while that promoter of LDH-A has a binding site for HIF-1α [106] which,
especially in hypoxic environment, positively regulates the activity of the LDH-A gene [107].
However, oxygen availability is not the sole decisive factor in shifting glucose-derived
energy production from OXPHOS to aerobic glycolysis, as many non-transformed, rapidly
proliferating cells, and cells with high anabolic activity are highly glycolytic [108].

3.1. Cancer Cells and the Warburg Effect

Malignant cells, even if there is a sufficient supply of oxygen, commonly avoid cou-
pling glycolysis with OXPHOS (a phenomenon known as the Warburg effect), with a
consequential increase of lactate production and low production of energy. This ap-
parent paradox, early on, led to a proposition that cancer cells’ mitochondrial respira-
tion is disrupted [109]. It is now known that malignant tumors retain functional mito-
chondria [110] and that mitochondrial respiration is required for their progression and
metastasis [111–113]. Thus, apparently aerobic glycolysis and OXPHOS are not mutually
exclusive, as the Warburg effect may occur also in non-transformed cells, and it is now rec-
ognized as a metabolic state in which the cell meets short-time-scale energy demands [114].
Recently, another facet of the Warburg effect’s regulation has been elucidated. Luengo et al.
have demonstrated that, in a situation where the NAD+ requirement for oxidation reac-
tions exceeds the demand for ATP, cells preferentially use glycolysis, since mitochondrial
respiration cannot sufficiently regenerate NAD+, a cofactor needed for catabolism of re-
duced nutrients (e.g., sugars and lipids) and synthesis of oxidized macromolecules (e.g.,
nucleotides and amino acids). Mitochondrial regeneration of NAD+ is coupled with ATP
synthesis. The rate of ATP hydrolysis, by supplying ADP as a substrate for ATP synthe-
sis, gauges the rate of NAD+ regeneration in mitochondria and determines the extent of
aerobic glycolysis vs. OXPHOS participation in glucose metabolism, regardless of oxygen
availability [115]. A genetic setting of the malignant cell, in combination with a complex
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epigenome, directs an activity of genes involved in cellular metabolism that enables cancer
cells to become metabolically reprogrammed: they produce different nutrients (metabolic
flexibility) and process them in various ways (metabolic plasticity) [116].

Although traditionally considered as a “metabolic waste”, lactate—produced from
pyruvate—is now recognized as a oncometabolite which is involved in development of
resistance to radiotherapy/chemotherapy [117]. However, lactate is only one of many
factors that contributes to the development and maintenance of cancer hallmarks, including
chemoresistance. It is the whole specific oncometabolic make-up of the cancer cell that
allows and favors a straightforward glycolytic conversion of glucose-derived pyruvate into
quite complex branching points. This is possible because every step of glycolysis results
in the occurrence of a specific intermediary product which a metabolically plastic cancer
cell can, in dependence on its genomic constitution, use for its own highly demanding
biosynthetic needs. The level of glycolytic energy production is very low, but this is
compensated for by a consequential increased uptake of glucose. The activity of a specific
branch, of which only two are presented on Figure 1, is determined through rate-limiting
enzymes and the balanced equilibrium of respective intermediates [118].
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Figure 1. Curcumin modulates the glycolytic metabolic pathway and has the potential to modulate
de novo serine synthesis pathway. Blue tiny arrows: decrease of transcript/protein/enzyme activity.
Stars: direct binding of curcumin to the target protein.

Curcumin, through its pleiotropic mode of action, has potential for influencing the
glycolytic process, and most, if not all, of the metabolic branching points. In this, no doubt,
broad and complex part of cancer cell biology, we tried to connect data related to select
processes involved in cancer cell metabolism, primarily glycolysis coupled with serine
synthesis de novo and resistance to applied therapy, with the beneficial effects of curcumin
application that are associated with specific metabolic features of cancer cells.

3.2. Curcumin: Glycolysis and Lactate Production

Improvement of therapeutic efficacy of chemotherapeutics in the presence of curcumin
in various in vitro models, as well as in experimental animals, has been documented and
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reviewed numerous times [119]. Recent reports indicate curcumin’s strong influence on the
decrease of lactate production and/or the inability of cancer cells to excrete lactate. Once ex-
creted, lactate acidifies the tumor microenvironment, and contributes to aggressive behavior
of malignant tumors [117]. An in vitro model of liver cancer and T cell lymphoma (HepG2
and HUT78) was explored to show that curcumin, even in low concentrations (5 µM/24 h),
significantly reduces lactate concentration in the medium and, through that mechanism,
contributes to increased sensitivity of HepG2 cells to doxorubicin and methotrexate. Exter-
nal addition of 20 mM lactate reversed the phenotype toward chemoresistance [100], and
was associated with an increased activity of genes coding for proteins whose oncogenic
potential was shown in various cancer models (STAT3 and HIF-1α), the earlier mentioned
LDHA, lactate receptor—HCAR1 (hydroxycarboxylic acid receptor 1/GPR81) and ABCB1
(ATP binding cassette subfamily B member 1; also known as MDR1 or P-glycoprotein).
In 2017, Wagner et al. showed that lactate, acting through its receptor—HCAR1, strongly
increases expression and activity of ABCB1 through a yet unknown molecular mechanism,
resulting in PKC-dependent decreased doxorubicin sensitivity of the HeLa cervical cancer
cell line [120]. In that scenario, chemoresistance related to increased production of lactate
may be negatively influenced by curcumin, not only through curcumin’s negative regula-
tion of HCAR1 [120], but also through a negative regulation of the GLUT1 transporter and
a consequential decrease in the cellular availability of glucose [121].

Proteomic study performed after electric pulse application of 50 µM curcumin (EP_Cur)
to triple negative breast cancer (TNBC) cell line MDA-MB-231 demonstrated decreased
level of glycolytic enzymes and, at the same time, an increase of enzymes involved in OX-
PHOS, which is associated with dramatic decrease of cellular lactate [122]. This discovery
clearly demonstrates the multilevel action of curcumin. In colon cancer cell lines HT-29 and
HCT116, applications of high concentrations of curcumin (40 µM) for 24 h also resulted in
significant decreases of lactate production (39.1% and 34.5%, respectively) [123].

As shown in Figure 1, the first step of glycolysis is catalyzed by hexokinase. There
are four highly homologous hexokinase isoforms in mammalian cells. AKT potentiates
hexokinase activity [124], resulting in phosphorylation of glucose molecules and their
retention in the cell.

Hexokinase 2 (HEX2) was shown to be highly expressed in various malignant tu-
mors [125]. At least in vitro, the level of its expression is significantly different in triple-
negative breast cancer TNBC (model: MDA-MB-231; high expression) compared to estrogen-
receptor-positive breast cancer cells (model: MCF-7; low expression). High expression
of HEX2 in TNBC is under direct transcriptional control of overexpressed transcription
factor SLUG. High expression of SLUG and HEX2 strongly associates with resistance of
MDA-MB-231 to 4-hydroxytamoxifen (4-OHT). The resistance can be ameliorated through
combined application of curcumin and 4-OHT, leading to apoptotic death [126]. In colon
cancer cell lines, HT-29 and HCT116, application of 40 µM curcumin for 24 h resulted in a
decreased rate of glycolysis, which is associated with significant decrease of HEX2, and its
dissociation from the outer mitochondrial membrane [123].

There is strong evidence that, in cancer cells, curcumin fatally affects oxidative phos-
phorylation and contributes to energetic deficit by inhibiting ATP-synthase activity, which
is associated with significant increase of ROS [29]. On that expectation, it was hypothesized
that, although exposed to curcumin, transformed cells may be able to replenish lack of
ATP through switching to a less-efficient energy producing metabolic pathway—glycolysis.
When testing enzymatic activity of glycolytic enzymes and extracellular concentrations of
lactate in four murine cancer cell lines (i.e., L1210—lymphocytic leukemia, 4T1—breast,
B16—murine melanoma and CT26—colon), it was demonstrated that cells exposed to
curcumin have a significant decrease of activity of hexokinase, lactate dehydrogenase, phos-
phofructokinase and pyruvate kinase (which may indicate the switch from active PKM1 to
less active PKM2—which will be discussed later), in all but melanoma-originating B16. At
least for phosphofructokinase and lactate dehydrogenase A/B, this may be a consequence
of their decreased cellular level—as demonstrated in some other experimental models [127].
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There was a clear distinction between neuroectoderm-originating melanoma B16 and the
other three cell lines, as all measured glycolytic parameters become significantly increased
only in the B16 cell line, probably reflecting its specific origin.

In two human cell lines originating from glioblastoma (U-87 MG) and neuroblastoma
(SH-SY5Y), exposure to curcumin and its analogue, MS13, induced significant changes in
the levels of various proteins, including a few involved in metabolic regulation, namely,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; decrease in both MS13-treated cell
lines) and phosphoglycerate kinase 1 (PGK1) in MS13-treated SH-SY5Y [128]. In human
leukemia cell lines, K562 and LAMA84, exposure to curcumin was associated with se-
vere changes in numerous proteins (143 upregulated and 234 downregulated). Among
the decreased proteins were phosphoglycerate mutase 1, phosphoglycerate kinase 1, D-3-
phosphoglycerate dehydrogenase (a rate-limiting enzyme of the serine de novo biosynthetic
pathway) and pyruvate kinase (PKM) [129]. Curcumin can directly target metabolic en-
zymes; this was shown in another study, one based on cell-permeable clickable curcumin
probe and quantitative chemical proteomics in a colon cancer cell line, HCT116 [130]. A
stringent profiling revealed the following metabolic enzymes as curcumin binding partners:
pyruvate kinase isozymes M1/M2, fructose-bisphosphate aldolase A, glyceraldehyde-3-
phosphate dehydrogenase, alpha-enolase (enolase 1), L-lactate dehydrogenase A and B
chains, phosphoglycerate kinase 1, D-3-phosphoglycerate dehydrogenase, and mitochon-
drial serine hydroxymethyltransferase (SHMT2).

It is very interesting that phosphoglycerate kinase 1, in addition to being presented
as curcumin’s binding partner, turned to be listed as downregulated in all the proteomic
studies we could find that were related to cancer and curcumin. As recently reviewed, a
high expression of phosphoglycerate kinase 1 is positively associated with chemoresistance
in all cancer models explored so far [131]. In 2000, Elson et al. showed that HIF-1α,
PGK1, GLUT1 and VEGF occur in the earliest phase (early-stage hyperplasia) of multistage
epidermal carcinogenesis [132]. Only four years later, Li et al. showed that PGK1 has
the HIF-1α binding site in its promoter and that transcriptional activity of PGK1, under
hypoxic condition, depends on HIF1α [133]. This transcription factor has been associated
with chemoresistance in various types of cancer [134]. Extracellular ATP can stimulate
hypoxia-inducible factor (HIF) signaling and contribute to breast cancer cell resistance
even under normoxic conditions [135]. The most recent data show that STAT-3—mediated
ALDOA (fructose-bisphosphate aldolase A), binding to HIF1α (which itself contributes
to multiple resistance in cancer) strongly contributes to development of chemoresistance
against cisplatin (models: breast cancer cell line MCF-7 and xenografts MDA-MB-231 [136].

In these scenarios, curcumin indeed may—due to its pleiotropism—add to chemosensi-
tization through synchronous actions at several molecular levels. For example: (a) through
downregulation of ALDOA [122], (b) through negative influence on HIF1α, as recently
reviewed [137], (c) through inhibitory effect on STAT3 (direct binding of curcumin to STAT3
was discovered a few years ago [138]). All these data clearly show that metabolic repro-
gramming of cancer cells, when in favor of glycolysis and lactate production, strongly
increases chemoresistance of tumor cells. They also show a very strong, functional inter-
connection between the metabolic status of the cell and various signaling pathways that
are not traditionally considered “metabolic”. This shows that none of the hallmarks of
cancer should be considered as an isolated entity because molecules and processes related
to cancer hallmarks are shared among various signaling pathways, and one pleiotropic
molecule may indeed affect several of them at the same time.

3.3. Curcumin and Lactate Excretion

Glycolytically produced lactate must be excreted from the cell, where it contributes to
extra-tumoral acidosis. It is known that malignant tumors maintain their hallmarks through
maintenance of intracellular alkalinity (pHi≥ 7.4) and extracellular acidity (pHe~6.7–7.1) [139].
These values are significantly different from values related to differentiated cells (pHi~7.2;
pHe~7.4). This cancer-related phenomenon, known as “pH gradient reversal” was recog-
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nized in 1996 as a possible vulnerability that may be triggered by therapy [140], and was
recently reviewed [141]. Lactate shuttle, which is needed for establishment of a synergistic
metabolism between glycolytic tumor cells and tumor cells relying on OXPHOS, is highly
dependent on the activity of lactate transporters MCT1 and MCT4 (SLC16A1 solute car-
rier family 16, members 1 and 4). In order to explore the effect of chemosensitization of
the whole extract of the C. longa, and then each active compound separately: curcumin,
bis-curcumin and demethoxycurcumin, with respect to cancer cell response to 5-FU and
lactate metabolism, Li et al. [142] used the 5-FU resistant colon cancer cell line, HCT8,
previously shown to overexpress MCT1 [143]. The authors were able to show that the
chemosensitizing effect of the whole extract, in this experimental model, partially relates
to a significantly decreased expression of MCT1 and high increase of intracellular lactate
(three- and four-fold change), after application of curcumin and bis-curcumin, respectively.
It is expected that so significant increase of intracellular lactate changes the intracellular pH
(pHi), creating a scenario which may have a potential for being detrimental for cancer cells
(toxic acidosis). In another model, application of curcumin was shown to have a potential
for shifting the intracellular pH of cancer cells toward acidity through decreasing both
MCT1 and Na+/H+ antiporter NHE1 (SLC9A1—solute carrier family 9 member A1 [144],
which also may contribute to curcumin’s chemosensitizing properties.

As recently shown, increased intracellular acidity induced by hypoxia plus MCT1/2
inhibition significantly compromises the survival of MCF7 breast cancer cells. The effect was
amplified when glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
was silenced [145]. Whether exposure to curcumin produces exactly the same mode of
action remains to be explored. Obviously, pleiotropic action of curcumin can target cancer
cell metabolism at many levels that are closely related and interconnected.

3.4. Curcumin and Pentose Phosphate Pathway (PPP)

Although not providing adenosine 5′-triphosphate (ATP) for cellular energy demands,
high activity of PPP (Figure 1, in blue circle) in cancer cells makes a strong contribution to a
reducing cellular power (through production of NADPH) and ribonucleotides synthesis
(through production of ribulose 5-phosphate (R5P) [146]. Production of NADPH through
PPP is needed for generation of reduced glutathione (GSH) which allows for alleviation
of oxidative stress through successful removal of ROS [147]. This oxidative branch of PPP
relates to the activity of two enzymes, glucose-6-phosphate dehydrogenase (G6P) and
phosphogluconate dehydrogenase (PGD).

As recently reviewed, the increased activity of PPP relates to cisplatin chemoresistance
that can be developed through several mechanisms [148]. The NADPH generated in the
PPP counteracts, for example, a high Cisplatinum cytotoxicity associated with a high
production of ROS. As might have been expected, inhibition of the two enzymes related to
NADPH generation, G6P and PGD, makes cancer cells sensitive to cisplatin [149,150].

There are no data related to the selective effects of curcumin on G6PD specific to
cancer cells. However, feeding animals with curcumin (2%, w/v) increases activity of
G6PD in mice liver and kidney tissues for 89% and 67%, respectively, contributing to the
systemic defense against oxidative stress, as expected [151], in a chemopreventive, and not
a therapeutic, setting.

3.5. Curcumin, Pyruvate Kinase and Serine Synthesis Pathway (SSP)

In cancer cells, biosynthesis of serine (SSP—Serine Biosynthesis Pathway) depends
on several interconnected factors: (a) availability of the precursor, 3-phosphogylcerate
(glycerate 3-phosphate; labeled green on Figure 1, green circle) whose generation is de-
pendent on glucose intake and presence of metabolically inert pyruvate kinase 2 (PKM2),
(b) ATF4-directed expression of three metabolic enzymes, (1) PHGDH—Phosphoglycerate-
3-Dehydrogenase; (2) PSAT1-Phosphoserine Aminotransferase 1; and (3) PSPH-Phosphoserine
Phosphatase.
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There are numerous studies demonstrating an increase of each of these enzymes in
various malignant tumors. There is also a study showing the increased protein level of all
three proteins (fold change: PHGDH: +3.62; PSAT 1: +6.94: PSPH: +1.27) in lung cancer
tissue, when compared to corresponding non-tumorous tissue [152]. In cancer cells, serine
has an important role associated with the activity of pyruvate kinase (PKM).

Pyruvate kinase catalyzes the last glycolytic step: transfer of phosphate group from
phosphoenolpyruvate (PEP) to ADP for generation of ATP and pyruvate. Contrary to
isoenzyme PKM1, which is highly expressed in tissues with high energetic needs (e.g., heart,
muscle and brain), expression of PKM2 is common in malignant tumors. It is considered a
cancer-specific isoenzyme. The difference between PKM1 and PKM2 depends on alternative
splicing of the primary transcript of the PKM gene.

The PKM2 activity depends on a highly complex, serine-dependent allosteric regula-
tion: contrary to PKM2 tetramers that are strong catalyzers (as are PKM1 tetramers), PKM2
specific dimers are catalytically inert, and they support biosynthetic processes [153]. Lack
of serine favors accumulation of inert PKM2 dimers, decreased generation of pyruvate
and accumulation of glycolytic intermediary products of which one—3PG—enters the SSP
(Figure 1). De novo synthesized serine may be converted to glycine through the activity
of mitochondrialserine hydroxymethyltransferase 2 (SHMT2). Glycine is then used for
synthesis of glutathione (GSH) and purine nucleotides.

Thus, in its essence, the active SSP is beneficial for cancer cells, not only with respect
to serine supply (when needed), but also for development of resistance to therapy, due
to its positive impact on GSH synthesis, which is needed for cellular defensive response
against therapy-induced oxidative stress. Curcumin binds to SHMT2 [154], and there is a
high probability that the binding impacts both the structure and the catalytic activity of
the active form of SHMT2 [155], which was recently shown to drive resistance to 5-FU in a
colorectal model of cancer [156].

Increased level/activity of enzymes directly and indirectly involved in SSP and pyru-
vate kinase activity have been shown in various experimental models, and in native tumors.
The importance of some of them for development of resistance to therapy was also shown
in various cancer models. However, the available data is not necessarily unequivocal and
asks for a careful interpretation with respect to the specifics of the cancer’s origin: high
expression of PKM2 was shown to be associated with resistance to cisplatin in bladder can-
cer [157], but, on the other hand, it enhances response to cisplatin in cervical cancer through
a complex interaction with the mTOR signaling pathway [158]. Although an indicator of
worse clinical prognosis in breast cancer patients, high expression of PKM2 was shown
to strongly associate with a positive therapy response to epirubicin and 5-fluorouracil,
resulting in longer disease-free survival and overall survival [159]. Most of the studies
related to the role of PKM2 in the setting of cancer therapy were recently reviewed [160].

The published studies demonstrate that curcumin’s effects on PKM2 are not entirely
conclusive: Sidiqqui et al. [161] demonstrated that curcumin decreases the PKM2 level at
the level of mRNA and the protein in cell lines of different origin (H1299—non-small cell
lung cancer; MCF7—breast cancer; HeLa—cervical cancer). There are data showing that the
type of response may be cell-type specific: for example, curcumin was shown to decrease
PKM2 mRNA level in only one (Cal27), among three tested cell lines originating from head
and neck carcinoma (Cal 27, FaDu and Detroit 562) [162]. Yadav et al. have shown that
curcumin influences splicing of the PKM transcript in favor of PKM1 and, through that
mechanism, reduces the level of PKM2 transcript and the corresponding level of inert PKM
dimers [163].

3.6. Curcumin and Three Enzymes of the SSP

The limiting enzyme for serine de novo synthesis is NAD+-consuming PHGDH. Its
high expression in cancer was originally shown to be associated with amplification of the
chromosomal locus 1p12, where the gene resides, in melanomas and breast cancer [164].
During the last ten years, serine was recognized as a very important molecule involved in



Pharmaceutics 2023, 15, 1612 15 of 31

cancer cell metabolism, and the rate-limiting enzyme for its synthesis, the PHGDH, came
in the focus of research as a potential therapeutic target. Many various PHGDH inhibitors
have been developed and tested, but are still not making their way into the clinic [165].

In tissues with extremely low serine availability (brain tissue), inhibition of PHGDH
was shown to be a very beneficial therapeutic approach: TNBC originating metastases
cannot develop in brains of animals with inhibited activity of PHGDH [166]. A high level
of PHGDH relates to resistance to cisplatin, 5-FU and Sorafenib in ovarian cancer [167], col-
orectal cancer [168] and liver cancer [169], respectively. Resistance to other types of cancer
therapy, mediated through PHGDH, was reviewed recently [170]. Although commonly pre-
sented in a simple way, the metabolic scenario in which PHGDH exerts its pro-tumorigenic
activity is multilevel and highly complex.

As recently demonstrated [171], a strong association between relapse of disease in
a cohort of ovarian cancer patients receiving Cisplatinum and, at the same time, having
a low level of PHGDH, was well-documented. The phenomenon was explored on a
molecular level: when exposed to cisplatin, cancer cells balance available NAD+ between
PARP-1 (PARP-1 activity is needed for DNA repair) and PHGDH in favor of the repairing
mechanism mediated by PARP1 and, instead of activating SSP, take serine from the medium.
Indeed, in experimental animals, a diet with decreased content of serine/glycine combined
with selective inhibition of PHGDH was shown to have a very potent effect with respect to
inhibition of cancer growth, in vitro, and in vivo [172].

PHGDH has been shown to be the curcumin binding partner in three experimental
systems: benign schwannoma [173], HeLa (cervical cancer) [154], and HCT116 colon cancer
cells [130]. One would expect that curcumin bound to PHGDH enzyme NAD+ pocket
abolishes its activity and negatively influences pro-proliferative SSP. Although there are
many experimental data which show an association of PSAT1 and biological behavior
of malignant tumors, there are sparse data on its involvement in chemoresistance. That
is surprising because the activity of this second enzyme in serine de novo biosynthesis
contributes to the development of chemoresistance to FOLFIRI (leucovorin, 5-FU and
irinotecan) treatment. This was discovered in a small cohort of colon cancer patients as
early as 2008 [174]. The most recent data indicates its association with the tumor immune
microenvironment [175]. In glioblastoma multiforme, regorafenib (inhibitor of multiple
tyrosine kinase) exerts its effect through stabilization of PSAT1, leading the malignant cell
into autophagy. In this scenario, regorafenib may induce autophagy only if a high level of
PSAT1 exists in the cell [176].

The third SSP enzyme, phosphoserine phosphatase, is associated with poor therapeutic
response of ER+ breast cancers to tamoxifen [177], and acts as an oncogene in various types
of malignant tumors, including non-small-cell lung carcinoma (NSCLC) [178].

In 2015, Chiang et al. showed that exposure to curcumin reduced the gene activity
of all three SSP enzymes (PHGDH (−3.19), PSAT1 (−2.27) and PSPH (−2.20)), using the
model of lung cancer cell line, NCI-H460 [179].

4. Curcumin as a Chemosensitizer in Conventional Chemotherapy
4.1. Chemosensitization: Need of the Hour

Natural products from diverse sources encompass a unique arena of chemical space
that overlaps extensively with pharmaceuticals which are not found in synthetic chemical
libraries. These natural compounds have been evaluated for a long time for their ability to
selectively target different kinds of ailments, including cancer. Most of the anticancer drugs
used in chemotherapy are natural-product-derived compounds [180,181]. Nowadays, most
of the currently available chemotherapeutics fail to accomplish their expected outcome.
Upon prolonged exposure to the chemotherapeutics, the emergence of inherited and
acquired chemoresistance due to the upregulation of major survival signals is regarded as
the main cause for this drawback. Combination chemotherapy is currently used for various
cancer types, and this approach is more effective, compared to single-agent treatment [182].
Multidrug resistance (MDR), the ability of tumor cells to develop resistance to a broad range
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of structurally and functionally unrelated drugs, is also a major hindrance in the success
of combination chemotherapy. Apart from the classic mechanisms of MDR development
(over-expression of drug efflux pumps and increased activity of DNA repair machinery),
alterations at the level of apoptosis control serve as a crucial mechanism for the induction
of drug resistance [180]. Increasing the dosage of the drug can certainly help in evading the
condition, but serious side effects limit the success of the clinical outcomes of chemotherapy.
It may also lower patients’ quality of life, and, in some cases, even result in discontinuation
of chemotherapy [183].

Thus, chemosensitization can be a choice that absolutely matches the need. Chemosen-
sitization can be defined as a process by which a non-toxic compound of either natural or
synthetic origin sensitizes the cancer cells to a cytotoxic therapeutic agent without affect-
ing the efficacy of the same. This has an added advantage of minimizing the dosage of
the chemotherapeutic and thereby decreasing the side effects. Additionally, this strategy
is more economical, considering the cost of currently available chemotherapeutic drugs,
especially in the case of developing countries, where the rate of cancer incidence is rel-
atively high. Since chemoresistance is a tightly regulated process under the control of
multiple survival pathways, the inhibition of any single molecule may not be sufficient
to circumvent the phenomenon. Hence, compounds that can simultaneously modulate
multiple survival-signaling pathways might provide a better therapeutic outcome than that
of individual inhibitors. Several phytochemicals have been shown to modulate multiple
pathways involved in chemoresistance and, hence, are assumed to be of better chemosensi-
tizing efficacy.

4.2. Curcumin: The Celebrity among Nutraceuticals

From ancient days onwards, Indian and Chinese traditional medicine have made use
of combinations of medicinal herbs. Among those, flavonoids are a large subgroup of
the family of natural polyphenolic compounds, which are mostly the part of secondary
metabolism in plants [184,185]. Most of the plant polyphenols, including curcumin, resver-
atrol, genistein, quercetin, epigallocatechin gallate (EGCG), luteolin, apigenin, chrysin,
tannic acid, etc. are dietary compounds which are part of our day today diet. Amongst
the wide range of natural polyphenols, curcumin is the most-studied natural compound,
with perfect documentation of its therapeutic effect in a large number of disease conditions,
including cancer [186,187].

Curcumin is well known for its chemopreventive [84,188–194], as well as chemosensi-
tizing [22,180,195–202], efficacy against cancer, together with anti-inflammatory, antioxidant
and antibacterial activities [203,204]. We have attempted to compile the studies in which
curcumin was used as a chemosensitizer [180].

4.3. Molecular Targets of Curcumin as a Chemosensitizer

Curcumin exerts its anticancer effect through targeting various regulatory molecules,
including protein kinases, transcription factors, receptors, enzymes, growth factors, cell
cycle, and apoptosis-related molecules, as well as microRNAs. Several reports have shown
the effects of curcumin on variety of key molecular signaling pathways, such as NF-κB,
MAPK, PI3K/Akt/mTOR, JAK/STAT, Wnt/β-catenin, etc. [205,206]. It also possesses
modulatory effects on the apoptotic, metastatic and cell cycle pathways involved in can-
cer development and progression [196]. The major molecular targets that regulate the
chemosensitizing efficacy of curcumin are depicted in Figure 2.
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4.4. Curcumin as a Chemosensitizer in Adjuvant Chemotherapy

Several in vitro, in vivo and clinical trials have shown the chemosensitizing efficacy
of curcumin in combination with current chemotherapeutic drugs. Curcumin has been
reported to potentiate the antitumor effects gemcitabine via downregulation of COX-2
and phospho-extracellular signal-regulated kinase1/2 (ERK1/2) levels in pancreatic ade-
nocarcinoma cells [207], as well as through the inhibition of gemcitabine-induced NF-κB
and its downstream targets, in an orthotopic model of pancreatic cancer [208]. A phase II
clinical trial also evaluated the effectiveness of the combination [209]. Studies have shown
that curcumin sensitizes breast cancer cells to 5-FU-mediated chemotherapy through the
inhibition of 5-FU-induced upregulation of thymidylate synthase (TS), both in vitro [210]
and in vivo [197], irrespective of the receptor status. It was also shown that the antitumor
effects of paclitaxel could be enhanced by curcumin in cervical cancer cells through the
downregulation of paclitaxel-induced activation of NF-κB, Akt and Bcl-2 [22,201,202]. The
ability of curcumin to augment the antitumor effect of capecitabine in human colorectal
cancer by modulating cyclin D1, COX-2, matrix metallopeptidase 9 (MMP-9), VEGF and
C-X-C chemokine receptor type 4 (CXCR4), has been assessed by using an orthotopic mouse
model [211]. Curcumin has also been also shown to sensitize prostate cancer cells to the
cytotoxic effect of 5-FU through a tp53-independent cell-cycle arrest and the downreg-
ulation of constitutive NF-κB activation [212]. Curcumin enhances the cytotoxic effects
of 5-FU and oxaliplatin in colon cancer cells through the downregulation of COX-2 and
the modulation of EGFR and insulin-like growth factor 1 receptor (IGF-1R) [213]. Both
in vitro [214] and in vivo [215] data shows that curcumin-mediated inhibition of NF-κB
activation enhances the sensitivity of prostate cancer cells to TRAIL-induced apoptosis. It
has been reported that the combination of curcumin and doxorubicin could enhance the
sensitivity of breast cancer cells through inhibition of ABC subfamily B member 4 (ABCB4)
activity [216]. Downregulation of IAPs by curcumin has also been reported to enhance the
effect of cisplatin in hepatic cancer cells [217]. Recent reports have also suggested that the
combination of curcumin and paclitaxel could inhibit the ALDH-1 and paclitaxel-induced
Pgp-1 expression in breast cancer cells. The combination resulted, in treated cells, in upregu-
lation of Bax, caspase-7, and caspase-9, along with downregulation of Bcl-2 expression [218].
Curcumin has been shown to inhibit the FA/ BRCA pathway, and it sensitizes ovarian
cancer cells to cisplatin-induced apoptosis [219]. It has shown that inhibition of HER2
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and reduction of NF-κB activation by the combination of curcumin and its derivatives
with doxorubicin enhances the toxicity of doxorubicin in resistant breast cancer cells [220].
Moreover, doxorubicin-induced over-expression of major proteins, including vimentin,
β-catenin, p-AKT, p-Smad2 and p-GSK3β, Snail and Twist, which are involved in EMT and
metastases of TNBC cells, were found to be downregulated through the suppression of
TGF-β and PI3K/AKT signaling pathways [221]. Studies have illustrated that co-treatment
with curcumin and cisplatin sensitizes breast cancer cells to cisplatin through the activation
of the autophagy pathway. In treated breast cancer cells, the key mechanism underlying
the curcumin-mediated chemosensitization was found to be the downregulation of CCAT1
expression and inactivation of the PI3K/Akt/mTOR pathway [222]. Several reports have
indicated the ability of curcumin to reverse the cisplatin resistance in lung cancer. It has
been shown that curcumin enhances sensitivity of human NSCLC cell lines toward cisplatin
treatment through influencing a Cu-Sp1-CTR1 regulatory loop [223]. Curcumin reverses
cisplatin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis
through HIF-1α and caspase-3 mechanisms [224]. Results from a very recent study also
showed that curcumin sensitizes NSCLC cells to cisplatin-mediated cell death through
activation of the ER stress pathway [225]. Tan and Norhaizan showed that a combination
of camptothecin and curcumin-loaded cationic polymeric nanoparticle increased intra-
cellular drug concentrations and synergistic effects of the drugs in colon-26 cells [226].
Curcumin has been shown to prevent liver cancer stem cells’ growth through inhibition of
the PI3K/AKT/mTOR signaling pathway [227]. Furthermore, curcumin-based nanoparti-
cles and curcumin-tagged antibodies were reported as promising therapeutic strategies to
overcome resistance in brain tumors [228].

5. Discussion

The three sections included in this article, which reviewed the main recent findings
reported in the literature in some major areas of this research topic, raised several questions
and prospects that need to be discussed.

A first question related to the multiple signaling pathways and components of the
tumor microenvironment targeted by curcuminoids is: what kind of cognitive tools would
be required for understanding its complex, pleiotropic mode of action against the hallmarks
of cancer? Although a wealth of data has been accumulated, both in vitro and in vivo
during recent decades, many points are still lacking in our vision of how the complex
regulatory networks governing the tumor microenvironment’s functions are modulated.
To give just one example, the recent discovery showed the way curcuminoids act against
the deleterious effects of cancer associated fibroblasts (CAFs) in invasive cancers [15].
New developments continue to add more complexity to our understanding of the diverse
functions of this TME component [229]. CAFs increase matrix stiffness, promoting EMT,
and, as a consequence the physics of the interactions at biological interfaces is likely to be
changed under their influence. Cell–cell interfaces include transient interactions between
mobile immune cells, but also long-lived cell–cell contacts, in which matrix stiffness may
play a crucial role. However, the role of water, which indeed has been established as an
active matrix, has never been considered in this scheme [230]. At the subcellular level, this
important parameter is underrepresented in the molecular biology of the cell, despite major
breakthroughs being published in the field [231]. Fortunately, recent developments and
the emergence of innovative tools applied to cancer research [232,233] could contribute to
answering this fundamental question in the future. Another related observation relates to
the fact that curcuminoids, through their simultaneous action on multiple molecular targets,
belong to the field of polypharmacology [234]. Thus, understanding their mode of action
requires a more sophisticated view than the consideration of a single signaling pathway.
Many questions come with this challenge, and there is a great potential for answering
them through applying new approaches [235–237], especially in the field of newly emerged
cancer hallmarks.
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Hypoglycemic effects of curcumin in vitro have been well recognized. Promising
antidiabetic effects were also shown in several clinical trials [238]. There are new data
showing that curcumin, especially in glucose deprived cancer cells, decreases intracellular
pH. The phenomenon was explored in a hepatocellular cancer cell line experimental model
where curcumin showed an effect equally strong as the NHE1 inhibitor, cariporide [144].
Curcumin also decreased expression of lactate transporters MTC1 and MTC4. Thus, reversal
of the pH gradient across the cell membrane, especially in the starved cells, may be the
fundamental mechanism involved in curcumin’s action. These data are probably crucial for
understanding the molecular background of various anticancer effects which have already
been shown in different cancer cell lines exposed to a combination of curcumin and an
antidiabetic drug, metformin [239–241]. A second question is: What resource would be
best suited for the experimental study of curcuminoids’ effects against cancers? To deal
with the limitations of the cancer-cell-lines’ monolayers, advances in in vitro 3D culture
technologies are being continuously reported. However, even the success of organoids in
cancer research [242] still raises questions related to the mode of investigation that should be
applied for exploring the host’s immune response, as modulated by curcuminoid treatment
in vivo There is a high level of complexity in the ecosystems represented by neoplastic
tissues, comprising a heterogeneous population of tumor cells and a multitude of immune
and non-immune cells communicating through a plethora of systemic mediators, and
embedded in an extracellular matrix [243]. The metabolic status of various types of cells
that already communicate in early tumorigenesis adds additional level of complexity. A
potent oncometabolite, lactate, shuttles between cancer cells and stromal cells (reverse
Warburg effect), hypoxic cancer cells and oxidative cancer cells (metabolic symbiosis), as
well as between hypoxic cancer cells and vascular endothelial cells. The final outcome
is occurrence of the fatal cancer hallmarks: angiogenesis, immune escape, cell migration,
metastasis and self-sufficient metabolism [144,244]. Thus, the modelling represents an
almost impossible task. This situation is even more complicated, given the fact that most
stromal cells are exposed to dynamic changes during malignant progression [245].

Another question is related to an increasing number of reports demonstrating the
role of interactions between curcumin given orally and gut microbiota, in the generation
of active metabolites. This observation led to the “low bioavailability/high bioactivity
paradox” that concerns not only curcuminoids but most dietary polyphenols [246]. In
this new research field, enzymatic modifications of curcumin by bacteria have already
been established and reviewed [247], and the consequences of the regulation of intestinal
microbiota by curcumin with respect to chemotherapeutic treatment have begun to be
investigated [248]. The question for the future of this research is: how to take advantage
of this process for optimizing current therapeutic strategies when combination treatments
are used?

An increasing number of reports on these molecules are published each year. They
open many interesting prospects, which could be summarized in three main points. First,
new active natural molecules belonging to this family are continuously being discovered in
the world. To mention just a few, in the search for new marine anticancer drugs, and in a
context of global climate change that could affect bioresources [249], the potential of new
molecules extracted from marine invertebrates that have an ability to reverse the immune-
escape phenotype in metastatic tumors has just started [250]. With respect to the third
question discussed above, new biologically active derivatives produced through microbial
transformation of curcuminoids (diarylheptanoids) isolated from natural resources are also
being studied [251].

In parallel, new synthetic curcumin analogs are still being produced, some of them
exhibiting innovative therapeutic potential against cancers. In this field, improvements are
emerging in the identification of curcumin derivatives with improved binding affinities
for some growth factor receptors [252]. Using another methodological approach, Pandya
et al., studied the exact binding pattern that one analog of interest formed with the c-
myc DNA sequence [253]. The way curcumin analogs boost the efficacy of anti-immune
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checkpoint inhibitors also represents a new research field under development [30]. Finally,
among the 25 recently reviewed curcumin analogs [15], at least eight have been the subject
of continuous investigations with respect to their pleiotropic anticancer effects, in 2023
alone [254–261]. As these molecules may overcome limitations of bioavailability and
pharmacokinetics that were recently reviewed based on clinical data [17], the hope is that
the current research might soon lead to clinical trials involving cancer patients for at least
some of them.

Whether curcumin or curcumin analogs are selected for investigations of their impact
on the different populations of immune cells involved in immunosuppressive microenvi-
ronment [262], there is a growing interest for the design and use of innovative nanofor-
mulations [263]. Finally, among phytocompounds used to design and develop new drugs,
curcuminoids are also being increasingly used as models with a potential for improving
our understanding of their multiple modes of actions, using computational approaches
such as virtual screening, target prediction, and molecular dynamic and pharmacophore
modelling [264].
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