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Abstract: Nanosuspensions (NSs), which are nanosized colloidal particle systems, have recently
become one of the most interesting substances in nanopharmaceuticals. NSs have high commercial
potential because they provide the enhanced solubility and dissolution of low-water-soluble drugs
by means of their small particle sizes and large surface areas. In addition, they can alter the pharma-
cokinetics of the drug and, thus, improve its efficacy and safety. These advantages can be used to
enhance the bioavailability of poorly soluble drugs in oral, dermal, parenteral, pulmonary, ocular, or
nasal routes for systemic or local effects. Although NSs often consist mainly of pure drugs in aqueous
media, they can also contain stabilizers, organic solvents, surfactants, co-surfactants, cryoprotectants,
osmogents, and other components. The selection of stabilizer types, such as surfactants or/and
polymers, and their ratio are the most critical factors in NS formulations. NSs can be prepared both
with top-down methods (wet milling, dry milling, high-pressure homogenization, and co-grinding)
and with bottom-up methods (anti-solvent precipitation, liquid emulsion, and sono-precipitation) by
research laboratories and pharmaceutical professionals. Nowadays, techniques combining these two
technologies are also frequently encountered. NSs can be presented to patients in liquid dosage forms,
or post-production processes (freeze drying, spray drying, or spray freezing) can also be applied to
transform the liquid state into the solid state for the preparation of different dosage forms such as
powders, pellets, tablets, capsules, films, or gels. Thus, in the development of NS formulations, the
components/amounts, preparation methods, process parameters/levels, administration routes, and
dosage forms must be defined. Moreover, those factors that are the most effective for the intended
use should be determined and optimized. This review discusses the effect of the formulation and
process parameters on the properties of NSs and highlights the recent advances, novel strategies, and
practical considerations relevant to the application of NSs to various administration routes.

Keywords: nanosuspensions; formulation strategies; production methods; administration routes;
dosage forms

1. Introduction

In recent years, one of the most challenging issues encountered in both the pharma-
ceutical industry and pharmaceutical studies has been drug candidates with low water
solubility [1]. The main challenges are that the dose-response linearity of drugs with low
water solubility may decrease, and unexpected collapse of the drug may be encountered
after administration, leading to decreased patient compliance and decreased bioavailability.
In addition, due to the low solubility of active substances in water, variations may occur as
a result of changing the absorption of the drug in fasted and fed states [2]. There have been
very promising developments in the studies carried out in the last century to overcome
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these problems, and the most important of these is the development of nanosized drug
delivery systems. The basis of these approaches is related to the increase in solubility
when surface area is increased, depending on the Noyes–Whitney equation as a result
of reducing the particle size of the active substance, thus increasing the dissolution and
bioavailability [3]. To increase solubility and thus bioavailability, drug delivery systems
such as liposomes [4], nanoparticles [5], solid lipid nanoparticles [6], polymeric micelles [7],
dendrimers [8], quantum dots [9], nanoemulsions [10], and nanosuspensions [11,12] are
the most widely used. Many studies on nanosuspensions using poorly soluble drugs have
been conducted since nanosuspensions were first reported by Müller et al. in 1994 [13].

Nanosuspensions (NSs) are colloidal dispersions of submicron drug particles and
are generally defined as very finely dispersed and biphasic colloids containing solid drug
particles smaller than 1 µm [14]. Although there are some differences in the literature on
the definition of nanosuspensions, and the words nanosuspensions and nanocrystals are used
interchangeably in these studies, they are characterized as “pure active pharmaceutical
ingredients (APIs) between 10–1000 nm stabilized with surfactant or polymer” [15], as well
as “particles with a particle size of approximately 200–600 nm below 1 micrometer, formed
by 100% pure active substance” [16]. An NS is expressed when prepared with stabilizers in
the form of nanosized drug crystals.

NSs have many advantages over other drug delivery systems. These advantages can
be summarized as follows:

• NSs provide enhanced oral bioavailability of drugs by increasing the saturation solu-
bility and dissolution of the active substance and by increasing adhesion to the cell
surface membranes [17].

• NSs can also allow passive targeting because the particle is of nanometer size [18].
• They are simple, easy, and inexpensive to produce, and they themselves produce rapid

and reproducible formulations [19].
• Production costs are very low because of the low excipient requirements during their

preparation. Moreover, their production can be scaled up [20].
• They reduce the bioavailability differences in fasted/fed states caused by the effects of

food [21].
• They reduce inter-subject variability in bioavailability [17].
• They have a high drug content (accepted as 100%), so the dose used is reduced in

therapy [22].
• Physical stability is increased in solidified nanosuspensions, and solidified formula-

tions can be presented to patients in solid dosage forms such as tablets or capsules [17].
• NSs can be formulated for parenteral, pulmonary, topical, and ophthalmic routes of

administration, in addition to the oral route [14].
• They can be sterilized by various methods such as filtration, dry heat, steam, and

radiation [23].

The many advantages of NSs (or nanocrystals) have led to the development of many
commercial products produced with nanocrystal technology in the pharmaceutical industry.
Nanocrystal-based formulations are widely used to treat cancers, pains, nausea, asthma,
hypertension, hypercholesterol, inflammatory diseases, cardiovascular diseases, bronchial
dilatation, depression, dermal diseases, and other diseases [24,25]. There are many clinical
trials related to NSs in different phases (such as Phase II and III) [26].

In spite of these many advantages and numerous commercially available products,
NSs also have several disadvantages:

• The formulation may not be suitable for some pharmaceutical active ingredients, and
difficulties may be encountered in choosing the stabilizer type and stabilizer ratio used
in the formulation.

• There is a potential for physical stability problems in liquid form during preparation
in nanosuspension form [19].

• Particle growth may occur in the drying step because of insufficient cryoprotectant
power [27].
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• Undesirable polymorphic changes may be encountered because of the need to use
devices (high-pressure homogenizers or wet bead mills) in the preparation of NSs and
because of the high pressure and temperature increase and of the mechanical power
applied accordingly [19].

In the first part of this review, an overview of the preparation methods of NSs, stabiliz-
ers used, characterization studies, and solidification techniques will be given. The second
part addresses the routes of administration of nanosuspensions for systemic or local effects,
and each route of administration is summarized in tables.

2. Preparation Methods for Nanosuspensions

Many methods have been developed by research laboratories and pharmaceutical
experts for the preparation of NSs, and these methods are broadly divided into three
categories: bottom-up technology, top-down technology, and a combination of these two
(Figure 1). Apart from these methods, other preparation techniques, such as supercritical
fluid technology, an emulsification–solvent evaporation method, and a melt emulsification
method, have also been successfully developed in line with advanced studies [24].
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Figure 1. Nanosuspension preparation methods (conventional and combination technologies).

2.1. Bottom-Up Technology

The bottom-up technology, which is also referred to as “nanoprecipitation”, was first
used in 1987 by List and Sucker [28]. This bottom-up technology is based on the principle
of obtaining nanosized particles by precipitating dissolved molecules with the addition of
another insoluble substance. For this method to be applicable, the active substance must be
soluble in at least one solvent and suitable stabilizers must be used to prevent the growth
of particles after precipitation [17]. In Figure 2, the parameters that affect particle size and
particle size distribution in NS formulations obtained by the bottom-up method are shown
by the fishbone diagram. The advantages and limitations of the bottom-up method are
summarized in Table 1.
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Table 1. Comparison of advantages and disadvantages of nanosuspension preparation methods.

Preparation Method Advantages Limitations

Bottom-up technology

• Simple in principle and operation
• No device requirement
• Rapid preparation

• Poor reproducibility
• Non-homogeneous particle size
• Risk of toxic effects of the solvent
• Difficult to scale up

Top-down technologies

High-pressure homogenization
method

• Easy to scale up
• Easy to reproduce
• Obtaining homogeneous particle size
• Obtaining the desired particle size with

process modifications
• Decreasing for recrystallization

• Expensive equipment
• Risk of heating in the device

because of high pressure
• Risk of clogging the chamber

Wet media milling method

• Easy to scale up
• Easy to reproduce
• Obtaining homogeneous particle size
• Obtaining the desired particle size with

process modifications

• Expensive equipment
• Risk of corrosion of beads and

milling chamber

Newly developed bottom-up methods such as liquid antisolvent precipitation (LAS),
precipitation assisted by the acid-base method, high-gravity-controlled precipitation (HGCP),
the supercritical fluid method (SCF), and the emulsion polymerization method are also
available in the literature [24].

2.2. Top-Down Technology

Top-down technologies are based on the reduction of large particles down to the
nanoscale. The main methods used include the high-energy process called high-pressure
homogenization and the low-energy process called media milling [14]. These methods are
more suitable for industrial production than bottom-up technology, and they are applied to
currently marketed products [16].
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2.2.1. High-Pressure Homogenization Method

The high-pressure homogenization (HPH) method relies on excessive shear forces and
possibly cavitation, which is performed by pressing a suspension from voids or crevices
and applying it to the drug crystals to disperse them. The two homogenization principles
applied and the type of homogenizer used in line with these principles are microfluidization
and piston-gap homogenization. Microfluidization is based on a jet-stream principle in
which the coarse suspension accelerates and passes through the homogenizing chamber,
especially under the influence of high-speed collision, shear, and cavitation forces, and the
particle size becomes smaller as a result of these forces [29]. There are two types of chambers
used in this method, the “Z” type and the “Y” type. When in the “Z”-type chamber, the
suspension changes several times in the direction of flow, causing particle collision and
shear forces; in the “Y” type, the suspension current is split into two streams, which then
collide from the front [16]. In the second homogenizer type, the piston gap homogenizer,
the coarse suspension passes through a very fine gap at an extremely high speed. The
pressures applied in all these processes can vary from 500 bar to 350 Mpa [30,31]. Increasing
the pressure and number of cycles generally allows for the preparation of NSs with smaller
particles [32,33]. In Figure 3, the parameters that affect particle size and distribution
in nanosuspension formulations obtained by the high-pressure homogenization method
are shown by the fishbone diagram. The advantages and limitations of this method are
summarized in Table 1.
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2.2.2. Wet Media Milling Method

The media milling method was discovered by Liversidge et al. in 1992 [34]. The
most widely used is ball mills, which are used in the preparation of nanosuspensions
by a grinding method, although jet mills or colloid mills are also used. The ball mill
method can be expressed in different ways: bead milling, wet media milling, and pearl
milling. In this method, the substance and stabilizer solution are put into a chamber and
mechanical grinding is achieved with the help of balls (beads) hitting it [1]. The wet
media milling method involves a milling chamber, milling beads, a suitable stabilizer, and
a dispersion medium, usually distilled water. The active substance is dispersed in this
dispersion medium, and this coarse suspension is added to the milling chamber [35]. An
average of one-third of the chamber is filled with dispersion medium and one-third with
milling beads; the remaining one-third is left empty to provide the necessary space for
milling [36]. Beads (zirconium, stainless steel, etc.) that are suitable for the process, of the
desired number (amount of beads in mL or weight), and size (different bead diameter)
are added to this chamber; the rotation speed of the device is adjusted, and the milling
process begins with the milling time. The most common problem in this method is the wear
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caused by the milling chamber or the impact of the beads. It is necessary to use a chamber
made of a material such as stainless steel or porcelain and beads made of porcelain, glass,
agate, zirconium oxide, or chrome [37]. In Figure 4, the parameters that affect particle
size and distribution in NS formulations obtained by the wet milling method are shown
by the fishbone diagram. The advantages and limitations of the wet milling method are
summarized in Table 1.
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2.3. Combination Technology

In addition to these two technologies (bottom-up and top-down), it is possible to use
several techniques together in the preparation of NSs and to obtain NSs with desired prop-
erties by making some modifications [20,38]. There are studies in the literature regarding
the use of more than one method in combination in Table 1, and these studies also provide
an evaluation of the advantages of the above-mentioned methods. With combined methods,
it is possible to prepare NSs of the obtained formulation using bottom-up technology and
then top-down technology or vice versa.

3. Selection of Stabilizers

Stability is crucial for NSs as with all other drug delivery systems. During the prepara-
tion of NSs, problems such as attraction or agglomeration may be encountered as a result
of the reduction in size of the particles [39]. Because the particles are small and have high
energy, it is usual for the particles to grow because of recrystallization or the Ostwald
ripening effect [40]. Stabilizers are used in formulations to prevent the particle growth that
causes instability in NSs [12,41].

The development of successful NSs is mainly based on the selection of suitable stabi-
lizers. Several stabilizers such as surfactants or polymeric excipients were evaluated for the
optimization of the NS. Parameters of stabilizers such as type, ratio, and molecular weight
must be evaluated for the stability of prepared NS. In addition, the optimum parameters
of stabilizers are dependent on the formulation preparation method and on the active
pharmaceutical ingredients. For these critical properties, researchers make individual
evaluations on the basis of active substances in the screening of stabilizers and decide on
optimum stabilizers by a simple trial-and-error approach [39].

Some excipients used for the stabilization of NSs, as discussed in several studies, are
summarized below (Table 2).

Table 2. Stabilizers used in nanosuspension formulations.

Stabilizer Stabilizer Type Structure References

Cellulose derivatives Polymeric stabilizer A cellulose derivative of cotton natural or
synthetic fibers [35,42,43]

Polyvinyl alcohol (PVA) Polymeric stabilizer A synthetic water-soluble resin obtained from
the hydrolysis of polyvinyl acetate [44–46]

Polyvinyl pyrrolidone (PVP) Polymeric stabilizer
A synthetic linear-chain water-soluble polymer

fabricated from the polymerization of the
monomer N-vinylpyrrolidone

[32,47,48]

Polyethylene glycols Polymeric stabilizer A hydrophilic polymer of ethylene oxide [38,42,49]

Sodium lauryl sulfate (SLS) Surfactant A sulphuric acid mono-dodecyl ester sodium salt [36,47,48]

Plantacare® 2000 Surfactant A plant-derived feedstock [12,29,50]

Brij derivatives Surfactant A polyoxyethylene alkyl ether [51–53]

Lecithin Surfactant A mixture of phosphatides with triglycerides,
fatty acids, and carbohydrates [49]

D-α-tocopheryl polyethylene glycol
1000 succinate (vitamin E TPGS/

TPGS 1000)
Surfactant An ester of vitamin E with PEG 1000 [32,51]

Poloxamers Surfactant Amphiphilic block copolymers [54–56]

Polysorbate 80 Surfactant A polyoxyethylene sorbitan fatty acid ester
derivative [41,57]

Stabilization in NSs can be steric and/or electrostatic. In steric stabilization, a steric
barrier is created by the adsorption of a polymer on the particle surface of the nanocrystals,
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and aggregation of particles is prevented. In electrostatic stabilization, which is the other
mechanism, the NS is stabilized by reducing the surface tension at the interphase interface
thanks to electrostatic repulsion from the ionic surfactants added to the particle surface [24].
Stabilizers commonly used in NSs are surfactants such as poloxamer 188, poloxamer 407,
vitamin E TPGS, polysorbate 80, sodium lauryl sulfate and polymeric substances such as
polyvinyl pyrrolidone, polyvinyl alcohol, and cellulose derivatives (hydroxypropyl methyl
cellulose—HPMC, hydroxypropyl cellulose—HPC, hydroxyethyl cellulose—HEC, and
Methyl cellulose—MC, etc.) [39].

In NS formulation, the drug:stabilizer ratio (w/w) can vary widely, from 1:20 to
20:1 [39,47]. Stabilizers can be used in NS formulations using different preparation methods
after the optimum ratio is determined by preliminary studies. In the use of stabilizers,
specific choices are not made for drug administration routes. The stabilizers and results
obtained in NSs prepared using different preparation methods for different routes of
administration are summarized in the following sections of this review.

4. Characterization Studies for Nanosuspensions

Physical, chemical, physicochemical, and biological tests are performed for the charac-
terization of the prepared NSs before and/or after solidification. Mean particle size and
particle size distribution (polydispersity index), crystalline state and particle morphology,
surface charge, saturation solubility, dissolution rate, stability, and in vivo biological per-
formance studies are some of the basic characterizations for NSs. Various characterization
methods of nanocrystalline formulations are summarized in Table 3.

Table 3. Characterization studies for nanosuspensions.

Characterization Methods Principle Significance References

Particle size and
morphological

evaluation

Dynamic light scattering (DLS)
and photon correlation

spectroscopy (PCS)

Fluctuation of Rayleigh
scattering of light associated

with Brownian motion of
nanoparticles

Particle size (PS) and particle size
distribution (PDI) measurements [19,49]

Optical microscopy, scanning
electron microscopy (SEM),

transmission electron
microscopy (TEM), and stomic

force microscopy (AFM)

Reflection or transmission of
electrons incident on the particle

and the force applied to the
sample by the probe

Particle size measurement, surface
morphology, and three-dimensional

image
[24,48,58]

Surface
properties Dynamic light scattering (DLS) Electrophoretic mobility Surface charge (zeta potential—ZP)

measurements [40]

Solid state
(Structural)

characterization

Differential scanning calorimetry
(DSC) and differential thermal

analysis (DTA)

Thermogravimetric analysis and
physical change in the sample

versus change in heat flow

Solid state form analysis (enthalpy,
melting point, glass transition

temperature)
[58]

Infrared (IR) spectroscopy
(mid-IR and

Fourier-transformed IR
spectroscopy) and Raman

Spectroscopy

Change in dipole moment
during

molecular vibrations and in
polarizability during molecular

vibrations

Polymorphic form changes (analysis of
amorphous, crystalline, and polymorphs) [59]

X-ray powder diffraction (XRPD) Diffraction of X-rays transmitted
on the sample

Polymorphic form changes (analysis of
amorphous, crystalline, and polymorphs) [60]

Rheological
properties (for
liquid nanosus-

pensions)

Viscometer and rheometer
The way a liquid flows in

response to the applied force
and the viscosity of a fluid

Rheological character and flow type [48,61]

Solubility

Ultraviolet (UV)
spectrophotometer and

high-performance liquid
spectroscopy (HPLC)

Detection of increase in
saturation solubility using

spectroscopy or chromatography
Increasing active substance solubility [49,60]

5. Solidification of Nanosuspension and Stability

Despite the individual and even combined use of the many stabilizers shown in
Table 2, it is impossible to completely inhibit the crystal growth of nanosized particles.
Thermodynamically, the presence of NSs in a liquid dispersion medium accelerates crystal
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growth. Therefore, to obtain long-term stability and avoid aggregation, hydrolysis, and
other stability problems, the use of appropriate stabilizers, as well as the drying of the
formulation, is necessary. The drying process in NSs is undertaken by freeze-drying or
spray-drying methods. These dried nanocrystals thus obtained can be presented to patients
in solid dosage forms such as powder, tablet, or capsule [40].

To solidify the liquid suspensions, drying methods such as either lyophilization or
spray drying are preferred. In cases where the active substance is likely to be affected by
heat, the drying process is by lyophilization; the drying method may be selected by spray
drying with effective substances that are not affected by heat and in cases where the drying
particles should be more spherical.

Freeze drying, the lyophilization method, is the most common method of drying
NSs. After a sudden freezing step, primary and secondary drying is performed under a
vacuum. In this method, the segregation of nanocrystals as unfrozen small liquid packages
and particle aggregation are prevented by using cryoprotectant material. Water-soluble
matrix-forming sugars such as mannitol, sucrose, glucose, dextran, and trehalose are used
for cryoprotectant purposes [49,58,60].

In the spray-drying method, temperature and pressure are rapidly applied to the NS
formulation [47]. The dried particles are spherical, and the flow properties are quite good.

6. Administration Routes of Nanosuspensions

NSs can be administered by dermal, parenteral, ocular, and pulmonary routes, as well
as by the oral route, which is the most common route for NS administration (constituting
more than 60%) [19,49].

6.1. Oral Administration

The oral route is the preferred route of administration of drugs in terms of patient
compliance, non-invasiveness, ease of use, dose flexibility, and safety. Beside patient
benefits, oral dosage forms have advantages regarding cost-effectiveness, feasibility, and
suitability for large-scale production. Due to these advantages, it is estimated that 90% of
commercial drugs are for oral use [62].

When a drug is given orally, bioavailability and efficacy depend on solubility and ab-
sorption in the gastrointestinal tract. Poor aqueous solubility, poor permeability, the effects
of being fed or fasted, enzymatic degradation, and the high first-pass effect are challenges
that the development of oral medications encounter; they may result in inadequate in vivo
absorption and the formulation not reaching an effective therapeutic concentration [63]. In
addition, 40–70% of newly discovered drugs emerge with low solubility properties with
limited oral bioavailability [64]. Due to the low bioavailability, a drug candidate may have
to be administered in larger doses than usual, increasing the cost of treatment [65].

Currently, the Biopharmaceutical Classification System (BCS) is used to identify the
physicochemical limitations for oral bioavailability based on the drug solubility properties
of the drug throughout the upper gastrointestinal tract. BCS Class II and IV drugs limit
both the rate and the extent of drug absorption. The rate of dissolution of the drug is
the principal limitation of oral absorption [66]. This is why the dissolution rate can be
considered the primary effective parameter for drug pharmacokinetics, which is related
to drug solubility and particle size. Increased saturation solubility results in an increased
concentration gradient between the gastrointestinal tract and blood and in an increased
dissolution rate of the drug. In this way, the adhesiveness of drug particles provides
enhanced bioavailability.

Particle size reduction is one of the most common approaches to increasing the sat-
uration solubility and dissolution rate. The micronization process is widely used for this
purpose, using colloid mills or jet mills. Micron-sized particles above 1 µm increase the
dissolution rate because of the increased surface area. However, this does not change
the saturation solubility of a drug, and low oral bioavailability still poses a problem [67].
Although it is known that the saturation solubility of an active substance is a compound-
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specific property depending on crystalline form, the lipophilicity of the drug, fed/fasted
state, pKa, temperature, and properties of dissolution medium, at a nanometer range of
saturation solubility, are also functions of particle size, according to the Ostwald–Freundlich
and Kelvin equations [16,68,69]. NSs provide a tremendous increase in the surface-area-to-
volume ratio and this leads to a higher solubility. Particle size reduction from 10 microns
to 200 nm generates a 50-fold increase in the surface-area-to-volume ratio [70]. Higher
solubility results in higher Ct and improved dissolution rate. This phenomenon can be
explained by the Noyes–Whitney equation [71].

The mechanical properties, surface area, and surface morphology of drug substances
affect their properties of adhesion to biological surfaces [72]. With respect to the increased
surface area of drugs, NSs form a high concentration gradient between the gastrointestinal
tract and blood vessels. A decrease in diffusion layer thickness is provided and this results
in the high saturation solubility and dissolution of the drug [73].

In the first studies on the increase in in vivo bioavailability of NSs, the active substance
danazol was administered to beagle dogs in nanocrystalline form, and it was determined
that oral bioavailability increased approximately 16 times [74]. With the success of NS
technology in the research area, various commercial oral products began to appear on the
market in 2000. These included Rapamune® (Sirolimus tablets—Company: Wyeth), Tricor®

(fenofibrate tablets—Company: Abbott), Focalin® XR (dexmethylphenidate HCl capsules—
Company: Novartis), Emend® (aprepitant capsules—Company: Merck), Zanaflex® (ti-
zanidine HCl capsules—Company: Acorda) and Megace® ES (megestrol acetate oral
suspension—Company: PAR Pharmaceutical) [75]. The reasons for the preparation of
NSs for oral administration and the main problems associated with it are presented in
Table 4 [76–78].

Table 4. Features of nanosuspensions in oral drug delivery.

Reasons for the Development of Oral
Nanosuspensions Challenges to Be Overcome Specific Studies

• Enhancement of solubility and dissolution
• Improved bioavailability
• Improved absorption
• Providing better drug stability
• Dose proportionally
• The rapid formulation development process
• Eliminating fed/fasted variability
• Reduced inter-subject variability
• Using directly as liquid dosage form
• Convertibility to solid dosage form (tablets,

capsules, pellets, oral films, powders, granules)
• Ease of large-scale production
• Increasing mucoadhesive and attachment to

cell membranes
• Reduction in drug dose

• Challenging in selection
stabilizer type and ratio

• Overcoming physical (Ostwald
ripening, agglomeration) and
chemical (hydrolysis) stability
issues

• Usually requires solidification

• Saturation solubility
• Dissolution rate
• Stability
• In vivo biological

performance
(pharmacokinetic and
pharmacodynamic)

NSs are obtained as nanocrystal drug particles in an aqueous medium with surfactants
or polymers as stabilizers. It is possible to use NSs in liquid dosage form for oral use. Thus,
the general advantages of liquid dosage forms such as higher flexibility of dosing, rapid
absorption, higher bioavailability, and suitability for patients who suffer from swallowing
difficulties can be achieved. While conventional oral suspensions have some excipients
as suspending agents or carriers, drug NS systems do not contain any carriers, and they
are prepared completely with the parent drug [26]. As a disadvantage, however, NS
formulations in liquid have lower physical and chemical stability.

After solidification, NSs can be used as oral powders. Oral powders have better
long-term physical and chemical stability. It is also possible to easily wet and redisperse
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the powders into a suitable liquid. Pellets can be obtained from dry powders by extrusion–
spheronization or directly from liquid NSs by the fluid-bed coating method [14]. The
pellets can reduce variations in gastric emptying rates and, hence, reduce the intra and
inter-subject variability. They disperse freely in the gastrointestinal tract, avoiding high
local concentrations that may irritate and drug absorption increases, with minimized
potential side effects [79]. In addition, wet granulation or spray drying can be used to
obtain granules. Powders and granules can be blended with appropriate excipients and
put in capsules or compressed as tablets to achieve patient-compliant dosage forms.

NSs are feasible systems for oral film formulations. Liquid NSs are dispersed in
polymer solutions with a plasticizer, and oral films can be obtained by the conventional
casting method. The NS-loaded oral film formulations offer ease of preparation, rapid
disintegration, no need for water intake, easy administration in the mouth or under the
tongue, avoiding first-pass metabolism, and enhanced bioavailability [80]. The most
recently published studies on oral NS are summarized in Table 5.

Table 5. Recent studies on the oral administration of nanosuspensions.

Drug Use/Treatment Stabilizers Preparation
Method Characterization Outcomes References

Gliczaide Antidiabetic SDS,
Lecithin

Solvent–
Antisolvent
Precipitation

PS: 96.49 ± 15 nm
PDI: 0.326 ± 0.05
ZP: −22 ± 5.6 mV

The Cmax and AUC0–t values of
NS were approximately 3.35- and
1.9-fold higher than those of the

raw medication and
marketed formulation.

[81]

Silymarin Hepatoprotective PVA
Solvent–

Antisolvent
Precipitation

PS: 277.3 ± 10.4 nm
PDI: 0.114 ± 0.075

ZP: −22.8 ± 2.8 mV

Saturation solubility of
nanosuspensions enhanced 3.48

times compared to the coarse
powder, improved dissolution.

[46]

Ziprasidone Antipsychotic PVP K30 Microfluidization
PS: 600 nm

PDI: 0.4
ZP: 29 mV

The solubility of nanosuspensions
was increased up to 2.3-fold

compared with the coarse powder.
Nanosuspensions showed >95%

dissolution in the FeSSIF medium
and 80% in the FaSSIF medium.

[32,82]

Cyclosporine
A

(CsA)
Immunosuppressive HPMC,

SDS Wet milling
PS: 600 nm

PDI: 0.4
ZP: −25 mV

The solubility of CsA was
increased 4.5-fold by

nanosuspensions.
AUC0–24 values of CsA

nanosuspension were to be 2.09
and 5.51-fold higher than coarse

powder in fasted and fed
conditions. Cmax was 3.99-fold

higher than coarse powder.

[36,43]

Ritonavir
(RTV)

Antiprotease
HIV

HPMC,
SDS Microfluidization

PS: 540–550 nm
PDI: 0.1–0.4
ZP: −20 mV

The solubility of nanosuspension
was enhanced five times. 57% and

18% of RTV were dissolved in
FeSSIF medium for

nanosuspension and coarse
powder.

Cmax and AUC0−t values in
nanosuspension displayed an 8.9-

and a 12.5-fold increase,
respectively, compared to the
coarse powder, and a 1.9- and
2.1-fold increase, respectively,
compared to the commercial

product.

[11,83]

Paroxetine Depression and
anxiety

Poloxamer
188

Solvent–
Antisolvent
Precipitation

PS: 217.09 ± 4.18 nm
PDI: 0.46 ± 0.27

ZP: −33.49 ± 2.08 mV

Increase in Cmax (1.74-fold),
AUC0–48 (1.56-fold), and AUC0–∞
(1.78-fold), when compared with

the market tablet.

[84]
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Table 5. Cont.

Drug Use/Treatment Stabilizers Preparation
Method Characterization Outcomes References

Canagliflozin Type 2 diabetes
mellitus

Poloxamer
407 Wet milling

PS: 120.5 ± 5.6 nm
PDI: 0.217 ± 0.23

ZP: −23.0 ± 4.75 mV

Pellets released more than 89%
drug within 10 min as

compared to the marketed tablet
and pure drug, which released
24.63% and 18.65% of the drug,

respectively, within 10 min.

[85]

Lumefantrine Anti-malarial Polysorbate
80

Anti-solvent
precipitation and
ultrasonication

PS: 168.3 nm
PDI: 0.128

ZP: −25.7 mV

Saturation solubility
increased in nanosuspension (1670

mg/mL) when compared to the
pure drug (212.33 mg/mL).

Lyophilized nanosuspension
showed an 8-fold increase in

drug release.

[86]

Indomethacin Anti-
inflammatory

PVP,
SDS Wet milling PS: 195 ± 7 nm

PDI: 0.12 ± 0.02

Coarse powder released 49 ± 2%
after 60 min while

nanosuspensions released >95%
after 30 min.

[87]

Doxazosin
Mesylate Antihypertensive

PVP K 30,
Polox-

amer 407,
SLS

Emulsification
solvent

diffusion

PS: 385 ± 13.00 nm
PDI: 0.049 ± 3.33

ZP: 50.33 ± 4.20 mV

Significant reduction in mean
arterial blood pressure of

hypertensive rats for more than 3
h when compared with marketed

tablet; 100% dissolution
after 10 min.

[88]

Curcumin

Anti-
inflammatory,

antiviral,
antibacterial, and

antitumor

SDS,
PVP/PVA

Anti-solvent
precipitation

PS: 127.7–1.3 nm
PDI: 0.227–0.010

More than 80% of the drug is
released.

The maximum drug plasma
concentration of the tannic

acid-coated nanosuspension
formulation was 7.2-fold higher

than that of the pure drug.

[89]

PS: particle size, PDI: particle size distribution, ZP: zeta potential, NS: nanosuspension, SDS: sodium dodecyl
sulfate, PVA: polyvinyl alcohol, PVP: polyvinyl pyrolidone, FeSSIF: fed-state simulated intestinal fluid, FaSSIF:
fasted-state simulated intestinal fluid, HPMC: hydroxypropyl methylcellulose, SLS: sodium lauryl sulfate.

6.2. Parenteral Administration

The parenteral route of drug administration is a widely used route of drug admin-
istration in clinical practice, with the advantage of reduced dosing, approximately 100%
bioavailability, rapid onset of action, independence from the gastrointestinal tract, and
avoidance of hepatic first-pass metabolism [90].

NSs for parenteral administration are nanometer size and are frequently prepared
because of their ease of permeability, high drug loading capacity, and small volume of
administration. In addition, the risks of toxicity and allergic reactions are prevented as a
result of the low amount of excipients used in these formulations. While developing a new
drug delivery system for parenteral delivery, it should be kept in mind that the delivery
system should not be phagocytosed by Kupffer cells in the reticuloendothelial system and
liver. Therefore, a size range of ≤100 nm is crucial for parenteral NSs [40].

In addition, during the parenteral administration of nanocrystals in vivo, the duration
of blood circulation can be increased by surface modification with substances such as PEG
in NSs to prevent opsonization.

Some studies on the parenteral administration of NSs are shown in Table 6.
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Table 6. Some studies on the parenteral administration of nanosuspensions.

Drug Use/Treatment Stabilizers Preparation Method Characterization Outcomes References

Asulacrine Anticancer Poloxamer 188 High-pressure
homogenization PS: 133 ± 20 nm

Enhanced solubility (app.
40-fold).

Reduced Cmax and
AUC0–∞ and greater

AUC0–∞ in liver, lung,
and kidney compared

to solution.

[91]

Curcumin Anticancer

Cremophor EL-40,
Tween 80,

Poloxamer 188,
SDS,

HPMC,
Carbomer 940

Nanoprecipitation,
High-speed

homogenization,
High-pressure

homogenization,
Combined

nanoprecipitation and
high-pressure

homogenization

Best suspending effect
with soya lecithin

Successfully prepared
by high-pressure
homogenization

PS: 250.6 nm
ZP: −27.92 mV

Solubility and dissolution
rates were significantly

increased.
Superior cytotoxicity in
Hela and MCF-7 cells.

Less local irritation and
phlebitis risks, lower rate
of erythrocyte hemolysis.

[92]

Bexarotene Anticancer
Poloxamer 188,

Soybean lecithin,
PVP K30

Precipitation-
combined

microfluidization
method

PS: 279.0 ± 3.2 nm
PDI: 0.104 ± 0.014

Improved solubility (app.
10-fold).

Higher AUC, Cmax, and a
longer mean

retention time.

[93]

p-terphenyl
derivative

(H2)
Anticancer Poloxamer 188,

Lecithin

Combined
microfluidization and
precipitation method

PS: 201.7 ± 5.87 nm
ZP: −21.07 ± 0.57 mV

Increased saturation
solubility and accelerated

dissolution velocity.
5-fold higher AUC0∼∞.

A longer mean
retention time.

[60]

6.3. Pulmonary Administration

While the local effect can be achieved through the pulmonary route, the systemic
effect can also be achieved because of the large surface area of the lung, thin alveolar
epithelium, and low enzymatic activity [94]. At the same time, the anatomical structure of
the respiratory tract provides an appropriate site for the immune response. Particle sizes,
shapes, densities, and loads of inhaled drug particles are the leading factors affecting the
retention (deposition) of aerosols in the lungs. In addition, the physicochemical properties
of the active substance such as solubility, partition coefficient, permeability, molecular
weight, enzymatic stability and formulation form, biophysical parameters, and the tools
used affect the bioavailability of the inhaled drug. With recent advances in nanotechnology,
there has been an increase in research for the development of new pulmonary drug delivery
systems for the treatment of various diseases such as chronic obstructive pulmonary disease
and asthma [95,96].

Nanocrystalline technology can significantly increase the bioavailability of poorly
soluble drugs by reducing particle size and prolonging lung residence time. It provides a
potential formulation development strategy for the delivery of drugs to the lungs [97–99].
In addition, nanocrystals—as a free-carrier nanotechnology—have gained increasing in-
terest in the pulmonary administration of poorly soluble drugs because of their improved
dissolution rate and saturation solubility, biological properties, and the low toxicity of
poorly soluble drugs. Problems seen in conventional pulmonary delivery systems such
as rapid drug release, poor residence time, and lack of selectivity can be solved with NSs.
Furthermore, NSs increase bioavailability by improving drug diffusion and dissolution
rate and preventing unwanted drug accumulation in the mouth and pharynx.

For pulmonary administration, NSs can be nebulized using jet or mesh nebulizers or
aerosolized via metered dose inhalers [100] and dry powder inhalers [101]. For pulmonary
administration, itraconazole [102,103], budesonide [104–106], and fluticasone NSs have
been developed [107]. Previous studies have shown that nebulized NSs have acceptable
aerodynamic performance and several advantages over conventional micronized drugs,
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including the ability to shorten nebulization time, improve patient compliance, and promote
uniform distribution of drugs in the lungs by rapid diffusion [100,105].

Inhalable aerodynamic properties are an important factor affecting the pulmonary
inhalation of drugs. The size distribution of respirable particles is usually expressed by the
aerodynamic diameter, which varies with the shape, size, and density of the objects. The
aerodynamic diameter of respirable particles determines whether they can accumulate in
the lungs. Nevertheless, regardless of the method of aerosol administration, strict control
of particle size to within the aerodynamic diameter (dA) range of 1–5 µm is necessary for
optimal pulmonary delivery. Particles with dA > 5 µm are mostly deposited on the walls of
the upper respiratory tract by inertial impaction, while particles with dA < 1 µm tend to
remain airborne in the airways and are exhaled during the normal breathing cycle [108].

In addition, there are studies of pulmonary applications of NSs as nanocrystal-based
inhalation systems, aerosol, adhesive microparticles, composite microparticles, and mucus-
penetrating nanocrystals [109].

Selected pulmonary-route-administered NS study examples are summarized in Table 7.
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Table 7. Example studies on the pulmonary administration of nanosuspensions.

Drug Use/Treatment Stabilizers Preparation Method Characterization Outcomes References

Budesonide Asthma HPMC,
SLS Microfluidization PS: 122.5 ± 6.3 nm

ZP: 13.6 ± 0.4 mV

The dispersion of the nanosuspensions in the lung
was easier than normal particles and micronized

particles. After 1 h of inhalation, the drug
concentration reached 872.9 ng/g. This differs

significantly from normal particles (p < 0.01) and
micronized particles (p < 0.05).

[110]

Budesonide Asthma
Lecithin,
Span 85,

Tyloxapol
Homogenization

Formulation (contain lecithin)
PS: 599 nm
PDI: 0.278

ZP: −12 mV
Formulation

(contain Tyloxapol)
PS: 500 nm
PDI: 0.397

ZP: −41.1 mV

The results showed that a long-term stable
pulmonary budesonide nanosuspension could be

used with a conventional nebulizer or with a
portable inhaler system.

[104]

Curcumin (CUR) and
Beclomethasone

Dipropionate (BDP)
Bronchial asthma Poloxamer 188 Wet ball media milling

CUR-NS
PS: 202 nm
PDI: 0.25

ZP: −30 mV
CUR+BDP-NS

PS: 240 nm
PDI: 0.24

Improved CUR apparent solubility by approximately,
54-fold comparison with the raw material.

The results suggest that the formulation should be
delivered accurately and efficiently to deeper lung

regions, showing multicomponent nanosuspension,
optimal dimensional properties, and aerodynamic

parameters.

[111]

Fluticasone
propionate (FP) Corticosteroid

EDTA-2Na, NaCl,
Sodium citrate, Citric acid,

Tween 80

Combined wet milling
with high-pressure

homogenization

PS: 246 ± 2.94 nm
PDI: 0.20 ± 0.04

ZP: 0.35 ± 0.14 mV

This study demonstrated that inhalable
nanosuspensions are a viable vehicle for sustained

pulmonary delivery of FP and their local
anti-inflammatory activity is largely dependent on

their dissolution profile.
Intratracheally dosed nanosuspensions attenuated
mucociliary clearance and prolonged pulmonary

absorption time and improved local retention,
resulting in a significant prolongation of the local

anti-inflammatory effect of FP.

[112]

Loratidine
Allergic rhinitis,

urticaria, and atopic
dermatitis

Stabilizer mixtures of
Tween 80 or Pluronic F68 +

PVP-K25

Ultrasonic-assisted
precipitation

PS: 353–441 nm
PDI: 0.167–0.229

ZP: −25.7–−20.7 mV

This study demonstrates that preparing dried
loratadine nanoparticles suitable for designing

effective drug preparations is a feasible approach.
[113]
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Table 7. Cont.

Drug Use/Treatment Stabilizers Preparation Method Characterization Outcomes References

Itrocanozole
(ITRA)

Allergic
Bronchopulmonary

Aspergillosis (ABPA)
Cystic fibrosis (CF)

Poloxamer 188,
Polysorbate 80,

Solutol H15
Wet milling method

Solutol HS 15 formulation:
300 nm

Formulation using polysorbate
80: 180–210 nm

PDI: low for both polysorbate 80
and Solutol

The results indicate that ITRA nanosuspension
represents an interesting formulation for inhaled

administration in CF patients suffering from ABPA.
High and long-lasting lung tissue concentrations

well above the minimal inhibitory concentration of
Aspergillus species enable once-daily administration

with minimal systemic exposure.

[114]

Mometasone Furoate
Monohydrate (MFM)

combined with
Formoterol Fumarate

Dihydrate (FFD)

Asthma DPPC
High-pressure

homogenization and
spray-drying process

Aerodynamic diameter
MFM: 1.71 ± 0.04 µm
FFD: 2.20 ± 0.44 µm

The results clearly showed that the combination of
homogenization and spray drying methods is

suitable to obtain DPI formulation containing MFM
and FFD with particle size less than 5 µm to reach

alveoli.

[115]

Telmisartan
COVID-19 Lung

Disease and Other
Respiratory Infections

Polysorbate 80 Probe sonication

Hydrodynamic diameter
PS: 322 ± 15 nm
PDI: 0.24 ± 0.03

ZP: −2.9 ± 0.5 mV

The developed nanosuspension demonstrated
excellent applicability to the lungs, pharmacokinetics,

and acceptable tolerability in rodents and/or
non-human primates.

Clinical evaluation of the formulation for inhaler use
in patients with COVID-19 or other respiratory

diseases is ongoing.

[116]

PS: particle size, PDI: particle size distribution, ZP: zeta potential, HPMC: hydroxypropyl methylcellulose, SLS: sodium lauryl sulfate, EDTA: ethylenediaminetetraacetic acid, PVP:
polyvinyl pyrolidone, DPPC: dipalmitoylphosphatidylcholine, COVID: coronavirus disease.
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6.4. Ocular Administration

The eye is the most particular organ of the body, and various drug delivery systems
were employed to deliver the drugs into the eye. The design of drug delivery systems for
ocular administration has become a challenge in the pharmaceutical field [117]. Ocular
drug delivery is needed in the treatment of some diseases such as glaucoma, dry eyes,
diabetes retinopathy, proliferative vitreoretinopathy, keratoconus, macular degeneration,
conjunctivitis, blepharitis, and uveitis. Systemic application used in the treatment of these
diseases might have a limited effect because of blood–aqueous and blood–retinal barriers
after ocular administration. These barriers can limit the amount of drug that reaches
the extravascular retinal space and the aqueous and vitreous humors of the eye. For
this reason, local or ocular application of drugs presents a higher drug concentration to
the specific site of the ocular region [118,119]. Thus, the main purpose of ocular drug
administration is to enhance the number of drugs reaching the specific ocular site and, thus,
to improve the therapeutic effect. Although 90% of the marketed ophthalmic formulations
are conventional eye drops, the low bioavailability related to the precorneal loss factors
(static and dynamic barriers) became a major limitation for their usage. About 5% of the
drug can pass through the cornea and reach the intraocular tissue because of vast and
quick precorneal drop loss caused by high tear fluid output or blinking. While some ocular
ointments have managed to overcome this problem, they also cause a blurring of vision.
Controlled drug delivery systems and nanotechnological drug delivery systems have
shown promise in tackling these problems. The ocular application of NS is an especially
valuable approach to delivering both highly hydrophobic and hydrophilic drugs across the
ocular mucosa. The main mechanism of the increase in ocular bioavailability via NS is the
increment of dissolution velocity along with saturation solubility of poorly water-soluble
drugs. Moreover, NSs can be prepared with various surfactants, viscosity enhancers, or
charge modifiers. There is a possibility of a wide range of NS formulation designs that can
gain mucoadhesive properties and the controlled release profile and enhance the retention
time, permeation, and tolerability on the ocular site [117,120,121]. NS has a low risk of
ocular irritation because of using nanosized particles, and the charge on the surface of
NS facilitates their adhesion to the cornea. Based on all these advantages, the NSs can
solve major issues such as the low contact time and poor ocular bioavailability related
to the drainage of drug solution, tear turnover, and dilution or lacrimation [122]. The
advantages of ocular NSs are also given in Table 8. NS has been explored for ocular drug
delivery by various researchers, and Table 9 shows the application of various NSs in ocular
drug delivery.

Table 8. Features of nanosuspensions in ocular drug delivery.

Reasons for the Development of Ocular Nanosuspensions Challenges to Be Overcome Specific Studies

• Increased saturation solubility and dissolution
• Increased permeation
• İncreased contact/retention time on the ocular site
• Increased transcorneal penetration
• Enhancement of specific effects on the ocular site
• Enhancement of ocular bioavailability
• Providing better drug stability
• The rapid formulation development process
• Using directly as liquid dosage form
• Convertibility to semi-solid dosage form (cream, ointment, gel, etc.)
• Possibility for controlled released systems
• Possibility of mucoadhesion on the ocular site
• Reduction in drug dose
• Reduction in side effects
• Reduction in toxicity

• Challenging in selection of
stabilizer type and ratio

• Challenging to design
formulation for crossing the
cornea and reaching the
intraocular tissue

• Overcoming physical
(Ostwald ripening,
agglomeration) and chemical
(hydrolysis) stability issues

• Usually requires some
excipients such as viscosity
enhancers, pH and charge
modifiers, or a carrier to
apply

• Requirement for sterilization

• pH values
• Rheological/mechanical

properties
• Surface tension
• Saturation solubility
• Stability
• Corneal residence time
• In vitro release/ex vivo

ocular permeation
• In vitro transcorneal

penetration
• Ocular irritation
• In vivo performance

after ocular application
• Corneal bioavailability
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Table 9. Recent studies on the ocular administration of nanosuspensions.

Drug Use/Treatment Stabilizers Preparation
Method Characterization Outcomes References

Hydrocortisone,
Prednisolone,
Dexametha-

sone

Conjunctiva

Pluronic F68,
EDTA,

benzalkonium
chloride,

hydroxyethyl
cellulose

High-pressure
homogeniza-

tion
PS: 650–880 nm

NSs exhibited a higher intensity of
drug action and a higher extent of

drug absorption.
[123]

Hydrocortisone Inflammation
PVP,

HPMC,
Tween 80

Microfluidic
nanoprecipita-

tion
and wet milling

PS: 295–300 nm
PDI: 0.18

The nanosuspensions showed
sustained action and enhanced

bioavailabilities compared to the
hydrocortisone solution, moreover

improved stability.

[124]

Triamcinolone
acetonide Inflammation Poloxamer 407,

PVA
Nanoprecipitation

technique
PS: ~150 nm

PDI: ~0.3

Using the NS, improved loading
capacity and solubility, and high
physical stability were obtained.

[125]

Acetazolamide Ocular
hypertension

PVA,
Soya bean

lecithin,
HY or PG

Antisolvent
precipitation
technique +
sonication

PS: 100–300 nm
ZP > ±20 mV

Enhanced saturation solubility
and efficient ocular hypotensive

activity were obtained. The
modified Draize test showed

tolerability and safety on the eye.

[126]

Brinzolamide Ocular
hypertension

HPMC,
Pluronic F127 or

F68,
Polysorbate 80

Wet milling PS: 460–530 nm
PDI: 0.12–0.21

The NSs were homogenous and
stable.

They dissolved immediately
in vitro and provided significantly

decreased intraocular pressure
values.

[127]

Ciclosporin A KeratoconjunctivitisPVA, PVP, HPMC,
HPC, HEC Media milling PS: ~530 nm

Using nanosuspension (with PVA
stabilizer), less irritation to the eye

was observed compared to the
marketed product Restasis®.

[128]

Loteprednol
Etabonate

(LE)
Inflammation Pluronic® F127 Media milling PS: ~200–241 nm

PDI < 0.15

An increased level of LE in ocular
tissue/fluids and an improved
pharmacokinetic profile (3-fold

higher Cmax)in the ocular tissues
of rabbits were observed

compared to Lotemax 0.5%
suspension.

[129]

PS: particle size, PDI: particle size distribution, ZP: zeta potential, EDTA: ethylenediaminetetraacetic acid, NS:
nanosuspension, PVP: polyvinyl pyrolidone, HPMC: hydroxypropyl methylcellulose, PVA: polyvinyl alcohol, HY:
hyaluronic acid, PG: poly-γ-glutamic acid, HPC: hydroxypropyl cellulose, HEC: hydroxyethyl cellulose.

6.5. Dermal and Transdermal Administration

Dermal drug application has many advantages such as reducing side effects, ensur-
ing drug accumulation in the specific area, controlled administration of the drug to the
organism, self-administration of the patient, high patient compliance, and providing a
specific effect [130,131]. There are two basic approaches to the dermal application of drugs:
transdermal and dermal. While the applied formulation is localized in the dermal layers in
the dermal application, it passes through the carrier to the lower layer of the skin and then
enters the systemic circulation in the transdermal application [132,133]. Dermal and trans-
dermal drug application has advantages as well as disadvantages. Because of the barrier
effect of the stratum corneum layer, it is not possible to administer all drugs by this route.
Crossing the stratum corneum barrier is only suitable for low-dose/high-permeability
drugs. For an active substance to reach the lower layers of the skin, it needs to be small
(molecular weight ≤ 500 Da), lipophilic (logp value ≤ 1–3), and compatible [134]. If these
conditions are not met, sufficient blood concentration may not be reached because of the
skin barrier. Adhesive structures used for transdermal purposes may not be suitable for all
skin types. Since drugs and drug formulations may cause skin irritation and sensitivity,
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this situation should be evaluated in the drug development process. The advantages and
challenges of dermal/transdermal NSs are presented in Table 10.

Table 10. Features of nanosuspensions in dermal drug delivery.

Reasons for the Development of Dermal/Transdermal
Nanosuspensions Challenges to Be Overcome Specific Studies

• Increased saturation solubility
• Increased skin penetration
• Increased permeation
• Increased follicular accumulation
• Enhancement of specific effects on the side of the skin
• Enhancement of dermal bioavailability
• Availability for local and systemic effect
• Providing better drug stability
• The rapid formulation development process
• Convertibility to semi-solid dosage form (cream, ointment,

gel, etc.)
• Possibility for controlled released systems
• Reduction in drug dose
• Reduction in side effects

• Challenging in selection of
stabilizer type and ratio

• Challenging to design
formulations for crossing the
skin barrier

• Overcoming physical
(Ostwald ripening,
agglomeration) and chemical
(hydrolysis) stability issues

• Usually requires
solidification

• Usually requires a vesicle or a
carrier to apply

• pH values
• Rheological/mechanical

properties
• Saturation solubility
• Stability
• In vitro/ex vivo skin

permeation
• In vivo performance after

dermal application
• Skin irritation

In recent years, many nanotechnological systems have been investigated to enhance
the effectiveness of drugs after dermal/transdermal application. NSs are an especially
promising system among the nanosystems for the dermal/transdermal application of drugs.
By decreasing the particle size of the active substance to nanosize with NS technology,
increasing the surface area and solubility, and thus the bioavailability, provides superior-
ity in terms of dermal use. With the increase in saturation solubility, the concentration
of the active substance on the skin surface increases, and depending on the increase in
the concentration gradient, the passage of the active substance through the skin by pas-
sive diffusion accelerates [12,14]. In addition, with the increase in the surface area, the
spreadability and adhesion of the particles to the skin surface also increase. By choosing
positively charged polymers in the structure of NSs, penetration into the negatively charged
stratum corneum layer can be increased. Therefore, in recent years, the development of
NS formulations has gained importance in increasing the dermal bioavailability of active
substances with low or medium water solubility. In 2007, NS formulations of low-soluble
antioxidant-effective rutin and hesperetin-active ingredients have been developed, and
the first effective NS-based anti-aging cosmetic preparation has been introduced to the
market [135,136].

Table 11 shows NS formulations developed for dermal use.
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Table 11. Recent studies on dermal administration of nanosuspensions.

Drug Use/Treatment Stabilizers Preparation Method Characterization Outcomes References

Diclofenac
sodium (DCF) Inflammation Poloxamer 188 Wet milling

PS ∼ 300 nm
PDI ∼ 0.2

ZP ∼ −35 mV

In the application of the NSs having double drug concentration,
the accumulated and permeated amount of DCF did not change

because of the saturation solubility of DCF being constant.
[137]

Curcumin Acne Plantacare® 2000, Plantacare®

1200, Plantacare® 810
Smart Crystal®

(Wet milling + HPH)

PS: ∼170–180 nm
PDI ∼ 0.2

ZP: −30 mV or above

The drug concentration of NS can be 0.2% (for cost-effective
drugs) and 0.02% (for very low soluble drugs). The low viscosity
of dermal formulations provides enhanced penetration into the

skin and follicular targeting/accumulation.

[138]

Nitrofurazone
(NTF)

Antioxidant and
anti-inflammatory

HPMC E3,
PVP K30,
HPMC E5

(alone or in combination with
surfactants)

Poloxamers 188,
SDS,

Tween 80,
TPGS

Wet milling
PS: ∼300 nm

PDI: ∼0.2
Stability index (SI): 0.8

The dissolution of NTF nanogel was higher compared to the NTF
marketed gel.

The permeated amount of NTF through the skin of nanogel after
24 h was higher than the marketed gel in the ex vivo rat skin

permeation studies.
After the application of NTF nanogel, the retained amount of NTF

in rats’ skin was 5.5 times higher than the NTF marketed gel.

[139]

Rutin Antifungal
Polysorbate 80,

Glycerol,
Euxyl® PE 9010

Smart Crystal®

(Bead milling + HPH)
PS: 240–282 nm

PDI: 0.215
Rutin nanocrystals showed increased skin penetration and

increased in vitro antioxidant activity [136]

Cyclosporin A Antioxidant TPGS,
Kolliphor TPGS Wet milling PS ∼ 350 nm

PDI: 0.35
The improved skin penetration with higher stable, formulations

were successfully obtained. [140]

Glabridin
(GLB) Psoriasis Poloxamer 188,

PVP K30

NanoedgeTM

(anti-solvent
precipitation-

homogenization)

PS ∼ 149.2 nm
PDI: 0.254

Compared to the coarse suspension and physical mixture, NS
enhanced the drug permeation flux of GLB through rat skin with

no lag phase both in vitro and in vivo.
The GLB-NS did not show any significant aggregates and showed

a GLB loss of 5.46% after storage for three months at room
temperature.

[141]

Flurbiprofen (FB) Analgesic and
anti-inflammatory Plantacare® 2000 UP (PL) HPH

PS: 665 nm–700 nm
PDI: 0.2–0.3

ZP ∼ −30 mV

The saturation solubility of FB was increased 5.3-fold with NS.
The permeability of FB NS was higher than the FB solution in rat

skin.
The DoE approach was a useful tool for the preparation of FB-NS.

[12]

Flurbiprofen (FB) Analgesic and
anti-inflammatory Plantacare® 2000 UP (PL) Wet milling

PS: 237.7 ± 6.8 nm
PDI: 0.133 ± 0.030

ZP: −30.4 ± 0.7 mV

In the pharmacokinetic studies, NS gel showed higher permeation
and enhanced plasma-blood concentration of FB in rats compared

to gels containing coarse suspension and physical mixture.
[142]
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Table 11. Cont.

Drug Use/Treatment Stabilizers Preparation Method Characterization Outcomes References

Flurbiprofen (FB) Analgesic and
anti-inflammatory Plantacare® 2000 UP (PL) Wet Milling

PS: 237.7 ± 6.8 nm
PDI: 0.133 ± 0.030

ZP: −30.4 ± 0.7 mV

According to characterization studies of the various gels
containing NS, the HPMC gel was found better than others.
The anti-inflammatory and analgesic activities of FB were
increased by the FB-NS-based HPMC gel compared to the

physical mixture-based and the FB coarse powder-based gels.

[143]

Flurbiprofen (FB) Analgesic and
anti-inflammatory

HPMC,
PVP K30,

Plantacare® 2000 UP,
Tween 80

HPH
PS: 593–805 nm

PDI: 0.15–1
ZP: −18.5–−38.6 mV

PL stabilized FB-NS protected the crystalline state.
The PL is a more efficient stabilizer to obtain smaller PS and more

stable NSs.
The PL and PVP provided better morphology than others.

[29]

Ibuprofen
(IBU) Anti-inflammatory Vitamin E TPGS,

HPMC K4 Wet milling PS: 284.5–854.6 nm
PDI: 0.211–0.502

A clear correlation was determined between the vitamin E TPGS
and particle size of nanocrystals with the flux of IBU through the

skin.
[144]

Etodolac
(ETD)

Analgesic and
anti-inflammatory PVP K30 Wet milling

PS: 188.5 ± 1.6 nm
PDI: 0.161 ± 0.049

ZP: −14.8 ± 0.3 mV

In vitro and ex vivo permeation studies showed that NS-based
HPMC or HEC gels were better in terms of enhancing the

penetration of ETD because of increased saturation solubility.
The enhanced anti-inflammatory and analgesic activity of

NS-HEC gels was observed compared to the control and physical
mixture.

[35]

PS: particle size, PDI: particle size distribution, ZP: zeta potential, NS: nanosuspension, HPH: high-pressure homogenization, HPMC: hydroxypropyl methylcellulose, PVP: polyvinyl
pyrolidone, SDS: sodium dodecyl sulfate, TPGS: vitamin E polyethylene glycol succinate, DoE: design of experiment, HEC: hydroxyethyl cellulose.
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When NSs are applied dermally, they can have a local effect by penetrating the skin
surface, or they can have a systemic effect by passing under the skin through intercellular
hydrophilic routes, depending on the increase in saturation solubility. However, it is
thought that the depot effect formed by the accumulation of particles in the hair follicles is
more effective in the passage of NSs through the skin [145]. Carrier systems such as creams,
anhydrous ointments, or gels are used to facilitate the dermal application of NSs and to
increase their effectiveness. Thus, the residence time on the skin surface can be extended or
the release of the active substance can be controlled depending on changes in viscosity. On
the basis of all these advantages and findings in new studies, NSs are now understood to
be a very promising system for dermal application.

7. Challenges and Future Perspective

Many newly discovered drug molecules are in BCS Class II and have very low water
solubility. With the increasing number of these low-soluble drugs, which are not able
to be formulated via traditional approaches, NSs have recently gained more importance.
The advantages of NSs, such as applicability to a broad range of drugs, ease of scale-up,
minimum use of excipients, and increased solubility followed by increased dissolution rate
and bioavailability, lead to their broad acceptance in the development of formulations. NSs
that allow drug administration by the dermal, pulmonary, parenteral, and ocular routes, es-
pecially the oral route, can be used successfully in various diseases for therapeutic purposes.
These advantages are mainly reflected in the increasing number of NS-based commercial
products. In addition to existing commercial products, further commercialization of NSs is
likely with the future conclusion of clinical studies into various administration routes. At
present, even though the NS formulations have progressed significantly, there are limited
in vivo studies and clinical trials and also many problems in the selection of stabilizers,
maintenance of stability, and other aspects. There is, therefore, a need to increase the
number of clinical trials, to enrich the pharmacokinetic data after the administration of
various NSs, and to establish theoretical models to identify the formulation development
and optimization process of NSs. Moreover, some supporting equipment and technologies
that are additionally providing high stability and providing easy scaling up will be more
important in the future. The value of the technology and principle of NS formulations can
be assessed by considering the number of products in clinical phases and in the market,
paying attention also to the dates of entry into the market.
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