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Abstract: Skin infections are frequently treated via intravenous or oral administration of antibiotics,
which can lead to serious adverse effects and may sometimes contribute to the proliferation of resistant
bacterial strains. Skin represents a convenient pathway for delivering therapeutic compounds,
ensured by the high number of blood vessels and amount of lymphatic fluids in the cutaneous
tissues, which are systematically connected to the rest of the body. This study provides a novel,
straightforward method to obtain nafcillin-loaded photocrosslinkable nanocomposite hydrogels and
demonstrates their performance as drug carriers and antimicrobial efficacy against Gram-positive
bacteria. The novel formulations obtained, based on polyvinylpyrrolidone, tri(ethylene glycol) divinyl
ether crosslinker, hydrophilic bentonite nanoclay, and/or two types of photoactive (TiO2 and ZnO)
nanofillers, were characterized using various analytical methods (transmission electron microscopy
(TEM), scanning electron microscopy–energy-dispersive X-ray analysis (SEM-EDX), mechanical tests
(tension, compression, and shear), ultraviolet-visible spectroscopy (UV-Vis), swelling investigations,
and via specific microbiological assays (“agar disc diffusion method” and “time-kill test”). The results
reveal that the nanocomposite hydrogel possessed high mechanical resistance, good swelling abilities,
and good antimicrobial activity, demonstrating a decrease in the bacteria growth between 3log10 and
2log10 after one hour of direct contact with S. aureus.

Keywords: photocrosslinkable; hydrogel; nafcillin; drug delivery; nanocomposite

1. Introduction

A wound is a pathological condition produced by injury, burn, infection, or physio-
chemical alterations of the cutaneous tissue [1]. Wound healing is a complicated regen-
erative process that involves many distinct tissues and cell lineages [2,3]. Bandages and
patches are the first aid for injured tissues in hospitals, on the battlefield, or at home [4,5] for
stopping bleeding and contamination with dirt and bacteria [4,5]. Applied on the wound,
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they have direct contact with the soft wounded tissues, where exudate and nutrients from
the blood can nurture the multiplication of bacteria and formation of biofilm [6,7]. If the
wounds are not timely dressed, the latter processes usually end up as serious infections.
Various solutions, gels, creams, and bandages are used in hospitals to treat wounds [4]. The
development of modern materials and new manufacturing technologies have contributed
to a new generation of dressings that offer proper conditions for wound healing. Therefore,
using an artificial matrix as a skin dressing is nowadays a potential therapeutic option
for promoting wound healing. Many dermal dressings and skin substitutes have been
created to mimic the wound-healing microenvironment [8]. In addition, there are numerous
commercially available hydrogel dressings for wound treatment, ranging from amorphous
hydrogels for cavity wounds to hybrid structures such as gel-impregnated plasters for
superficial wound care [9]. The materials designed as dressings for wound healing should
meet a series of criteria: must be biocompatible, should constitute an efficient barrier for
microorganisms [10], possess high antimicrobial activity [11], ensure an adequate drug
release pattern [12], have proper absorptive capacity to remove excess exudate from the
wound surface while keeping adequate hydration of the tissue [13,14], and have good
mechanical resistance and low adherence to the wound bed [15] to prevent additional
damage to sensitive skin [14]. In many cases, homopolymers cannot satisfy these diverse
demands regarding the abovementioned characteristics and performances [13]; therefore, it
is desirable to utilize composite hydrogels or interpenetrated polymeric networks (IPNs)
for obtaining performant dressings able to promote the wound healing process [1,13].

Hydrogels are considered a standard therapeutic approach for sloughy or necrotic
wounds, because by rehydrating nonviable tissue, hydrogels aid in natural autolysis, fa-
cilitate wound debridement, and prevent bacterial infiltration [16]. Yet, they should not
be used on wounds that exude an excessive amount of fluid or gangrenous tissue (which
should be kept dry to minimize the possibility of infection) [15]. Hydrogels provide the op-
timal moistness conditions for healing while protecting the wound, with the added benefit
of being comfortable for the patient because of their cooling action and nonadhesiveness to
damaged tissue [14]. Commonly used polymers in hydrogels for wound healing are gelatin,
collagen, chitosan, dextran, alginate, cellulose, polyethylene glycol, polyvinylalcohol,
polyvinylpyrrolidone, and acrylic polymers (Carbopol®) [9,17–20]. Polyvinylpyrrolidone
(PVP) is a hydrophilic polymer frequently used as a carrier in the pharmaceutical and
biomedical fields [21]. PVP is a polymer with enormous potential for producing medicinal
formulations due to the fact of its versatility and unique attributes. PVP is also nontoxic
and biocompatible; hence, it is suitable for biomedical applications [22]. It has previously
been successfully employed in developing several drug delivery systems, including oral,
topical, transdermal, and ophthalmic administration [21]. PVP has already been success-
fully used as a starting material in manufacturing hydrogels for wound dressing [23]. The
physical and mechanical properties of PVP-based hydrogels can be adjusted by varying
the pH, ionic strength, and gelation temperature [9]. Although they can maintain a mois-
ture balance at the wound site, most hydrogels have poor mechanical properties, limiting
their biomedical applications [12]. Composite hydrogels have shown better potential for
skin patches because of their straightforward design, ease of preparation, and specific
features [8]. Composite hydrogels have attracted interest as wound adjuvants due to
the fact of their high mechanical resistance, high porosity, interconnected macroporous
network, and large specific surface area, as well as their ability to maintain a humid
microenvironment and absorb tissue exudates [8].

Photocrosslinkable hydrogels, in particular, have been extensively researched in
biomedical domains, particularly for 3D tissue-engineered structures [14], biosensing medi-
ums [24,25], and drug-controlled release matrices [26]. Compared with other crosslinking
techniques, the major advantage of free radical photopolymerization is that hydrogels with
a more stable 3D structure and higher stiffness and strength can be produced with the
chemical crosslinking resulting from the photoinitiated unsaturated double-bond polymer-
ization [27]. Photoinitiated radical polymerization of multifunctional monomers in the
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presence of photoactive nanoparticles offers a fast and convenient method for producing
highly crosslinked reinforced polymeric networks [28] that can be further employed for
wound healing applications. The bacterial response to the activity of the nanoparticles
(NPs) is influenced by a series of factors including the number, shape, charge and size
of the NPs, and their mechanism of action. The inherent antioxidant defense system of
bacteria, which interacts with stressors, is also essential; still, bacterial cells find it highly
challenging to develop resistance to NPs, because they simultaneously act against them
through distinct efficient mechanisms [4]. It has been found that NPs like TiO2 or ZnO can
affect bacterial cells by altering the cellular membrane [29]. Zhang M. et al. [30] reported
that ZnO NPs enhanced the antibacterial effect of the composite hydrogel aimed at accel-
erating wound healing. Palantöken A. et al. [31] developed TiO2-loaded hydrogels with
long-lasting antibacterial activity toward Gram-negative bacteria. Silver nanoparticles are
widely recommended for their broad-spectrum antibacterial activity, but their instability
may sometimes diminish their efficacy [32]. Nevertheless, often nanoparticles alone are
insufficient to reduce the bacterial population at the wound site. The combination of antibi-
otics with NPs has been revealed to be a more promising approach and an effective tool
against bacterial infection. Wang et al. reported a hydrogel with enhanced antibacterial
activity obtained by the co-delivery of vancomycin and silver nanoparticles [8,33].

When skin injuries occur, microorganisms can easily invade and cause severe wound
infections, thus preventing wound healing [8]; therefore, the presence of powerful an-
timicrobial ingredients in the composition of the wound dressings is mandatory. The
literature reports promising results on the controlled release of antibiotics from hydrogels
or encapsulated hybrid nanomaterials [16,34]. Controlled release systems can deliver drugs
over an extended period of time at a relatively constant release rate [13]. Antibiotic-loaded
hydrogels are an innovative approach for improving medical treatment, decreasing overall
healthcare costs, increasing the therapeutic effect of drugs, and balancing the toxicity of
medications commonly employed for wound care [35]. Furthermore, they are crucial in
treating local infections when high antibiotic concentrations are required [36]. Ideally, the
diffusion paths of the drug molecule; thus, the release rate of the active ingredients can
be controlled by modifying the characteristics of the polymeric network [37]. Antibiotics
loaded into transdermal dressings for local wound dressing protocols may provide ther-
apeutic antibacterial effects while being absorbed into the body [38]. Furthermore, local
delivery can reduce the possibility of systemic antibiotic absorption, reducing antibiotic
resistance [38]. On the other hand, the drug concentration in the hydrogel should be
strictly controlled, since high amounts of antibiotics can lead to systemic toxicity [39]. Some
antibiotic-loaded hydrogels demonstrated they could help treat chronic infectious lesions
during wound closures due to the fact of their excellent antimicrobial activity against
Gram-positive or Gram-negative strains [40]. Beta-lactam antibiotics (amoxicillin and ampi-
cillin) and aminoglycosides (kanamycin) are well-known drugs applied to inhibit bacterial
spread in wound-dressing applications [38]. Katime I. et al. [41] described nafcillin-loaded
copolymeric poly(acrylic acid-co-methyl methacrylate) hydrogels. Si H. et al. [42] reported
a 3D printed hyaluronic-acid-based double-crosslinked hydrogel with incorporated naf-
cillin. Nafcillin is a semisynthetic antibiotic considered a narrow-spectrum beta-lactam
antibiotic [43]. Nafcillin is a beta-lactamase-resistant penicillin indicated for treating staphy-
lococcal infections caused by strains resistant to other penicillins [44]. It may also be used
as a first-line therapy in methicillin-sensitive Staphylococcus aureus infections [44]. Studies
comparing clinical treatment results with vancomycin suggest that the greater efficacy of
nafcillin against methicillin-susceptible S. aureus (MSSA) may be related to its capacity to
enhance sensitivity to innate host defense peptides (HDPs) [45]. Composite hydrogel-based
dressings are recommended for treating damaged cutaneous tissues because they facilitate
and accelerate wound healing due to the fact their unique attributes. However, these mate-
rials alone do not possess antimicrobial activity, so adding active ingredients is required to
achieve antimicrobial efficacy. The most common solution is to load antimicrobial agents,
antibiotics, and/or active nanoparticles into the hydrogel matrix to treat the wound site
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efficiently. Various carrier matrices and drug loading methods have been developed over
the last decades. Interfacial polymerization, solvent casting, phase inversion, or emulsion
polymerization are the most often utilized polymerization techniques to obtain polymer
matrixes that could serve as drug carriers [46]. Even though numerous transdermal drug-
delivering systems have been widely reported, some of their drawbacks are related to
the laborious manufacturing processes, costs, limitations in chemical resistance and pro-
cessability, or difficulty in maintaining a constant product quality throughout the whole
manufacturing process [46]. These disadvantages could be remediated by developing
photocrosslinkable polymer solutions, which ensure a faster, replicable manufacturing
process and ease of processability.

In this context, this study presents an innovative, straightforward method of obtain-
ing nafcillin-loaded photocrosslinkable nanocomposite hydrogels potentially suitable for
cutaneous application. Novel formulations based on photocrosslinked PVP chains, in-
terconnected by tri(ethylene glycol) divinyl ether (TEGDVE) crosslinker and reinforced
by hydrophilic bentonite nanoclay and/or two types of photoactive nanoparticles, TiO2
and ZnO, were loaded with nafcillin. Further, we sought to explore the influence of each
formulation on the properties of the resultant nanocomposite hydrogel, evaluate the naf-
cillin release profile, and demonstrate their antimicrobial effect via in vitro microbiological
assays. The novelty of this study resides in the ease of fabrication of the antibiotic-loaded
nanocomposite films, as well as the benefits provided by their biocompatible components
and efficacy against methicillin-susceptible Staphylococcus aureus due to the systematic
release of nafcillin.

The herein reported nanocomposite hydrogels demonstrated that they absorb fluid
efficiently, are comfortable to touch and easy to remove, have high elasticity but also
remarkable mechanical strength, and can operate as a barrier against pathogens, and
possessing good antimicrobial activity against Gram-positive strains as a result of the
efficient nafcillin-targeted release.

2. Materials and Methods
2.1. Materials

Materials used for the synthesis of the photocrosslinkable nanocomposite hydrogels:
The monomer 1-vinyl-2-pyrrolidone (NVP) (sodium hydroxide as an inhibitor, ≥99%,
Sigma Aldrich, St. Louis, MO, USA) was distilled before use with vacuum distillation
(90–92 ◦C at 10 mmHg) and stored under N2 before being employed to synthesize the
hydrogel. Tri(ethylene glycol) divinyl ether (TEGDVE) (Sigma Aldrich, St. Louis, MO,
USA), 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Ph-In, Sigma Aldrich,
St. Louis, MO, USA), and bentonite (BT) (hydrophilic bentonite nanoclay, Nanomer® PGV,
Sigma Aldrich, St. Louis, MO, USA) were used as received. The nanofillers, TiO2 and ZnO,
were synthesized as elsewhere described [47]. Materials used for drug loading/release:
nafcillin sodium salt monohydrate (nafcillin) (Sigma-Aldrich, St. Louis, MO, USA) and
phosphate-buffered saline (PBS) (Sigma-Aldrich, St. Louis, MO, USA). Materials used for
evaluation of the antimicrobial activity: chloramphenicol (Sigma-Aldrich, St. Louis, MO,
USA), Muller Hinton broth (MHb) (Merck, Darmstadt, Germany), Mueller Hinton agar
(Merck), and 90 mm diameter Petri dishes. The bacteria strains were Staphylococcus aureus
(ATCC 6538) as a model for Gram-positive bacteria and Escherichia coli (ATCC 8739) as a
model for Gram-negative bacteria. S. aureus and E. coli were chosen, as they are considered
standard microorganisms for testing the antimicrobial properties of newly synthesized
products [48]. After cultivation overnight in MHb (Merck) at 37 ◦C with stirring (200 rpm),
the bacterial strains were harvested. Portions of the suspension were harvested by cen-
trifugation and resuspended in phosphate buffer saline. The suspensions were adjusted to
approximately 107 CFU/mL [49].
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2.2. Methods
2.2.1. Synthesis of Photocrosslinkable Nanocomposite Hydrogels

The nanocomposite hydrogels were obtained with free radical photopolymerization in sil-
icone rubber-sealed glass molds using a UV lamp (low-pressure Hg UV lamp, λem = 254 nm).
The nanofiller composition and the sample codes for the synthesized materials are detailed
in Table 1. For the P1 sample, the monomer NVP (1.2 g), the crosslinker–TEGDVE (0.09 g),
and the photoinitiator-Ph-In (0.006 g) were dissolved in distilled water (4.5 mL). To obtain
the nanocomposite hydrogels, the nanofillers, BT and TiO2/ZnO (compositions detailed in
Table 1), were firstly dispersed through ultrasonication, followed by the addition of the other
reactants. The UV curing of the hydrogels was completed after approximately 30 min.

Table 1. Composition of the samples.

Sample Code BT, wt % * TiO2, wt % * ZnO, wt % * NVP, g TEGDVE, g Ph-In, g Water, mL

P1 - - - 1.2 0.09 0.006 4.5

P1-TiO2 - 0.1 - 1.2 0.09 0.006 4.5

P1-ZnO - - 0.1 1.2 0.09 0.006 4.5

P2 0.2 - - 1.2 0.09 0.006 4.5

P2-TiO2 0.2 0.1 - 1.2 0.09 0.006 4.5

P2-ZnO 0.2 - 0.1 1.2 0.09 0.006 4.5

1.2 0.09 0.006 4.5

* From the total mass of the reaction mixture.

2.2.2. Nafcillin Loading/Release Tests

The lyophilized nanocomposite hydrogels were loaded with nafcillin to investigate the
release profiles of the active ingredient for each formulation. An aqueous nafcillin solution
(5 × 10−3 M) was utilized for loading. Each lyophilized sample (~30 mg) was introduced
in 5 mL of nafcillin solution and maintained in this solution pending equilibrium. The
nafcillin-loaded equilibrium-swollen nanocomposite hydrogels were dried in an oven to
reach a constant weight. The nafcillin-loaded dry samples were further subjected to release
tests in PBS solution (pH = 7.4, 37 ◦C). The UV-Vis technique was employed for observing
the nafcillin release profile in PBS. The absorbance at 330 nm was monitored by recurrent
sampling (1 mL) at regular intervals and, subsequently, correlated with the corresponding
concentration of nafcillin. The solution in the test tube was refilled with 1 mL of fresh
solvent after sampling to maintain a constant volume for the release experiments. The
data obtained from the UV-Vis analysis were used to evaluate the release patterns of the
nanocomposite hydrogels by investigating which mathematical model from the ones listed
below was more appropriate for describing the drug release profile. The accuracy of the fit
was also estimated. Measurements were performed in duplicate, and the mean values were
reported. Thus, the drug release profile was fitted using the four mathematical models
presented bellow [16].

Zero order (Equation (1)):
Q% = K0t (1)

First order (Equation (2)):
Q% = 1− eK1t (2)

Simplified Higuchi model (Equation (3)):

Q% = KHt0.5 (3)

Linear logarithm form of the Korsmeyer–Peppas model (Equation (4)):

log(Q%) = log(K) + nlog(t) (4)
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where Q% is the percentage of drug released in time t; K0 is the zero-order release constant
in units of concentration %/time; K1 is the first-order release constant; KH is the Higuchi
dissolution constant; K is the kinetic constant characteristic of the drug–polymer system;
and n is the release coefficient that indicates the type of diffusion mechanism.

2.2.3. Evaluation of the Antimicrobial Activity of the Nafcillin-Loaded
Nanocomposite Hydrogels

Nafcillin, like other penicillins, has bactericidal activity against penicillin-susceptible
microorganisms during the state of active multiplication in the bacterial cell wall synthesis.
It acts by inhibition of the biosynthesis of the bacterial cell wall by forming covalent bonds
with penicillin-binding proteins that play a critical role in the final transpeptidation process.
It inhibits transpeptidase and carboxypeptidase activities by binding to penicillin-binding
proteins conferred by these proteins and prevents the formation of the crosslinks [50].

The antimicrobial activity of the nafcillin-loaded nanocomposite hydrogels was eval-
uated with the “agar disc diffusion method” and the “time-kill test”. The samples were
utilized for in vitro evaluation against Staphylococcus aureus and Escherichia coli bacteria.

The disc diffusion method is the official method used in many clinical microbiology
laboratories for routine antimicrobial susceptibility testing. In this well-known procedure,
agar plates are inoculated with a standardized inoculum (105 CFU/mL) of the test mi-
croorganism. Then, filter paper discs (~6 mm diameter) containing the test compound
at a known concentration are placed on the agar surface. The Petri dishes are incubated
under suitable conditions (36 ◦C for 24 h). Yet, the agar disc diffusion method is not ap-
propriate to determine the minimum inhibitory concentration (MIC), as it is impossible to
quantify the amount of the antimicrobial agent diffused into the agar medium [49]. In this
study, due to the nature and desired applicability of the hydrogels (nafcillin-loaded solid
samples designed for cutaneous healing applications), the nanocomposite hydrogel films
(~0.3 × 0.5 × 0.3 cm) were applied directly onto the agar inoculated with S. aureus or E. coli.
If the tested materials have antimicrobial activity, an inhibition area should be observed
around the sample on the agar surface. The antimicrobial efficiency of the samples was
compared with the positive control consisting of a standard disc with chloramphenicol.

Time-kill assay is a method employed for quantifying the bactericidal effect. This
method is suitable for obtaining information about the antimicrobial agent and microbial
strain interaction. The time-kill test reveals a time-dependent or a concentration-dependent
antimicrobial effect. Portions of 0.2 × 0.2 cm from each sample were put in contact with
1 mL of inoculum from each microorganism (bacterial strain suspensions, 107 CFU/mL).
The samples were mixed and vortexed with inoculum until obtaining a homogenous
mixture. They were maintained in direct contact (for 1 h and 24 h). At each established time,
a volume of 0.1 mL of each mixture was inoculated onto the agar surface and incubated at
37 ◦C for 24 h. After the incubation, bacterial survival was evaluated [51].

2.3. Characterization

The FTIR analysis was performed on a Spectrum Two FTIR spectrometer (PerkinElmer,
Waltham, MA, USA) with a MIRacleTM Single Reflection ATR-PIKE Technologies at 4 cm−1

resolution, summing 16 scans in the 4000−550 cm−1 region. The TEM imaging of the
nanofillers was obtained with a TECNAI F30 G2STWIN instrument, Fei Company, Ore-
gon, OR, USA, at a 300 kV acceleration voltage and 1 Å resolution. The cross-sections
of the equilibrium-swollen hydrogels were subjected to a freeze–drying cycle at −15 ◦C
using Biobase BK-FD10 S equipment. Before the SEM-EDX analysis, the lyophilized
samples were gold sputter-coated under argon plasma. SEM imaging was acquired us-
ing a Tescan Vega II LMU electronic microscope at a 30 keV acceleration voltage, and
the elemental mapping was assessed with the EDX technique (Bruker QuantaxXFlash
6/10 energy-dispersive X-ray). Operational parameters: voltage, 30 keV; optimum scan
current, 20 ÷ 40 nanoamperes; resolution, 10 nm; pressure, 50 × 10−2 Pa. The swelling
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degree of the nanocomposite hydrogels was estimated according to References [52–54],
based on duplicate measurements, and the mean values are reported.

The swelling degree (SD) was calculated according to the equation described below:

SD = (whydrogel - wxerogel)/wxerogel

where whydrogel is the weight of the hydrogel (at equilibrium swollen state), and wxerogel
represents the weight of the xerogel (completely dried matrix).

A Discovery 850 DMA TA analyzer was utilized to investigate the mechanical proper-
ties of the nanocomposite hydrogels through uniaxial tensile/compressive testing and the
frequency sweep on the “shear-sandwich” geometry. The tensile tests were performed to
investigate the mechanical resistance of the synthesized nanocomposite hydrogels to tensile
deformation at a rate of 5 mm/min. After the UV-Vis curing procedure was completed,
five specimens (40 × 5 × 3 mm) from each sample were evaluated for tensile resistance
using tension clamps, and mean values were recorded. Compressive tests (compression
clamps: Ø 40 mm) were performed at 2 mm/min on five fully swollen disc specimens from
each type of sample, and the mean values are reported. “Shear-sandwich” clamps were
installed on the same DMA 850 TA instrument to evaluate the viscoelastic properties of the
nanocomposite hydrogels in the frequency-sweep mode, in the linear visco-elastic region,
maintaining a constant strain of 1%. At the same time, the frequency range was logarithmi-
cally increased from 0.1 to 10 Hz. For the frequency sweep survey, two equilibrium-swollen
square-shaped specimens (10 × 10 × 3 mm) were tested on the “shear-sandwich” set-up,
and the mean values are reported. The UV-Vis survey was performed in the 300–800 nm
range, with a resolution of 5 nm, using a GBC Cintra 101 UV-Vis instrument.

3. Results and Discussions
3.1. Preparation of the Nanocomposite Hydrogels

The nanocomposite hydrogels were obtained via free-radical photopolymerization
of NVP by employing TEGDVE as the crosslinking agent, and BT and TiO2/ZnO as
nanofillers. Figure 1 displays a schematic representation of the main steps followed to
obtain the nafcillin-loaded nanocomposite hydrogels and a brief exemplification of one of
their potential applications. These steps are further detailed, starting with a description of
the materials and the procedures utilized for synthesizing and characterizing the nanocom-
posite hydrogels, followed by nafcillin loading, and then investigations of the drug release
kinetics and microbiological assay.

The selection of each reactant used for synthesizing the nanocomposite hydrogels
is further explained. Due to the versatile and unique properties of PNVP adjoined to
the countless possibilities for use in drug delivery systems [21], NVP was the favorite
monomer candidate for this study. TEGDVE is frequently used as a crosslinking agent
due to the fact of its high reactivity, compatibility with UV curing devices, and molecule
flexibility [55–59]. TiO2 and ZnO nanofillers were chosen for their antimicrobial poten-
tial and photoactivity [60,61]. Hydrophilic BT nanoclay was employed as a reinforcing
agent in the hydrogels due to the fact of its remarkable ability to enhance mechanical
properties [55,62]. Still, it is also well known for its cationic exchange capacity, swelling and
drug-carrier abilities, and possible applications for improving antimicrobial activity [63].

UV-assisted synthesis of the nanocomposite hydrogels represents the first stage of this
research, and the critical parameter, in this case, was achieving a homogenous dispersion
of the nanofillers. Therefore, before adding the monomer to the reaction mixture, the
formulations were subjected to an hour-long ultrasound dispersion process to achieve a
uniform distribution of the nanoparticles. After UV curing, the nanocomposite hydrogel
films were removed from the glass molds and purified in distilled water. Since these
materials were intended for biomedical applications, this purification step was essential
to remove the unreacted components. Finally, the purified equilibrium-swollen samples
were further submitted to a freeze–drying process to yield porous structures that were
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subsequently loaded with nafcillin, a penicillin derivative antibiotic usually employed to
treat staphylococcal infections.
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Figure 1. Schematic illustration of the synthesis, drug loading, and potential application of nafcillin-
loaded photocrosslinkable nanocomposite hydrogels.

3.2. Characterization of the Nanocomposite Hydrogels

The FTIR analysis was used to evaluate the obtained xerogels (Figure S1). The analysis
confirmed the absence of monomers (the specific vibration of C=C observed for NVP and
TEGDVE at 1620 cm−1 was missing) in the xerogels and that the spectra displayed the
characteristic signals for CH (2920 cm−1), C=O (1670 cm−1), C-N (1420 cm−1), and C-O
(1280 cm−1) specific for the crosslinked polymer chains including NVP units. The presence
of TiO2 and ZnO in the composites could not be properly ascertained by FTIR, probably
due to the fact of their wrapping in the polymer matrix.

Electron microscopy techniques, TEM and SEM (with EDX), were performed on the
nanocomposite hydrogels to ascertain the morphology and distribution of the filler in the
polymer matrix.

The TEM images in Figure 2 offer evidence of the geometric shape and the dimensions
of the TiO2 and ZnO nanoparticles utilized in the nanocomposite hydrogels. As can be seen,
TiO2 displayed a relatively round, regular shape, while the ZnO nanoparticles possessed an
irregular shape and relatively smaller dimensions than TiO2. Considering that each larger
particle seemed to be composed of a few smaller crystallites, we can affirm that the TEM
pictures also suggest that some of the TiO2 and ZnO nanoparticles were aggregated and
assembled within similarly shaped larger particles. The Influence of the morphology of the
TiO2 and ZnO crystals on the performances of the resulting nanocomposite hydrogels is
further discussed through each supplementary investigation performed.

The morphology of the lyophilized and synthesized nanocomposites was revealed
with SEM-EDX analysis (Figures 3 and S2–S8 in the Supplementary Materials).
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Since the amount of monomer and crosslinker employed for the synthesis was kept
constant, modification of the hydrogel pore characteristics can be attributed to the modifi-
cations induced by the type and combination of the nanofiller. Comparing the SEM images
of samples P1 and P2, the increase in the pore size for sample P2 can be attributed to an
increase in the morphology’s anisotropy caused by obtaining exfoliated or intercalated
morphologies induced by the presence of bentonite (Scheme 1).
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Scheme 1. Hypothetical illustration of the intercalated or exfoliated structures.

In the case of samples P1-TiO2 (Figure 3C) and P1-ZnO (Figure 3E), there was no
apparent difference between the pores; however, slightly larger dimensions were obtained
compared to the blank sample P1. This behavior can be attributed to the participation of
the TiO2 and ZnO nanoparticles in the photopolymerization step through the generation
of HO free radical species induced by UV irradiation [64,65]. The increase in free radical
concentration leads to an increase in the polymerization rate, and an increase in the volume
contraction, which causes the formation of larger pores during the relaxation step [66]. Fur-
thermore, the pore size dimension in the case of P2-TiO2 and P2-ZnO was 15–20 times larger
than the sample without photoactive particles. This can be attributed to the presence of
bentonite, which undergoes a more efficient exfoliation process (supported by the presence
of TiO2 or ZnO, Scheme 1) compared to the P2 sample. The EDX mapping (Figures S4–S7
in the Supplementary Materials) revealed the uniform distribution of the nanofillers inside
the nanocomposite hydrogels P1-TiO2, P1-ZnO, P2-TiO2, and P2-ZnO, respectively.

The following parameter investigated and correlated with the SEM-EDX analysis
was the swelling degree of the nanocomposite hydrogels. In Figure 4, the variation in the
swelling degree is presented. Sample P1 exhibited the highest swelling degree. The water
retention capacity decreased with the increase in nanofillers, indicating a morphological
modification through the formation of agglomerates in the polymer network. Comparing
the samples with ZnO and TiO2 fillers, the higher swelling degree of the sample containing
TiO2 was evident, which can be attributed to its higher hydrophilicity compared to the
sample containing ZnO. In the case of sample P2, the slightly opaquer aspect compared to
P1 is explained by the presence of bentonite nanoclay. Comparing P1-TiO2 and P1-ZnO, in
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the case of ZnO, the dispersion of the nanoparticles seemed more efficient, which can be
attributed to the smaller dimensions of the nanoparticles sustained by the EDX mapping
(Figures S4 and S5 from the Supplementary Materials). In the case of P2-TiO2 and P2-ZnO,
the loss of transparency (Figure 4B) was due to an increased number of reinforcing agents.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

 
Scheme 1. Hypothetical illustration of the intercalated or exfoliated structures. 

The following parameter investigated and correlated with the SEM-EDX analysis 
was the swelling degree of the nanocomposite hydrogels. In Figure 4, the variation in the 
swelling degree is presented. Sample P1 exhibited the highest swelling degree. The water 
retention capacity decreased with the increase in nanofillers, indicating a morphological 
modification through the formation of agglomerates in the polymer network. Comparing 
the samples with ZnO and TiO2 fillers, the higher swelling degree of the sample contain-
ing TiO2 was evident, which can be attributed to its higher hydrophilicity compared to the 
sample containing ZnO. In the case of sample P2, the slightly opaquer aspect compared 
to P1 is explained by the presence of bentonite nanoclay. Comparing P1-TiO2 and P1-ZnO, 
in the case of ZnO, the dispersion of the nanoparticles seemed more efficient, which can 
be attributed to the smaller dimensions of the nanoparticles sustained by the EDX map-
ping (Figures S4 and S5 from the Supplementary Materials). In the case of P2-TiO2 and P2-
ZnO, the loss of transparency (Figure 4B) was due to an increased number of reinforcing 
agents. 

  
Figure 4. (A) swelling degree of the nanocomposite hydrogels; (B) equilibrium-swollen samples. 

Tensile/compressive and frequency sweep measurements were used to investigate 
the mechanical properties of the nanocomposite hydrogels. Figure 5 comparatively illus-
trates the results obtained from these investigations. 

23.7

18.5
17.3

18.1 17.7 17.1

P1 P1-TiO2 P1-ZnO P2 P2-TiO2 P2-ZnO
0

5

10

15

20

25

Sw
el

lin
g 

de
gr

ee
 (g

/g
)

A

Figure 4. (A) swelling degree of the nanocomposite hydrogels; (B) equilibrium-swollen samples.

Tensile/compressive and frequency sweep measurements were used to investigate the
mechanical properties of the nanocomposite hydrogels. Figure 5 comparatively illustrates
the results obtained from these investigations.
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The tensile tests (Figure 5A), performed after the completion of the UV curing, showed
that the addition of the nanofillers considerably improved the mechanical resistance of
the blank sample (P1). The mechanical properties of samples P1-TiO2 and P1-ZnO were
superior to P1, attributable to the use of reinforcing agents. It is well documented in the
literature that the addition of bentonite has a positive effect on mechanical properties, an
aspect clearly visible for the analyzed samples. The positive impact of BT on the mechanical
properties [67,68] of sample P2 was also sustained by the SEM images, which revealed that
sample P2 possessed thicker pore walls than the blank sample (P1); thus, a reinforcing
effect was confirmed by an increase in the mechanical stiffness [69] of sample P2. The mean
ultimate strain values measured for P2 were slightly lower, probably because this stiffening
effect was induced by the nanoclay, meaning that it was harder to deform the hydrogel [70].
In the case of P2-ZnO, the mechanical properties were inferior to P2-TiO2, explainable by the
interaction between the nanoparticle and the polymer network (hydrophilic/hydrophobic
interactions) (Scheme 1).

The results obtained from the uniaxial compressive tests performed on the equilibrium-
swollen nanocomposite hydrogels are comparatively illustrated in Figure 5B. The swollen
state of the crosslinked samples led to the slightly different behavior of the hydrogels due
to the fact of their distinct water uptake capacity in addition to the influence caused by the
mechanical resistance of each type of nanofiller. Still, there is a delicate balance in designing
a hydrogel with appropriate properties that exhibit sufficient mechanical integrity without
sacrificing its absorptive properties [71].

Compressive testing showed that the P1-ZnO sample, in a fully swollen state, lost its
resistance more than the analogous sample with TiO2 (P1-TiO2). A possible explanation
for this behavior could be the better dispersion of TiO2, probably sustained by its higher
hydrophilicity compared to ZnO, conjoined with the potential, more pronounced, aggre-
gation of the smaller ZnO nanoparticles (Scheme 1). The higher resistance of the samples
containing BT and TiO2 (P2, P1-TiO2, and P2-TiO2) was confirmed by compression tests,
indicating that, in this case, the reinforcing effect of the two nanofillers (BT and TiO2) fused
to ensure superior mechanical performance.

The frequency–sweep test offers information regarding the viscoelastic properties of
the nanocomposite hydrogels. The storage modulus was higher than the loss modulus
for all hydrogel samples, indicating their “solid-like” [72,73] structure but also a high
elastic behavior [54]. The relatively high crosslinked character of the nanocomposite
hydrogels is indicated by the linearity of the G’ plots (frequency independent). Still, at
higher frequencies, G’ displayed a decreasing tendency, which was more visible for samples
P1, P2-ZnO, and P2, probably because the hydrogel begins its transition from an elastic
state towards a plastic flow state. Storage and loss modulus plots did not overlap in the
measured frequency range [72]; therefore, these materials possessed an entangled elastic
network. The G’ values were approximately one order of magnitude higher than G” values,
comparable to the characteristics reported for naturally occurring tissues [74]. Even if all
samples exhibited similar viscoelastic patterns, samples P2-TiO2, P1-TiO2, P2-ZnO, and
P2 led to higher G’ and G” values than P1 and P1-ZnO, indicating a stiffening effect and
higher mechanical strength with the reinforcing contribution of the nanofillers, which also
provide localized regions of enhanced strength [75]. The rate at which the enclosed dynamic
bonds or entanglements are broken/recombined/repositioned determines how effectively
these hydrogels dissipate energy, consequently, influencing the resulting G” values. It was
observed that the G” values slightly increased at frequencies lower than 1 Hz, because the
samples had a longer time to flow. In contrast, values of G” started to decrease at higher
frequencies, because the nanocomposites became less efficient in dissipating the energy
due to the shorter times available for the polymeric network’s relaxation. The frequency
sweep rheograms aligned with the stress-strain (tensile and compressive) plots.

Based on the results obtained, samples P1, P2, P2-TiO2, and P2-ZnO were further
selected to investigate their potential as drug carriers.
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In the last part of this study, the potential of these nanocomposite hydrogels to be
used in biomedical applications was evaluated through UV-Vis monitoring of drug load-
ing/release experiments and microbiological assays.

3.3. Nafcillin Loading and the Evaluation of Drug Release Kinetics

The nafcillin loading efficiency, presented in Figure S10, was situated between
18.7 and 24.8%. This efficiency was determined using the large volume of the nafcillin
molecule, which makes its diffusion inside the crosslinked polymer matrix slightly more
difficult [76,77]. However, the content absorbed ensured a good antimicrobial activity of
the material during the release stage.

The results obtained via UV-Vis for estimating the release kinetics of the active ingre-
dient (nafcillin, loaded in the nanocomposite hydrogels) are detailed below. Given that
the presence of bacteria causes infected surface wounds to move toward an alkaline pH
(above the typical skin pH range of 4.0–6.5), the release experiments were carried out in
an alkaline medium (PBS at 7.4 pH) at a temperature of 37 ◦C to simulate the minimal
wound environment [16]. The data analysis presented in Figure 6, Table 2, and Figures
S11–S14 in the Supplementary Materials reveals that higher R2 values were obtained for the
Korsmeyer–Peppas release model [78]. The value of the n parameter was situated between
0.5 and 1, which is specific to a non-Fickian, analogous drug release mechanism [79–82].
The P1 (n = 0.69) and P2 (n = 0.73) samples displayed a comparable release pattern. The
samples containing bentonite seemed to exhibit lower release rates, probably due to the
supplementary interactions established between the nanoclay and the antibiotic. Yet, P2-
TiO2 exhibited a considerably higher release rate in the first 2 h, which could be very useful
for potential application as a wound dressing material because wounds typically need a
higher antibiotic dosage at the beginning of the treatment [83]. The larger pores of P2-TiO2
(Figure 3D and Figure S5 in the Supplementary Materials), the smoother surface, and the
larger dimensions of the TiO2 nanoparticles (Figure 2) might explain the distinct diffusion
paths and faster release of the drug molecule in this case. Furthermore, according to TEM
images (Figure 2), the ZnO nanoparticles possessed an irregular surface and had relatively
smaller dimensions than the TiO2 nanoparticles, so they ensured a larger specific surface
area for the adsorption of the antibiotic, which may have led to prolonged interactions
with nafcillin and slower release rates for P2-ZnO. In conclusion, the variable porosity of
the hydrogel, the dissimilar adsorptive performances of the nanofillers, and the specific
interactions established by the antibiotic with each nanocomposite component will influ-
ence the availability of the drug by differently directing its diffusion through the polymer
network [43]. The Korsmeyer–Peppas model was found to best match the nafcillin release
profile based on the results of the UV-VIS monitoring.
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Figure 6. Nafcillin release profile in PBS solution and Korsmeyer–Peppas model fitting for samples
P1, P2, P2-TiO2, and P2-ZnO. (A) cumulative concentration versus time and (B) Korsmeyer–Peppas
model fitting for samples P1, P2, P2-TiO2, and P2-ZnO.
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Table 2. Data fitting for the nafcillin release profile.

Mathematical Model P1 P2 P2-TiO2 P2-ZnO

Zero order
K0, min−1 0.49 0.36 0.23 0.41

R2 0.87 0.90 0.79 0.89
First order
K1, min−1 0.0098 0.0087 0.0033 0.01

R2 0.66 0.66 0.70 0.62
Higuchi

KH, min−0.5 8.14 5.51 4.47 7.71
R2 0.973 0.94 0.92 0.980

Korsmeyer–Peppas
n 0.69 0.735 0.627 0.960

R2 0.985 0.983 0.979 0.988

3.4. Evaluation of the Antimicrobial Activity of the Nanocomposite Hydrogels

The final step in this research was to assess the antimicrobial effectiveness of nafcillin-
loaded nanocomposite hydrogels. Table 3 summarizes the samples utilized for the mi-
crobiological assays. The results obtained through the “agar disc diffusion method” and
“time-kill” test are further detailed.

Table 3. Samples utilized in the microbiological assays.

Nafcillin-Loaded Samples Tested Sample Code in Microbiological Assays

P1 I.

P2 II.

P2-TiO2 II.1

P2-ZnO II.2

Positive control CP

Blank reference strains Bk

(A) Agar disc diffusion method

For evaluating the antimicrobial activity of the nafcillin-loaded hydrogel nanocom-
posites through the agar disc diffusion method, the samples were placed on representative
Gram-positive and Gram-negative strains, as detailed in Section 2. All four tested nafcillin-
loaded samples revealed a strong antimicrobial activity against S. aureus, comparable
to the reference antibiotic used as the positive control (chloramphenicol), as visible in
Figure 7A,B. This remarkable antimicrobial activity can be explained by the synergistic
action of nafcillin and the nanofillers. Typically, an antimicrobial agent diffuses into the
agar and inhibits the germination and growth of the tested microorganism. Therefore,
the inhibition growth zones offer evidence of the efficacy of the antimicrobial agent. In
our case, the diameters of the inhibition growth zones seemed to exceed the diameter of
the CP sample. However, since the diameters of the inhibition growth zones exceeded
~29 mm [84–87] and the inhibition growth zones even overlapped, we can affirm that the
tested nafcillin-loaded nanocomposite hydrogels proved that they possess outstanding
antibacterial activity against S. aureus, which recommends them for further biomedical
applications (e.g., wound dressings and biological decontamination applications).
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In contrast, when testing the nanocomposite hydrogels on E. coli, they displayed a
very thin ring of inhibition, which suggests a very low susceptibility of this Gram-negative
microorganism. Nonetheless, we expected these results for E. coli, since nafcillin is a narrow-
spectrum [11] antibiotic designed for staphylococcal infections. Therefore, no inhibition can
be reported for the samples tested against E. coli, most likely due to the specific spectrum
of nafcillin.

Because this technique cannot distinguish between bactericidal and bacteriostatic effects,
supplementary investigations were necessary, so we further carried out a time-kill assay.

(B) Time-kill assay

A time-kill assay was performed investigating two different contact times (1 h and 24 h)
between the representative strains and the nanocomposite hydrogels, and the bacterial
growth was evaluated. The results obtained for the time-kill test are summarized in
Table 4 and graphically compared in Figure 8. According to these results, all four samples
demonstrated good antimicrobial effects against S. aureus but no activity on E. coli. The
nanocomposite hydrogels P1 (sample I) and P2-TiO2 (sample II.1) exhibited the highest
antimicrobial activity (decrease in growth between 3log10 and 2log10) after direct contact
with S. aureus (Table 4). For P2 (sample II) and P2-ZnO (sample II.2), the antimicrobial
activity against S. aureus was slightly lower. These microbiological findings align with the
results obtained for the nafcillin release profile.
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Table 4. Number of CFUs recovered after contact times.

Samples
No. of CFUs

after 1 h
No. of CFUs

after 24 h
No. of CFUs

after 1 h
No. of CFUs

after 24 h

S. aureus E. coli

I. 16 × 104 106 32 × 106 98 × 106

II. 49 × 105 14 × 106 38 × 106 70 × 106

II.1 26 × 104 19 × 105 25 × 106 62 × 106

II.2 56 × 105 45 × 106 40 × 106 90 × 106

Bk 22 × 107 42 × 107 28 × 106 46 × 106
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The inhibition of the growth of Gram-positive bacteria may be caused by a specific
and combined interaction between nafcillin and TiO2/ZnO nanoparticles with the tested
microorganisms [88]. As expected, the time-kill test revealed no antimicrobial action
against E. coli, given that nafcillin proved its efficacy specifically as an anti-staphylococcal
antibiotic (Gram-positive cocci and staphylococci that produce penicillinase) [45]. However,
the presence of a very weak inhibition ring of Gram-negative bacteria growth could be
explained through some feeble interactions that may occur with the active ingredients, yet
insufficient to stop the growth of E. coli. Our results are supported by the literature, which
states that nafcillin is active against Gram-positive species (e.g., staphylococci, streptococci,
and pneumococci), but like other penicillinase-resistant penicillins, it shows little or no
activity against Gram-negative microbes [89].

The microbiological assay also showed that after 24 h, the surviving microorganisms
began to divide and multiply, probably because after the elution of nafcillin by numerous
cells, the high concentration of NPs/antibiotic cannot be maintained for a longer time,
so the phenomenon of the increasing number of microorganisms may appear [26] after
several hours. However, if such hydrogel films were applied to a wound, the samples
would be considerably larger, thus retaining and releasing a higher quantity of antibiotics.
For an antibiotic to work effectively, the antibiotic should remain at the binding site for a
sufficient period of time in order for the metabolic processes of the bacteria to be sufficiently
inhibited [90]. Beta-lactam antibiotics show time-dependent killing and produce prolonged
post-antibiotic effects only with staphylococci. The frequency of drug administration is an
important determinant of outcome for these drugs, as the duration of time serum levels
exceed the MIC is the major determinant of efficacy [91]. Consequently, the objectives of
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future studies include refining the microbiological assays to identify the ideal interval of
time during which the drug-loaded nanocomposite hydrogels are still effective.

4. Conclusions

In this study, nafcillin-loaded nanocomposite hydrogels were obtained via free-
radical photopolymerization.

TEM and SEM imaging offered information on the shape and dimensions of the
nanofillers and allowed the evaluation of the distinct morphology of the nanocomposite
materials. The swelling capacity investigation showed that the increase in nanofiller
concentration led to a lower water uptake capacity. The UV-Vis monitoring of the nafcillin
release showed that the Korsmeyer–Peppas model matched the profile better.

The antibacterial potential was evaluated, and the nanocomposite hydrogels loaded
with nafcillin were found to provide a strong antimicrobial activity against Gram-positive
cocci but no antimicrobial activity against Gram-negative bacteria. The results obtained by
microbiology-applied methods align with data found in the literature for nafcillin and TiO2
or ZnO nanoparticles.
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