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Abstract: The state of the art in the use of chitosan (CS) for preparing particulate carriers for drug
delivery applications is reviewed. After evidencing the scientific and commercial potentials of CS,
the links between targeted controlled activity, the preparation process and the kinetics of release are
detailed, focusing on two types of particulate carriers: matrix particles and capsules. More precisely,
the relationship between the size/structure of CS-based particles as multifunctional delivery systems
and drug release kinetics (models) is emphasized. The preparation method and conditions greatly
influence particle structure and size, which affect release properties. Various techniques available
for characterizing particle structural properties and size distribution are reviewed. CS particulate
carriers with different structures can achieve various release patterns, including zero-order, multi-
pulsed, and pulse-triggered. Mathematical models have an unavoidable role in understanding
release mechanisms and their interrelationships. Moreover, models help identify the key structural
characteristics, thus saving experimental time. Furthermore, by investigating the close relation
between preparation process parameters and particulate structural characteristics as well as their
effect on release properties, a novel “on-demand” strategy for the design of drug delivery devices
may be developed. This reverse strategy involves designing the production process and the related
particles’ structure based on the targeted release pattern.

Keywords: chitosan; controlled release; particles; capsules

1. Introduction

Chitosan (CS), derived from chitin through deacetylation, is a natural polymer with
enormous potential applications in biotechnology and food engineering. Chitin is a long-
chain polymer of N-acetyl glucosamine and the second most abundant natural biopolymer
after cellulose on the planet [1–5]. The estimated annual biosynthesis of chitin is roughly
1010 tons in the biosphere [6]. It is a sustainable natural resource that is omnipresent
but still underexploited commercially. Chitin and cellulose belong to the same class of
biopolymers, i.e., polysaccharides. The two other main classes of biopolymers include
proteins and nucleic acids.

CS is a linear polysaccharide composed of amino groups, with its structure containing
D-glucosamine (deacetylated units) and N-acetyl-D-glucosamine (acetylated units) linked
randomly through β-(1→4) bonds (Figure 1) [7]. Due to its repeatedly reported beneficial
characteristics, such as the absence of toxicity, biocompatibility and biodegradability, CS
has found considerable applications in various fields, including environmental engineering,
agriculture, aquaculture, agrochemistry, the food industry and the medical/pharmaceutical
and cosmetic industries [8–11].

Chitin can be extracted from algae, fungi, arthropods (crabs, shrimp, crayfish and
insects), plankton and mollusks (squids). Nowadays, the main commercial sources of
chitin and its derivatives are shells and the exoskeleton of crustaceans, which used to
be considered low-value marine wastes. The global annual production of shrimp or
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lobster shells and crab waste was reported to be between 6 and 8 million tons [12]. For
instance, crustacean shells contain roughly 15–40 wt% of chitin [13]. The powder of this
grounded marine byproduct can serve as an animal-feed supplement, but with very limited
profitability compared with its refined, high-value chemicals (Table 1). The transformation
of chitin from marine waste is not complex, but the process requires considerable amounts
of water and chemical components such as strong acids and bases. Additionally, the final
product quality varies a lot depending on the raw material (species of shellfish as well as
types and quantities of impurities).

Pharmaceutics 2023, 15, x FOR PEER REVIEW 2 of 26 
 

 

 
Figure 1. Chemical structure of chitosan from completely deacetylated chitin. 

Chitin can be extracted from algae, fungi, arthropods (crabs, shrimp, crayfish and 
insects), plankton and mollusks (squids). Nowadays, the main commercial sources of chi-
tin and its derivatives are shells and the exoskeleton of crustaceans, which used to be con-
sidered low-value marine wastes. The global annual production of shrimp or lobster shells 
and crab waste was reported to be between 6 and 8 million tons [12]. For instance, crusta-
cean shells contain roughly 15–40 wt% of chitin [13]. The powder of this grounded marine 
byproduct can serve as an animal-feed supplement, but with very limited profitability 
compared with its refined, high-value chemicals (Table 1). The transformation of chitin 
from marine waste is not complex, but the process requires considerable amounts of water 
and chemical components such as strong acids and bases. Additionally, the final product 
quality varies a lot depending on the raw material (species of shellfish as well as types and 
quantities of impurities). 

Table 1. Global annual production and price of chitin, chitosan and dried shrimp shells  

Product 
Industrial Production 

(106 Tons Per Year) 
Price 

(USD Per Ton) 
Dried shrimp shells 6–8 100–120 [14,15] 

Chitin 0.02–0.04 i 6000–40,000 
Chitosan <0.2 ii 15,000–160,000 iii 

i Annual production of chitin is probably under 10,000 tons, whereas more recent figures are not 
available [14]. ii Global industrial production of chitosan is estimated to reach 173.9 thousand tons 
by 2027 [9]. iii Data from Alibaba (March 2023) [16]. 

The industrial production of refined chitin/chitosan and their derivatives remained 
low by 2016. Indeed, it was reported that less than half of the global demand was satisfied 
[15,17]. Both demand and production for CS have kept growing in various industries 
worldwide during the last few years. The global market volume of chitin and its deriva-
tives was valued at nearly USD 7.1 billion by 2021 [18], was estimated at USD 7.9 billion 
in 2022 and is foreseen to reach a revised size of USD 24.9 billion by 2030 [19]. 

1.1. Emerging Research and Industrial Interest for Chitosan 
The first interest in commercializing chitin was held back in the 1930s because of the 

strong competition with synthesized polymers at that time. Large-scale production of chi-
tin regained attention in the mid-1970s, when regulations aiming to reduce the dumping 
of shellfish waste were introduced. Regarding research interest, 108,025 references con-
cerning “chitin/chitosan” were found using SciFinder (years between 1970 and 2022). A 
remarkable increase in the number of publications was evidenced at the beginning of the 
1990s, indicating a real emerging research interest in the academic world (Figure 2). On 
the other hand, according to statistics from WIPO’s database, PATENTSCOPE, the poten-
tial commercial applications of CS have grown steadily since the late twentieth century, 
whereas the number of patent applications concerning CS has exploded in the last three 
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Figure 1. Chemical structure of chitosan from completely deacetylated chitin.

Table 1. Global annual production and price of chitin, chitosan and dried shrimp shells.

Product Industrial Production
(106 Tons Per Year)

Price
(USD Per Ton)

Dried shrimp shells 6–8 100–120 [14,15]
Chitin 0.02–0.04 i 6000–40,000

Chitosan <0.2 ii 15,000–160,000 iii

i Annual production of chitin is probably under 10,000 tons, whereas more recent figures are not available [14].
ii Global industrial production of chitosan is estimated to reach 173.9 thousand tons by 2027 [9]. iii Data from
Alibaba (March 2023) [16].

The industrial production of refined chitin/chitosan and their derivatives remained
low by 2016. Indeed, it was reported that less than half of the global demand was satis-
fied [15,17]. Both demand and production for CS have kept growing in various industries
worldwide during the last few years. The global market volume of chitin and its derivatives
was valued at nearly USD 7.1 billion by 2021 [18], was estimated at USD 7.9 billion in 2022
and is foreseen to reach a revised size of USD 24.9 billion by 2030 [19].

1.1. Emerging Research and Industrial Interest for Chitosan

The first interest in commercializing chitin was held back in the 1930s because of
the strong competition with synthesized polymers at that time. Large-scale production
of chitin regained attention in the mid-1970s, when regulations aiming to reduce the
dumping of shellfish waste were introduced. Regarding research interest, 108,025 references
concerning “chitin/chitosan” were found using SciFinder (years between 1970 and 2022).
A remarkable increase in the number of publications was evidenced at the beginning of the
1990s, indicating a real emerging research interest in the academic world (Figure 2). On the
other hand, according to statistics from WIPO’s database, PATENTSCOPE, the potential
commercial applications of CS have grown steadily since the late twentieth century, whereas
the number of patent applications concerning CS has exploded in the last three decades. A
total of 51,274 patent application records in English were found from all offices (Figure 3).



Pharmaceutics 2023, 15, 1455 3 of 24Pharmaceutics 2023, 15, x FOR PEER REVIEW 3 of 26 

Figure 2. Number of publications containing the keywords “chitin” or “chitosan” registered each 
year in SciFinder. Books, conferences, editorials, journal articles, preprints and reviews included. 
(Data from SciFinder, March 2023). 

Figure 3. Number of patents relevant to the keywords “chitin” or “chitosan” in English published 
each year. (Data from WIPO, https://patentscope.wipo.int/search/en/result.jsf/ (accessed on 1 March 
2023)). 

1.2. A Multiple-Application Biopolymer 
Chitosan’s multiple utilities originate from its relatively specific chemical and physi-

cal properties. Indeed, it is the unique example of a cationic polyelectrolyte among known 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10,000

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

Pu
bl

ica
tio

n 
nu

m
be

rs
 in

 S
ciF

in
de

r

Publication Year

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Nu
m

be
r o

f p
at

en
ts

 co
nc

er
ni

ng
 ch

ito
sa

n

Publication Year

Figure 2. Number of publications containing the keywords “chitin” or “chitosan” registered each
year in SciFinder. Books, conferences, editorials, journal articles, preprints and reviews included.
(Data from SciFinder, March 2023).
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Figure 3. Number of patents relevant to the keywords “chitin” or “chitosan” in English published
each year. (Data from WIPO, https://patentscope.wipo.int/search/en/result.jsf/ (accessed on 1
March 2023)).
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1.2. A Multiple-Application Biopolymer

Chitosan’s multiple utilities originate from its relatively specific chemical and physical
properties. Indeed, it is the unique example of a cationic polyelectrolyte among known
natural polysaccharides. Thus, complexes, or coacervates, can be produced through electro-
static interactions between chitosan and other negatively charged compounds. Because of
its beneficial biological properties, such as non-toxicity, biodegradability, biocompatibility,
mucoadhesive behavior and antimicrobial activities, it is apt to bind with electronegative
mucous membranes, and it shows low in vitro toxicity as well as in the case of some in vivo
models [20]. CS is also a pH-sensitive material whose dissolution in water is possible
only under mildly acidic conditions (pH < 6.5). This may sometimes be considered a
limitation. CS derivatives with extended water solubility can be obtained through chemical
modification of the chains, such as carboxymethylation, quaternization and hydroxypropy-
lation [21]. There are many examples of functional groups that have been introduced onto
the CS chain to form water-soluble derivatives [22], e.g., thiolated CS [23], glycol CS [24,25],
quaternized CS [26], carboxymethyl CS [27], isobutyl CS [28] and oligoethylene oxide
sulfonate CS [29]. In addition to its well-known applications in various fields (Figure 3),
CS has significant potential for managing hyperlipidemia [30]. Recently, there have been
reports on the beneficial effects of CS in controlling the COVID-19 pandemic [31,32]. To
conclude, CS’s availability (relying on abundant reserves in nature), benign properties and
versatile applications rationalize the ongoing research enthusiasm from both academia
and industry.

1.3. Terminology of Particulate Carriers

Due to chitosan’s versatile properties mentioned above, its application as a delivery
system has been reported in numerous papers. At the level of the particulate carrier, CS is
commonly used as the principal polymer to build up the carrier’s core material as well as
the peripheral material to coat or/and impart novel functionality to the vector.

Within the scope of this review, particulate carriers are defined as micro- or nano-sized
particulate dispersions of liquid or solid particles. The size range is first related to the route
of administration. In addition, the nanometric size range endows this type of object with
interesting properties as a delivery system because of the large specific area, which usually
facilitates the release of active molecules. Alternatively, their surface is available for further
functionalization, providing specific interaction properties potentially leading to targeting.
Understanding and characterizing the nature/morphology/size of particles is important
for designing and optimizing particle-based systems for specific applications (Figure 4).
Additionally, a particle’s shape can have a significant influence on its physical, chemical
and biological properties, e.g., surface area, packing properties, flow behavior, mechanical
properties, drug release kinetics and efficiency [33–36].

A complex nomenclature of particulate carriers exists in the literature [37,38]. Within
the scope of this review, prefixes indicate the size of the carrier, such as micro-/nano-. Micro-
/nanospheres refer to spherical particles with diameters in the micrometer/nanometer
range (Figure 5). According to the International Union of Pure and Applied Chemistry
(IUPAC), the lower limit between micro- and nano-sizing is still a matter of debate. This
review adapted the terminology of IUPAC (Table 2). A nanoparticle refers to a particle
of any shape with at least one dimension between 10−9 and 10−7 m. The upper limit is
chosen as 100 nm because novel properties that distinguish particles from bulk material
normally show up at a critical dimension scale lower than 100 nm [39]. Nevertheless,
due to certain phenomena (transparency, ultrafiltration, stable dispersion, etc.), the upper
limit can be acceptably extended up to 500 nm. Nanoparticles can be divided into two
categories: homogeneous nanoparticles, also known as “nanospheres,” and core–shell
structured nanoparticles, known as “nanocapsules” (Figure 6) [40–43].
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Figure 6. Schematic representation of two types of particulate carriers. (a) Polymeric matrix sphere:
drug molecules or drug-loaded composites (micro-/nanoparticles) are dispersed both onto carrier
surface and into inner sphere matrix. (b) Solid/liquid core–shell capsule: drug molecules or drug-
loaded composites (micro-/nanoparticles, emulsions, liposomes) are entrapped in the liquid/solid
core, which is itself enclosed by a shell-like wall.
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Table 2. Summary of definitions of nano- and microparticles.

Terminology Concise Definition

Nanoparticle Particle of any shape with at least one characteristic dimension between 10−9 and 10−7 m

Nanocapsule Hollow nanoparticle consisting of a solid shell encircling a core-forming area

Nanosphere Spherical-shaped nanoparticle without membrane or any distinct outer layer

Microparticle Particle with at least one dimension between 10−7 and 10−4 m

Microcapsule Hollow microparticle composed of a solid shell surrounding a core-forming space

Microsphere Microparticle of spherical shape without membrane or any distinct outer layer

A nano-/microsphere is composed of a matrix where substances can be permanently
or temporarily embedded, dissolved or covalently bound. Nano-/microcapsules are sub-
microscopic colloidal drug carrier systems composed of an oily/aqueous core surrounded
by a thin membrane, which is usually, but not necessarily, made of polymer [39].

From a toxicological and pharmaceutical perspective, vesicular capsules possess an
advantage over matrix spheres because of their lower polymer content and high loading
capacity for both hydrophilic and lipophilic active molecules [41].

2. Preparation Methods for Chitosan-Based Network and Particulate Structure

Over the last few years, many attempts have been made to develop synthetic methods
for CS-based particles, such as ionic gelation [44–46], polyelectrolyte complexation [47–49],
emulsion solvent diffusion [50,51], emulsion crosslinking [52,53], spray drying [54,55],
supercritical fluid drying [56], electrospraying [57], emulsion droplet coalescence [58],
reverse micellar/emulsion methods [59,60] and sieving methods [61].

Due to its mild reaction conditions and simple process, the crosslinking gelation
method has been extensively studied. The gelation method usually generates the polymer
matrix structure, the coating/shell or the core region of core–shell capsules. There are
several CS crosslinking gelation mechanisms that offer numerous possibilities for preparing
fine-tuned particulate carriers (Figure 7) [62]. Apart from the required experimental condi-
tions, the various gelation methods differ by the nature of the inter-chain crosslinks (ionic,
hydrophobic association, covalent, etc.) and, consequently, their stability, reversibility and
timescale, among others.

Schematically, spray drying and supercritical processes can produce monolithic matrix
(sphere)-structured particles, while capsule structures can be produced via emulsification
(emulsion–alkali coacervation/precipitation, emulsion–emulsion coacervation method),
electrospraying and microfluidic processes. Table 3 summarizes frequently used methods
for the preparation of CS-involved particulate carriers, their main advantages and short-
comings, the size range of the obtained particles and, when available, a rough estimation of
the particle concentration at the process outlet.

The structure of a particulate carrier is strongly related to its preparation method.
Therefore, selecting the most suitable preparation process is strongly related to the re-
quired structural characteristics and, thus, the targeted application. Process parame-
ters, including pH, temperature, concentration of reagents, mass ratio of polymer and
crosslinker/surfactants, nature of colloidal stabilizers and agitation speed, have a strong
effect on the carrier’s structural properties, such as particle average size, particle size
distribution, particle shape, porosity, swelling capacity, degradation rate and diffusivity
of the drug through the carrier material [63]. Numerous research studies have explored
examples of this relationship using the Design of Experiments (DoE) method [64–66].
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For each method reported in the literature, some examples of developed particulate
systems were selected and briefly described, along with information about particle size
range, morphology of particles (Figure 8), geometrical characteristics of particles and
particle concentration.
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Figure 8. Schematic illustration of chitosan-based particles with various structures.

The parameter “particle concentration” was defined as the concentration of newly-
fabricated particles in their dispersing medium after formation but before any extra op-
erations such as separation or dilution. This concentration was calculated or estimated
whenever allowed by the provided experimental data. This parameter may be important
regarding the scale-up or transfer to industrial processes of lab-scale preparation proce-
dures. Indeed, when very dilute suspensions of particles are produced, further steps may
be necessary to increase particle concentration before application.
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Table 3. Preparation methods of chitosan relevant particles. Advantages and shortages of each method and geometric dimension of obtained particles. The cartoon
symbols present structural characteristics of particles.

Method Description Comments Particle
Dimension

Geometry of Particle Particle Concentration
(w/v)

Key Parameters ReferencesMerit (s) Demerit (s)

Droplet extrusion
method

Droplets of drug-loaded
polymeric solution are formed
by extrusion through a nozzle

into a bath of an aqueous
solution of polyvalent cations.

The process is
convenient,

cost-effective and
devoid of high

temperatures and use
of solvent.

Also usable for
living-cell

encapsulation.

Limited size
control/size reduction.

Difficulties in
large-scale production.

Teardrop-shaped
particles.

90 µm–7 mm
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Electrostatic interaction between
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ions is often used as the driving

force to form
micro-/nanoparticles. The
positively charged natural

polymer CS has been broadly
investigated to form composites

with negative electrolytes by
ionic crosslinking (ionotropic

gelation). Alternatively, covalent
crosslinking has been used.

Mild processing
conditions. Simple

equipment.
Ionotropic gelation:
low toxicity, limited
risk of altering the
encapsulated drug.

Poor stability in
non-acidic conditions.

Difficulty in
encapsulating

high-molecular-weight
drugs. Toxicity of
certain covalent

crosslinkers (aldehydes,
for instance).

10 nm–3 mm
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Particle 
Particle Concen-

tration (w/v) 
Key Parameters References 

Merit (s) Demerit (s) 

Droplet extrusion method 

Droplets of drug-
loaded polymeric so-
lution are formed by 
extrusion through a 
nozzle into a bath of 

an aqueous solution of 
polyvalent cations. 

The process is con-
venient, cost-effec-
tive and devoid of 
high temperatures 
and use of solvent. 
Also usable for liv-
ing-cell encapsula-

tion. 

Limited size con-
trol/size reduction. 
Difficulties in large-

scale production.  
Teardrop-shaped 

particles.  

90 µm–7 mm 
 

- 

Polymer concen-
tration; viscosity 
of polymer solu-
tion; flow rate; 
geometry of ex-
trusion device; 

type and concen-
tration of non-
solvent bath. 

Microcapsule 
[67]; 

microsphere 
[68]. 

Crosslinking gelation  

Electrostatic interac-
tion between polyelec-

trolytes and polyva-
lent ions is often used 
as the driving force to 
form micro-/nanopar-
ticles. The positively 

charged natural poly-
mer CS has been 

broadly investigated 
to form composites 

with negative electro-
lytes by ionic cross-

linking (ionotropic ge-
lation). Alternatively, 
covalent crosslinking 

has been used. 

Mild processing 
conditions. Simple 

equipment. 
Ionotropic gela-

tion: low toxicity, 
limited risk of al-

tering the encapsu-
lated drug. 

Poor stability in non-
acidic conditions. 

Difficulty in encap-
sulating high-molec-
ular-weight drugs. 
Toxicity of certain 

covalent crosslinkers 
(aldehydes, for in-

stance). 

10 nm–3 mm 
 

0.02–1.2% 

Polymer concen-
tration; crosslink-
ing agent concen-

tration; mixing 
rate and time; 

temperature; pH. 

Microsphere 
[45,46,65,69–

82]; microcap-
sule 

[83,84]. 

0.02–1.2%

Polymer concentration;
crosslinking agent

concentration; mixing
rate and time;

temperature; pH.

Microsphere
[45,46,65,69–82];

microcapsule
[83,84].

Polyelectrolyte
complexation (PEC)

Complexation of CS with
synthetic anionic

polyelectrolytes or natural
anionic biopolymers via
electrostatic interaction.

Able to encapsulate
macromolecules such
as polypeptides and
polynucleotides, as

well as hydrophobic
drugs.

Toxicity of certain
covalent crosslinkers

(aldehydes, for
instance).

50–450 nm
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Complexation of CS 
with synthetic anionic 

polyelectrolytes or 
natural anionic biopol-
ymers via electrostatic 

interaction. 

Able to encapsu-
late macromole-

cules such as poly-
peptides and poly-
nucleotides, as well

as hydrophobic 
drugs. 

Toxicity of certain 
covalent crosslinkers 

(aldehydes, for in-
stance). 

50–450 nm  0.1–2% 

Polyelectrolyte 
concentration; 

pH; mixing rate 
and time; tem-

perature; solvent 
type. 

Microsphere 
[76,84,85]; mi-

crocapsule 
[86]. 

Complex coacervation/pre-
cipitation 

CS acetic solution was 
mixed up with a 

DNA/protein dis-
solved salty (sodium 
sulfate) solution to 
form micro-/nano-

spheres. 

Narrow particle 
size distribution; 

high encapsulation 
efficiency; rela-

tively low cost of 
processing. 

Safety issue of toxic 
crosslinkers; poor 
product formation 

due to poor solubil-
ity of active agent 

(e.g., plant protein). 

50–1600 nm  0.25–0.7% 

Nature and con-
centration of 

polyelectrolytes; 
pH; 

temperature; sol-
vent and co-sol-

vent. 

Microsphere 
[76,87,88]. 

Emulsion–coacervation 
(Emulsion–alkali precipita-

tion) method 

Drug/oil mixture is 
dispersed in CS acidic 

solution under stir-
ring, followed by ul-

tra-sonication/homog-
enization to obtain ho-
mogeneous emulsion. 
Microcapsules were 

obtained by dropping 
alkaline solution into 
aforesaid emulsion.  

Devoid of cross-
linker. 

Suitable for lipo-
philic drug encapsu-

lation. 
10–12 µm 

 
0.05–0.19% 

Type and con-
centration of the 
polymer, surfac-
tant and alkaline 
solution; emul-

sion stirring rate; 
aging time. 

Microcapsule 
[52,89,90]; 

double-walled 
microspheres 

[78]. 

Emulsion crosslinking 

CS aqueous solution is 
dispersed into oily 

phase in the presence 
of suitable surfactants 

as emulsion stabi-
lizers. 

Mild processing 
conditions. 

Complete removal of 
the unreacted cross-
linking agent may be 
difficult due to pos-

sible toxicity.  

30–700 µm 
 

0.05–1.66% 

Polymer concen-
tration; crosslink-
ing agent concen-

tration; mixing 
speed and time; 

temperature; pH. 

Microspheres 
[53,91–94]; 

microsphere-
loaded core–
shell carrier 

[50,95]. 

0.1–2%

Polyelectrolyte
concentration; pH;

mixing rate and time;
temperature; solvent

type.

Microsphere [76,84,85];
microcapsule [86].

Complex coacerva-
tion/precipitation

CS acetic solution was mixed up
with a DNA/protein dissolved

salty (sodium sulfate) solution to
form micro-/nanospheres.

Narrow particle size
distribution;

high encapsulation
efficiency; relatively

low cost of processing.

Safety issue of toxic
crosslinkers; poor

product formation due
to poor solubility of

active agent (e.g., plant
protein).

50–1600 nm
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efficiency; rela-
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processing. 
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crosslinkers; poor 
product formation 

due to poor solubil-
ity of active agent 

(e.g., plant protein). 

50–1600 nm  0.25–0.7% 
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vent and co-sol-

vent. 

Microsphere 
[76,87,88]. 

Emulsion–coacervation 
(Emulsion–alkali precipita-

tion) method 

Drug/oil mixture is 
dispersed in CS acidic 

solution under stir-
ring, followed by ul-

tra-sonication/homog-
enization to obtain ho-
mogeneous emulsion. 
Microcapsules were 

obtained by dropping 
alkaline solution into 
aforesaid emulsion.  

Devoid of cross-
linker. 

Suitable for lipo-
philic drug encapsu-

lation. 
10–12 µm 

 
0.05–0.19% 

Type and con-
centration of the 
polymer, surfac-
tant and alkaline 
solution; emul-

sion stirring rate; 
aging time. 

Microcapsule 
[52,89,90]; 

double-walled 
microspheres 

[78]. 

Emulsion crosslinking 

CS aqueous solution is 
dispersed into oily 

phase in the presence 
of suitable surfactants 

as emulsion stabi-
lizers. 

Mild processing 
conditions. 

Complete removal of 
the unreacted cross-
linking agent may be 
difficult due to pos-

sible toxicity.  

30–700 µm 
 

0.05–1.66% 

Polymer concen-
tration; crosslink-
ing agent concen-

tration; mixing 
speed and time; 

temperature; pH. 

Microspheres 
[53,91–94]; 

microsphere-
loaded core–
shell carrier 

[50,95]. 

0.25–0.7%

Nature and
concentration of

polyelectrolytes; pH;
temperature; solvent

and co-solvent.

Microsphere [76,87,88].

Emulsion–coacervation
(Emulsion–alkali

precipitation) method

Drug/oil mixture is dispersed in
CS acidic solution under stirring,

followed by ultra-
sonication/homogenization to
obtain homogeneous emulsion.

Microcapsules were obtained by
dropping alkaline solution into

aforesaid emulsion.

Devoid of crosslinker. Suitable for lipophilic
drug encapsulation. 10–12 µm

Pharmaceutics 2023, 15, x FOR PEER REVIEW 9 of 26 
 

 

Polyelectrolyte complexation 
(PEC) 

Complexation of CS 
with synthetic anionic 

polyelectrolytes or 
natural anionic biopol-
ymers via electrostatic 

interaction. 

Able to encapsu-
late macromole-

cules such as poly-
peptides and poly-
nucleotides, as well

as hydrophobic 
drugs. 

Toxicity of certain 
covalent crosslinkers 

(aldehydes, for in-
stance). 

50–450 nm  0.1–2% 

Polyelectrolyte 
concentration; 

pH; mixing rate 
and time; tem-

perature; solvent 
type. 

Microsphere 
[76,84,85]; mi-

crocapsule 
[86]. 
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CS acetic solution was 
mixed up with a 

DNA/protein dis-
solved salty (sodium 
sulfate) solution to 
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spheres. 

Narrow particle 
size distribution; 

high encapsulation 
efficiency; rela-

tively low cost of 
processing. 

Safety issue of toxic 
crosslinkers; poor 
product formation 

due to poor solubil-
ity of active agent 

(e.g., plant protein). 

50–1600 nm  0.25–0.7% 

Nature and con-
centration of 

polyelectrolytes; 
pH; 

temperature; sol-
vent and co-sol-

vent. 

Microsphere 
[76,87,88]. 

Emulsion–coacervation 
(Emulsion–alkali precipita-

tion) method 

Drug/oil mixture is 
dispersed in CS acidic 

solution under stir-
ring, followed by ul-

tra-sonication/homog-
enization to obtain ho-
mogeneous emulsion. 
Microcapsules were 

obtained by dropping 
alkaline solution into 
aforesaid emulsion.  

Devoid of cross-
linker. 

Suitable for lipo-
philic drug encapsu-

lation. 
10–12 µm 

 
0.05–0.19% 

Type and con-
centration of the 
polymer, surfac-
tant and alkaline 
solution; emul-

sion stirring rate; 
aging time. 

Microcapsule 
[52,89,90]; 

double-walled 
microspheres 

[78]. 

Emulsion crosslinking 

CS aqueous solution is 
dispersed into oily 

phase in the presence 
of suitable surfactants 

as emulsion stabi-
lizers. 

Mild processing 
conditions. 

Complete removal of 
the unreacted cross-
linking agent may be 
difficult due to pos-

sible toxicity.  

30–700 µm 
 

0.05–1.66% 

Polymer concen-
tration; crosslink-
ing agent concen-

tration; mixing 
speed and time; 

temperature; pH. 

Microspheres 
[53,91–94]; 

microsphere-
loaded core–
shell carrier 

[50,95]. 

0.05–0.19%

Type and concentration
of the polymer,

surfactant and alkaline
solution; emulsion
stirring rate; aging

time.

Microcapsule [52,89,90];
double-walled

microspheres [78].

Emulsion crosslinking

CS aqueous solution is dispersed
into oily phase in the presence of
suitable surfactants as emulsion

stabilizers.
Thermal crosslinking produces

microspheres.

Mild processing
conditions.

Complete removal of
the unreacted

crosslinking agent may
be difficult due to
possible toxicity.

30–700 µm
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mogeneous emulsion. 
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obtained by dropping 
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aforesaid emulsion.  
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philic drug encapsu-
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centration of the 
polymer, surfac-
tant and alkaline 
solution; emul-

sion stirring rate; 
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Microcapsule 
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double-walled 
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CS aqueous solution is 
dispersed into oily 

phase in the presence 
of suitable surfactants 

as emulsion stabi-
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Mild processing 
conditions. 
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linking agent may be 
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Polymer concentration;
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concentration; mixing
speed and time;

temperature; pH.

Microspheres
[53,91–94];

microsphere-loaded
core–shell carrier

[50,95].
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Table 3. Cont.

Method Description Comments Particle
Dimension

Geometry of Particle Particle Concentration
(w/v)

Key Parameters ReferencesMerit (s) Demerit (s)

Emulsion solvent
diffusion method

An o/w emulsion is prepared by
mixing organic solvent into a
solution of CS with stabilizer

under mechanical stirring,
followed by high-pressure

homogenization/ultra-
sonication. Add a large amount
of water to the emulsion to form

particles.

High encapsulation
efficiency of

hydrophobic drugs.

High shear force
involved in the process;
use of organic solvent.

0.1–45 µm
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lowed by high-pres-
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Add a large amount of 
water to the emulsion 
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High encapsula-
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hydrophobic 
drugs.  

High shear force in-
volved in the pro-

cess; 
use of organic sol-

vent. 

0.1–45 µm 
 

2% 

Solvent selection; 
emulsification 

conditions: stir-
ring rate, emulsi-

fying time and 
temperature. 

Micro-/nano-
sphere [96,97]. 

Spray-drying method 

CS is first dissolved in 
an aqueous medium, 
and then the drug is 

dissolved or dispersed 
in the previous solu-
tion. Crosslinker is 
added to the poly-

meric solution. Parti-
cles are produced by 
atomization and sub-
sequent solvent evap-

oration. 

Low impact on the 
solubility of drug 
and polymer; sim-
ple, reproducible 
and easy to scale 

up. 

Degradation due to 
high temperatures 
or/and high shear 

rates during atomi-
zation. 

0.2–60 µm 
 

- 

Feed composi-
tion and concen-
tration; operation 

temperature; 
flow rate and 

pressure of the 
atomizing air; 

spray rate; dry-
ing time; type 
and concentra-

tion of the surfac-
tant. 

Micro-/nano-
sphere [54,98–

102]. 

Supercritical technique 

Microspheres are fab-
ricated by spraying a 

drug-loaded 
HCL/DMSO solution 
into supercritical car-

bon dioxide. 

Small-sized parti-
cles (<3 µm); fast; 

cost-effective. 

Rather broad particle 
size distribution. 0.4–10 µm  - 

Temperature and 
pressure of the 

supercritical 
fluid; solvent 

type and concen-
tration; flow rate; 

Nanosphere 
[56]; 

microsphere 
[103]. 

2%

Solvent selection;
emulsification

conditions: stirring rate,
emulsifying time and

temperature.

Micro-/nanosphere
[96,97].

Spray-drying method

CS is first dissolved in an
aqueous medium, and then the

drug is dissolved or dispersed in
the previous solution.

Crosslinker is added to the
polymeric solution. Particles are

produced by atomization and
subsequent solvent evaporation.

Low impact on the
solubility of drug and

polymer; simple,
reproducible and easy

to scale up.

Degradation due to
high temperatures

or/and high shear rates
during atomization.

0.2–60 µm
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Add a large amount of 
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Spray-drying method 

CS is first dissolved in 
an aqueous medium, 
and then the drug is 
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meric solution. Parti-
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atomization and sub-
sequent solvent evap-

oration. 
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solubility of drug 
and polymer; sim-
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and easy to scale 
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Degradation due to 
high temperatures 
or/and high shear 

rates during atomi-
zation. 

0.2–60 µm 
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Feed composi-
tion and concen-
tration; operation 

temperature; 
flow rate and 

pressure of the 
atomizing air; 

spray rate; dry-
ing time; type 
and concentra-

tion of the surfac-
tant. 

Micro-/nano-
sphere [54,98–

102]. 

Supercritical technique 

Microspheres are fab-
ricated by spraying a 

drug-loaded 
HCL/DMSO solution 
into supercritical car-

bon dioxide. 

Small-sized parti-
cles (<3 µm); fast; 

cost-effective. 

Rather broad particle 
size distribution. 0.4–10 µm  - 

Temperature and 
pressure of the 

supercritical 
fluid; solvent 

type and concen-
tration; flow rate; 

Nanosphere 
[56]; 

microsphere 
[103]. 

-

Feed composition and
concentration;

operation temperature;
flow rate and pressure

of the atomizing air;
spray rate; drying time;
type and concentration

of the surfactant.

Micro-/nanosphere
[54,98–102].

Supercritical technique

Microspheres are fabricated by
spraying a drug-loaded

HCL/DMSO solution into
supercritical carbon dioxide.

Small-sized particles
(<3 µm); fast;
cost-effective.

Rather broad particle
size distribution. 0.4–10 µm
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Add a large amount of 
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hydrophobic 
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High shear force in-
volved in the pro-

cess; 
use of organic sol-

vent. 

0.1–45 µm 
 

2% 

Solvent selection; 
emulsification 

conditions: stir-
ring rate, emulsi-

fying time and 
temperature. 

Micro-/nano-
sphere [96,97]. 

Spray-drying method 

CS is first dissolved in 
an aqueous medium, 
and then the drug is 

dissolved or dispersed 
in the previous solu-
tion. Crosslinker is 
added to the poly-

meric solution. Parti-
cles are produced by 
atomization and sub-
sequent solvent evap-

oration. 

Low impact on the 
solubility of drug 
and polymer; sim-
ple, reproducible 
and easy to scale 

up. 

Degradation due to 
high temperatures 
or/and high shear 

rates during atomi-
zation. 

0.2–60 µm 
 

- 

Feed composi-
tion and concen-
tration; operation 

temperature; 
flow rate and 

pressure of the 
atomizing air; 

spray rate; dry-
ing time; type 
and concentra-

tion of the surfac-
tant. 

Micro-/nano-
sphere [54,98–

102]. 

Supercritical technique 

Microspheres are fab-
ricated by spraying a 

drug-loaded 
HCL/DMSO solution 
into supercritical car-

bon dioxide. 

Small-sized parti-
cles (<3 µm); fast; 

cost-effective. 

Rather broad particle 
size distribution. 0.4–10 µm  - 

Temperature and 
pressure of the 

supercritical 
fluid; solvent 

type and concen-
tration; flow rate; 

Nanosphere 
[56]; 

microsphere 
[103]. 

-

Temperature and
pressure of the

supercritical fluid;
solvent type and

concentration; flow
rate; nozzle geometry;
antisolvent addition.

Nanosphere [56];
microsphere [103].

Electrospraying

CS is dispersed/dissolved into a
mixture of solvent and blend

with drug solution/suspension.
The conductive liquids are

atomized under high voltage to
form drug-encapsulated

particles. The flow rate, voltage
and distance between needle tip
and collector are crucial process

parameters.

Low production cost;
narrow particle size

distribution;
easy-to-control surface
properties and rapid

preparation; high
drug-loading efficiency;

gentle conditions
without use of harsh

solvents.

Further investigation
needed for upscaling;

potential toxicity due to
certain solvents.

0.1–1.3 µm
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of harsh solvents. 

Further investigation 
needed for upscal-
ing; potential tox-
icity due to certain 

solvents. 

0.1–1.3 µm  - 

Flow rate; sol-
vent evaporation 

rate; collector 
distance; electri-
cal conductivity; 
nature of poly-

mer, solvent and 
molecules being 
used in the pro-

cess.  

Nanosphere 
[57,104,105]. 

Reverse microemulsion/mi-
cellar method 

Organic solvent (con-
taining surfactant) is 
mixed with acidic CS 
solution to form re-

verse micelles. Then, 
drug conjugate and 
CS attach to the mi-
celles via glutaralde-
hyde (crosslinker) to 
form nanoparticles. 

Residual solvent and 
surfactant and excess 

crosslinking agent 
need to be removed.  

Ultrafine particle 
size (<100 nm); nar-

row particle size 
distribution. 

Application of or-
ganic solvent; time-
consuming prepara-
tion process; com-
plex washing step. 

60–130 nm  0.01–0.1% 

Choice of surfac-
tant and co-sur-
factant; type and 
concentration of 
oil phase; water-
to-oil ratio; tem-

perature and stir-
ring speed; addi-
tion of crosslink-

ing agents. 

Nanosphere 
[59,60,106]. 

-

Flow rate; solvent
evaporation rate;
collector distance;

electrical conductivity;
nature of polymer,

solvent and molecules
being used in the

process.

Nanosphere
[57,104,105].

Reverse microemul-
sion/micellar

method

Organic solvent (containing
surfactant) is mixed with acidic

CS solution to form reverse
micelles. Then, drug conjugate

and CS attach to the micelles via
glutaraldehyde (crosslinker) to
form nanoparticles. Residual
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Ultrafine particle size
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particle size
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Table 3. Cont.

Method Description Comments Particle
Dimension

Geometry of Particle Particle Concentration
(w/v)

Key Parameters ReferencesMerit (s) Demerit (s)

Solvent displace-
ment/interfacial

deposition method

Sub-microcapsule nanoemulsion
coated with CS shell.

Suitable to encapsulate
lipophilic drugs; rapid

and easy operation;
narrow size

distribution; absence of
shearing stress.

Use of organic solvents. 130–500 nm
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3. Characteristics of Chitosan-Involved Particulate Carrier

The morphology of sub-microparticles is a fundamental characteristic that significantly
affects their properties. Several characteristics of nano-/microparticles are essential to
know, such as average size and size distribution, shape, surface properties (area, charge,
functionalization), porosity, etc. These properties are desirable for assessing safety, ensuring
consistent product quality control and ensuring regulatory compliance.

The size distribution of spherical partials is a subject that has been well illustrated
and developed. Briefly, it is generally required to combine light-scattering techniques
(DLS, LS) with microscopic characterization using TEM, SEM and AFM [115–118]. How-
ever, for non-spherical particles, the diffusion coefficient also depends on the shape of the
particles [119,120]. A combination of several techniques is recommended to obtain precise
information on particle size and shape. For example, particles with irregular shapes ob-
tained from the sieving method have been characterized by the laser light diffusion method
and SEM micrographs. LS was used to determine the size and distribution of spherical
particles equal in volume to the samples [61]. As for rod-shaped and cylindrical particles,
the aspect ratio was introduced to describe the elongation of the particle shape [119]. The
characterization of fiber-shaped particles requires more complex techniques as they have
an elongated shape and cannot be adequately described by a single dimension. Size charac-
terization of fiber-shaped particles can be conducted based on various dimensions such
as diameter, length, aspect ratio and specific surface area [120–123]. Finally, it must be
reminded that average values of particle size may differ from one technique to another
simply because “averages” are not calculated in the same way (number, surface, volume,
intensity, etc.).

Additionally, Small-angle X-ray scattering (SAXS) is a technique that can be used to
determine the size, size distribution, shape and organization of hierarchal structures [124].
SAXS is based on the interaction of X-rays with the electrons in the material, producing
scattering patterns that can interpret particle shapes such as spheres, rods, discs, hollow
spheres and dumbbells [125]. However, SAXS is limited to analyzing samples in the range
of 1–100 nanometers, and interpreting SAXS data, especially when the sample is complex
or contains multiple components, could be challenging.

As to capsule and multilayer particles, besides the size of the particle (the diameter
of the outermost shell), the thickness of the layer(s) (including shell thickness) is also an
interesting characteristic to know since the properties of layers made of different materials
can be pretty diverse. However, this characteristic has not been abundantly discussed in
the literature.

Microscopy techniques (SEM, TEM, CLSM) play a significant role not only by visualiz-
ing the surface morphology, shape and size of sub-microparticles but also their internal
structure (cross-section, porosity, crystallinity) [113,126–129]. Additionally, the structural
evolution of particles during the release process can be monitored by consecutive mi-
crographs, which can reveal and confirm the release mechanism over time [130]. SEM
and TEM can provide high-resolution images of the particle structure and morphology,
allowing for direct visualization of the particles at the nanoscale. Confocal microscopy uses
a focused laser beam to scan a sample and create a series of optical sections at different
depths. Confocal slices can provide detailed information about the internal structure and
organization of the sample at a particular depth or plane (Figure 9). By using fluorescent
labeling, the oil phase inside the core of microcapsules was localized and quantified [130].
The fluorescence signals of polymers allow the visualization of their distribution within
the polymeric shell. Furthermore, the oil phase is distinguished unambiguously from air
bubbles by comparing optical and fluorescent images. With the help of computational
image analysis, the layer thickness and the volumes of different phases can be estimated.
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Copyright 2012, Wiley); (D) CLSM image of O1/W2/O3/W4/O5 microcarriers; (E) SEM image of 
dual-responsive microcarriers without O1 and O3 cores. Scale bars are 200 µm, adapted with per-
mission from Ref. [112]. Copyright 2019, Elsevier; (F) TEM image of CS nanoparticle with particle 
size of around 45 nm and silica shell thickness of 5 nm (adapted from Ref. [133]. Copyright 2019, 
Arzumanyan G, et al.). 
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the particulate building materials, drug properties and structural properties of compo-
sites, including shape, particle size, surface roughness, porosity, shell thickness, etc. Ad-
ditionally, along the release process, carrier structure may evolve under the effect of stim-
uli in the release environment. The assumed principal drug release mechanisms include 
dissolution, erosion, swelling and diffusion [20,134]. Release mechanisms and the corre-
sponding release profiles dominated by each were summarized in Ref. [62]. To simplify 
the analysis of the experimental release results, it is generally crucial to identify the limit-
ing phenomena.  

As the drug release process results from interactions between entrapped molecules, 
encapsulating particles and the releasing environment, the particulate structure and its 
evolution over a definite release time have a great effect on release kinetics. Elucidating 
the corresponding relations between composite structures and potential release mecha-
nisms enables researchers to predict the release trend of certain loaded active ingredients 
from a specific structured vehicle. Figure 10 summarizes graphically several typical CS-
involved particulate carriers with relevant release profiles found in the literature. In Fig-
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Figure 9. Internal structure and layer thickness of particles can be characterized by SEM, CLSM
and TEM images. (A) Cross-sectional morphologies (SEM) of three-layer CS hydrogel capsules
(adapted with permission from Ref. [81]. Copyright 2019, Elsevier); (B) CLSM picture of fresh oil-in-
water CS emulsion (adapted with permission from Ref. [131]. Copyright 2020, Elsevier); (C) CLSM
fluorescence image of CS-coated microcapsule, scale bar = 5 µm (adapted with permission from
Ref. [132]. Copyright 2012, Wiley); (D) CLSM image of O1/W2/O3/W4/O5 microcarriers; (E) SEM
image of dual-responsive microcarriers without O1 and O3 cores. Scale bars are 200 µm, adapted
with permission from Ref. [112]. Copyright 2019, Elsevier; (F) TEM image of CS nanoparticle with
particle size of around 45 nm and silica shell thickness of 5 nm (adapted from Ref. [133]. Copyright
2019, Arzumanyan G, et al.).

4. Particulate Structure and Controlled Release Kinetics

Drug release refers to the process by which entrapped drugs dissolve and diffuse into
the outer medium by diffusing within bulk core material and/or shell material or passing
through pores or fractures within the particles. Drug release kinetics depend greatly on
the particulate building materials, drug properties and structural properties of composites,
including shape, particle size, surface roughness, porosity, shell thickness, etc. Additionally,
along the release process, carrier structure may evolve under the effect of stimuli in the
release environment. The assumed principal drug release mechanisms include dissolution,
erosion, swelling and diffusion [20,134]. Release mechanisms and the corresponding release
profiles dominated by each were summarized in Ref. [62]. To simplify the analysis of the
experimental release results, it is generally crucial to identify the limiting phenomena.

As the drug release process results from interactions between entrapped molecules,
encapsulating particles and the releasing environment, the particulate structure and its
evolution over a definite release time have a great effect on release kinetics. Elucidating the
corresponding relations between composite structures and potential release mechanisms
enables researchers to predict the release trend of certain loaded active ingredients from a
specific structured vehicle. Figure 10 summarizes graphically several typical CS-involved
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particulate carriers with relevant release profiles found in the literature. In Figure 10a,
which illustrates CS polymeric matrix particles, drug molecules are distributed on the
particle surface as well as inside the matrix. The diffusion of molecules located superficially
may lead to a burst release, i.e., the fast release of a significant number of loaded molecules
before the further and slower release of the remaining substance. Medium permeation
inward the carrier causes erosion, swelling and diffusion, which are mainly responsible for
the following sustained release, which may last from hours to days [83,111]. Figure 10b
represents a core–shell capsule case. The core region could be solid or liquid (oil phase),
which encapsulates dissolved active ingredients or dispersed systems such as emulsion
droplets, nano-/microparticles or liposomes [82,112,135]. The outer wall-like shell prevents
leakage and the degradation of the inner contents from harsh conditions inside the internal
environment, such as pH, enzymes, etc. Structural incompleteness due to fracture or
breakage of the shell leads to the liberation of inside molecules. Figure 10c is a core–shell-
structured microcapsule encapsulating drug-loaded nanoparticles in an oily core enclosed
by a CS shell. Both drug molecules and drug-loaded poly-(lactic-co-glycolic acid) (PLGA)
nanoparticles were enclosed in a stimulus-responsive microcapsule [110]. The CS shell
prevented the leakage of the entrapped cargo in a neutral medium and broke down in
an acidic site, thus providing sustained drug delivery through the diffusion of free drug
and nanoparticle degradation. Additionally, enzyme intestinal delivery was reported to
be localized by alginate nanoparticles incorporated into CS-shelled microcapsules [113].
Figure 10d is a CS-based microsphere with an alginate coating. The coating can protect
the loaded substance from degradation and hydrolysis in acidic conditions for hours and
can modulate the release rate by suppressing burst release [103]. In addition, in some
other core–shell cases, the external shell is able to respond to certain stimuli, e.g., pH
and ionic strength [82], and achieve targeting effects through the addition of biological
ligands [84]. Figure 10e,f are both multilayered CS hydrogel capsules. The drug is loaded
homogenously in each layer of the carrier in Figure 10e, while the one in Figure 10f
contains sequentially alternating drug-loaded and void layers. It is possible to customize
the number of layers and tailor their thickness [136]. The former achieves approximately
a zero-order release, while the latter is supposed to attain a pulsatile drug release [81].
Apart from CS-based carriers alone, the encapsulated ingredient is also a dimension that
can enrich the utility of these functional carriers. For example, Figure 10g represents a
core–shell nanosphere system that was developed for co-delivering drugs (oleanolic acid
and doxorubicin) as a strategy to treat multi-drug-resistant breast cancer. This novel dual-
drug-loaded DDS was proven effective as a breast-tumor targeting strategy in in vitro
and ex vivo evaluations [137]. Below are some typical CS-relevant carriers with their
release profiles found in the literature. Particularly worth mentioning is the fact that
certain release profiles may be attained by diverse carriers. Inversely, a carrier may possess
different release profiles under different dissolution conditions (pH, ionic strength, light,
temperature, magnetic field, etc.).

To sum up, further investigations into the correlation between carrier structure and
the associated release profile are worth the effort. By achieving this goal, in turn, it would
be possible to design on-demand drug delivery systems that can regulate, in an expected
way, more precisely the release rate of certain drugs at a specific time interval and location.
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kinetics under certain conditions. Some of these mathematical models have been com-
monly used to identify dominant release mechanisms on the basis of the comparison be-
tween experimental and theoretical time variations in cumulated released amounts [138].  

Figure 10. Schematic illustration of typical chitosan sub-microparticulate carriers and corresponding
release profiles found in the literature. The shuriken-shaped blue marks and red dots stand for
active ingredients loaded. (a) Monolithic sphere; (b) capsule with liquid core; (c) nanoparticle-loaded
capsule with CS shell; (d) core–shell sphere with CS matrix core; (e,f) multilayered CS hydrogel
capsule; (g) core–shell sphere loading two drugs.

5. Release Kinetics, Mechanisms and Modeling

The use of kinetic models can aid in describing the release rate of drugs, leading
to increased efficiency, accuracy and safety of the dose. This, in turn, can help optimize
the design of drug delivery devices [138]. With an appropriate understanding of the
limiting phenomena that govern drug release from a given system, it is possible to describe
drug release behavior by applying proper mathematical models. As known, various
factors greatly influence this complex process, such as matrix geometry, matrix swelling
equilibrium and kinetics, matrix erosion, drug dissolution and partitioning, drug diffusion,
drug–matrix interaction, initial drug distribution, etc. (Figure 11). Based on specific
assumptions and hypotheses, certain mathematical models enable the simulation of release
kinetics under certain conditions. Some of these mathematical models have been commonly
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used to identify dominant release mechanisms on the basis of the comparison between
experimental and theoretical time variations in cumulated released amounts [138].
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Trying to develop a general and unifying model would consequently result in an
increase in the complexity of the model’s expression and make it difficult to obtain ana-
lytical and/or numerical solutions. Although achieving a highly general model may be
challenging, researchers have explored the potential of using empirical/semi-empirical
models to describe the release kinetic characteristics, prioritizing various aspects that make
up the release phenomenon. Mathematical models used to fit the drug release profile from
CS-based particles include the Higuchi square root, Korsmeyer–Peppas’, Hixon–Crowell’s,
Baker–Lonsdale’s, Peppas–Sahlin’s, Kopcha’s, Hopfenberg’s and Gallagher–Corrigan (GC)
models. According to the systems, zero-order or first-order kinetics may be observed.

For zero-order kinetics, the release of an active agent is only a function of time, and
the process takes place at a constant rate independent of active agent concentration:

Mt = kt (1)

where Mt is the amount of drug released at time t and k is the zero-order constant.
The first-order release kinetics model assumes that the rate of drug release is propor-

tional to the amount of drug remaining in the dosage form [139,140]:

1− Mt

M0
= e−k′t

where k′ is the first-order rate constant and M0 is the initial amount of drug in the dosage form.
The Higuchi model explains the release of a drug as a diffusion process, which is

governed by Fick’s law and has a time-dependent square root relationship [141]:

Mt

M∞
= kH

√
t (2)

where M∞ is the absolute amount of drug released over infinite time and kH is a release
rate constant.
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The Korsmeyer–Peppas model is a semi-empirical model that establishes the exponen-
tial relationship between the amount released and the time and provides indications about
the mechanism of drug release [142–144]:

Mt

M∞
= Ktn (3)

where K is a rate constant and n is the exponent that incorporates the effects of the release
mechanism and the geometrical characteristics of the system.

The Hixson–Crowell model was initially derived from a work dealing with agitation [145]:

3
√

M0 = 3
√

M0 −Mt + KHCt (4)

where KHC is the constant of incorporation, which relates surface and volume.
The Peppas–Sahlin model assumes that drug release occurs through diffusion with

a simultaneous influence of polymer relaxation and that it is possible to include the two
contributions by summation (diffusional and relaxational terms) [146]:

Mt

M∞
= kdtm + krt2m (5)

where kd and kr are the kinetic constants of diffusion and relaxation, respectively, and m is
the diffusion exponent.

Kopcha’s model [147], also relying on the assumption of summation, includes simulta-
neous diffusion and erosion contributions within the release kinetics:

Mt = Bt + A
√

t (6)

where A and B are the diffusion constant and erosion constant, respectively.
Based on the Higuchi model, the Baker–Lonsdale model was developed for controlled

drug release from spherical matrices [148]:

3
2

[
1− (1− Mt

M∞
)

2
3
]
− Mt

M∞
= k′′ t (7)

where k” is the release constant, which corresponds to the slope of the experimental
curve [149,150]. This equation can be utilized for the linearization of release data for many
microparticle formulations [143].

Hopfenberg derived a model to explain the release of drugs from an erodible system
in the case of a spherical particle [151]:

Mt

M∞
= 1−

[
1− k0t

C0a0

]3
(8)

where k0 is the erosion rate constant, C0 is the initial concentration of drug in the matrix
and a0 is the initial radius.

The Gallagher–Corrigan (GC) model was applied to evaluate drug release from
biodegradable polymeric drug delivery systems by combining diffusion and polymer
relaxation/degradation contributions:

Mt

M∞
= A1(1− e−k1t) + A2

ek2(t−tm)

1 + ek2(t−tm)
(9)

where A1 and A2 are constants related to the contributions of the diffusion and relaxation
mechanisms to drug release, k1 is the release constant in the first stage, tm is the maximum
release time and k2 is the release constant during the stage of polymer degradation.
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The GC model is particularly useful for predicting drug release profiles under dif-
ferent conditions [152]. Additionally, it can be adapted to describe dual-phased drug
release [152–154]. The experimental data on the release of curcumin from MnFe2O4 mag-
netic nanoparticles with multilayered CS–alginate (ALG) shells were a good fit to the GC
model. The CS-ALG coating was reported to be useful in inhibiting burst release, and the
increase in the number of layers could delay the dissolution rate, thus achieving sustained
release [154].

The distinguishing aspect of the last three models from others is their incorpora-
tion of two discrete phenomena that occur during drug release: diffusion and relax-
ation in the Peppas–Sahlin and Gallagher–Corrigan models and diffusion and erosion
in Kopcha’s model.

Frequently used models are adopted to describe the release characteristics and mecha-
nisms of drugs from CS-based systems, prioritizing different factors (Table 4).

Table 4. Mathematical models to reveal the release mechanisms of reported chitosan-based particulate systems.

Mechanism (s) Description of Systems Model Equation(s) References

Diffusion

Crosslinked CS-dextran sulfate
nanoparticle Higuchi (2) [85]

Crosslinked CS microspheres Korsmeyer–Peppas/Higuchi (3)(2) [94]

Spray-Dried CS Microspheres Higuchi/Korsmeyer (2)(3) [155]

CS hydrogel Zero-order kinetic (1)

[156]Fatty acid-grafted CS hydrogel Higuchi (2)

CS-LLA i Hixson (4)

CS–alginate nanoparticles Korsmeyer–Peppas (3) [157]

Diffusion and relaxation

CS–genipin matrices Peppas–Sahlin (5) [158]

Multilayer CS–alginate-coated
nanocarrier Gallagher–Corrigan (9) [154]

Alginate–carboxymethylcellulose
microparticles with CS shells Gallagher–Corrigan (9) [152]

Diffusion and swelling CS–alginate Hopfenberg (8) [159]

Diffusion, erosion
DOX-loaded PLGA-QCS ii

core–shell polymersomes
Korsmeyer-Peppas (3)

[160]
Kopcha (6)

PLGA/CS microcapsules Baker–Lonsdale (7) [161]
i LLA: linolenic acid; ii QCS: Chitosan Quaternary Ammonium Salt.

It is important to note that good-fitting experimental data are necessary but may not be
sufficient to identify the best model among different models devoted to correctly describing
complex release kinetics. Mathematical hypotheses are supposed to take experimental
observation of phenomena into consideration. However, in practice, it may not always be
feasible. For instance, swelling and erosion of the CS matrix also contributed to the release
of vitamins, but the best model chosen was the Peppas–Sahlin model, which privileges
more diffusion and relaxation [158]. By synthetically analyzing characteristic constants
of diverse models, researchers can better understand the underlying mechanisms of drug
release and predict the release kinetics more accurately [1].

Furthermore, considering the overall size distribution of particles rather than just
the unitary average diameter may be crucial in developing more accurate models, as
heterogeneity in samples is a common occurrence in practical applications [162,163].

It is noteworthy that the systematic implementation of mathematical modeling in the
development of active ingredient delivery systems can enhance R&D efficiency, save time
and reduce expenses. Additionally, the advanced utilization of this approach can enable
the advancement of precision medicine. Instead of an undifferentiated regular dosage
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regimen, personalized medicine can afford a better therapeutic effect and lower toxicity by
considering patients’ individual characteristics.

6. Conclusive Remarks and Prospective Research

Tremendous interest in CS from both academic and diverse industrial fields has
emerged over the past few decades. Innovative carriers have been developed with unique
properties such as sustained release, responsiveness to environmental factors and multi-
phase release.

An improved understanding of the close relationship between the preparation process
and particle structure would enable the prediction of formulation and preparation strategies
for drug delivery systems to achieve the desired release kinetics [152,164]. Additionally,
modeling capacity is a powerful tool to increase the efficiency of developing new systems,
which is crucial for the industry to turn the idea of on-demand drug delivery systems (DDS)
into a reality.

Efforts should be focused on investigating in a more specific manner how the prepa-
ration process affects the structure of the vehicle and subsequent release behaviors from
the polymeric network. By gaining more insight into these aspects, it is possible to design
DDSs that release drugs in a controlled manner, such as sustained release, pulsatile release
or targeted release, depending on the specific therapeutic needs.
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