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18000 Niš, Serbia; suzana.brankovic@medfak.ni.ac.rs

3 Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjića 81, 18000 Niš, Serbia; voidruner@gmail.com
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Abstract: The use of medicinal plant species and their products is widespread in the field of gastroin-
testinal and respiratory diseases. This study aimed to evaluate the traditional use of Salvia sclarea L.,
clary sage, finding the possible mechanisms of its spasmolytic and bronchodilator actions in in vitro
conditions supported by molecular docking analysis, along with the antimicrobial effects. Four dry
extracts were prepared from the aerial parts of S. sclarea, using absolute or 80% (v/v) methanol by
the method of a single-stage maceration or an ultrasound-assisted extraction. Characterization of
the bioactive compounds by high-performance liquid chromatography indicated the presence of
significant amounts of polyphenolics, with rosmarinic acid as the prevalent one. The spontaneous
ileal contractions were best inhibited by the extract prepared with 80% methanol and maceration.
The same extract was superior in the carbachol- and KCl-induced tracheal smooth muscle contrac-
tions, being the strongest bronchodilator agent. The most powerful relaxation of KCl-induced ileal
contractions was achieved with the extract made of absolute methanol by maceration, while the
80% methanolic extract made with the ultrasound method generated the best spasmolytic effects in
the acetylcholine-induced ileal contractions. Docking analysis suggested that apigenin-7-O-glucoside
and luteolin-7-O-glucoside exhibited the highest binding affinity to voltage-gated calcium channels.
Gram (+) bacteria were more susceptible to the effects of the extracts, particularly Staphylococcus
aureus, in contrast to Gram (−) bacteria and Candida albicans. This is the first study to point out the
influence of S. sclarea methanolic extracts on the gastrointestinal and respiratory spasm reduction,
paving the way for their potential place in complementary medicine.

Keywords: Salvia sclarea L.; methanolic extracts; spasmolytic activity; ileum; trachea; rats

1. Introduction

New products harnessing natural sources are rapidly increasing in the market. Follow-
ing that, studies showing the efficacy and importance of medicinal plant species are being
conducted in many countries around the world and cover a wide range of developmental
stages [1]. A modern term, coined “reverse pharmacology”, describes a strategy of devel-
oping new herbal medicines in modern phytotherapy, by reverse engineering traditional
herbal medicine. It involves the study of active compounds based on the traditional use
of herbal medicines or formulations; thus, most research on these species relates to the
confirmation of their traditional use [2].
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The use of medicinal plant species and their products is very widespread in the field of
gastrointestinal diseases. The most common indications of herbal drugs and preparations
include dyspepsia, constipation, gastro-oesophageal reflux, irritable bowel syndrome,
esophagitis, gastritis, and chronic gastrointestinal infections (dysbiosis). They also show
properties that are useful in allergies, and with intolerance, peptic ulcers, inflammatory
diseases, ulcerative colitis, Crohn’s disease, diverticulitis, as well as anorexia. Aromatic
drugs (e.g., from the Lamiaceae and Apiaceae families) are used as excellent spasmolytic
and carminative agents and are often used in the cases of colics, flatulence, slow digestion
problems, chronic inflammations, and infections [3]. In addition, they are known as natural
remedies to respiratory problems due to their broncholytic, secretomotor and spasmolytic
effects, and as supportive cough therapy agents [4,5]. A concomitant symptom of many
respiratory tract disorders is bronchoconstriction or bronchospasm, which is an abnormal
contraction of the smooth muscle airway, thought to result from an intrinsic abnormality
in the airway myocytes [6]. Herbal preparations are often used in the treatment or co-
treatment of many respiratory diseases, most commonly in inflammation of the upper
respiratory organs, and can be helpful in chronic bronchitis and tracheitis, asthma, and
chronic obstructive pulmonary disease [3].

Aromatic plants that express significant pharmacological effects from the Lamiaceae
family are used in phytomedicine worldwide [7]. Numerous species of the Lamiaceae
family belong to the genus of sage, Salvia L., whose range of traditional uses in medicine
is extremely broad. They are most often used as carminatives and antispasmodics, but
also as antiseptic, insecticidal, and anti-inflammatory agents [8]. Salvia sclarea L., clary
sage, is mostly used in a dry or fresh form as a stomachic for digestive problems thanks
to its antispasmodic effect and distinctly aromatic properties. Its usage in traditional
medicine is also applied as a mean of relieving respiratory problems, as emmenagogue,
hypoglycemic, and a hemostatic agent, in the treatment of menstrual discomfort, gingivitis,
polyarthritis, rheumatism, etc. [9–12]. According to the instructions of Hager’s manual
(1994) the aerial parts of S. sclarea are used per os for digestive and menstrual problems,
general weakness, catarrh, headache, spasms, and kidney problems, and topically for
inflammatory wounds. For a per os administration, 4–5 spoons of the drug are used that
have to be previously boiled with 0.5 L of water for several minutes. For the treatment of
gingivitis, other inflammatory processes in the oral cavity, and for cleaning wounds, the
S. sclarea tea is prepared in the form of a decoction (50 g of the drug and 1 l of water) by
boiling for 1–2 min. Additionally, the manual recommends the combination of S. sclarea
with vinegar and honey for purulent nail infections [13]. Previous studies confirmed the
effectiveness of the essential oil and extracts of S. sclarea concerning their antimicrobial, anti-
inflammatory, antioxidant, cytotoxic, anticholinesterase, and antidiabetic activities [14–18].
Various secondary metabolites, such as phenolic acids, flavonoids, and terpenes, present in
S. sclarea, are responsible for these effects [19,20]. Therefore, the aim of this work was to
confirm the spasmolytic activities of clary sage methanolic extracts in in vitro conditions
relating to the effects of their phytocompounds determined by a docking analysis, along
with a study of their antimicrobial effects. The microorganisms selected for testing are the
most common causative agents of gastrointestinal and respiratory infections. Spasms in
these organ systems are often associated with the infections [21,22], so the spasmolytic
activity studies were complemented with the antimicrobial activity test.

2. Materials and Methods
2.1. Plant Material and Extraction

Aerial parts of S. sclarea were collected in the surrounding area of Niš, Malča (Serbia),
during the flowering period. The plant material was identified by prof. Dr. Bojan Zlatkovic,
from the Department of Biology and Ecology, Faculty of Science, University of Niš. A
voucher specimen was deposited in the Herbarium of the Institute of Botany and Botanical
Garden “Jevremovac” of the Faculty of Biology, University of Belgrade under collector
number 17077.
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The plant material was dried in a dark, cool and well-ventilated place and ground to
powder on a mechanical mill. The powdered plant material was extracted with absolute
and 80% (v/v) methanol using the ultrasonic technique and the single-stage maceration
in the 1:10 ratio. The method of ultrasonic extraction involved the extraction of the drug
with a solvent in an ultrasonic bath for 20 min (extracts MU and M80U). The extraction
was conducted at room temperature in an ultrasonic bath: Elmasonic S 40 H (220–240 V,
340 W, 37 Hz) (Elma Schmidbauer GmbH, Singen, Germany). The extraction process of
the single-stage maceration lasted five days with shaking conducted twice a day, after
which the macerate was separated from the rest of the drug by filtering and pressing. The
resulting macerate was kept in a cold place for another two days [23] (extracts MM and
M80M). The final four extracts were obtained after the filtration and total evaporation of
the used solvents in a rotary vacuum evaporator at 40 ◦C (IKA-Werke GmbH & Co. KG,
Staufen, Germany). The extracts were stored in well-closed glass vials at a temperature of
up to 4 ◦C until analysis.

2.2. HPLC Characterization of the Extracts

The extracts were chemically characterized on an Agilent 1200 HPLC system (Agilent
Technologies, Palo Alto, CA, USA) with a diode array detector. Purospher STAR RP-18e
(150 × 4.6 mm) with the particle size of 5 µm (Merck, Darmstadt, Germany) was used as
the analytical column. The extracts were primarily dissolved in ultrapure methanol, HPLC
grade (10 mg/mL), and filtered through a 0.45 µm microfilter. The extract solutions were
injected at a volume of 10 µL. The mobile phase consisted of a mixture of 0.1% aqueous
trifluoroacetic acid (A) and acetonitrile (B) with a linear gradient: 0–3 min 5–5% B, 3–32 min
5–28% B, 32–44 min 25–50% B, 44–52 min 50–80% B, 52–54 min 80–90% B, 54–59 min
90–5% B, and 59–60 min 5% B. The flow in the column was 0.7 mL/min and the operating
temperature was maintained at 30 ◦C. Phytocompounds were identified and quantified on
the basis of UV-Vis signal response compared to standards. Their quantities in the extracts
were expressed as µg/mg [24].

2.3. Effects of the Extracts on Ileum and Trachea Contractions
2.3.1. Experimental Animals

All experimental procedures were performed in accordance with the European Di-
rective 2010/63/EU for animal experiments, with the special approval of the Veterinary
Directorate of the Ministry of Agriculture and Environmental Protection of the Republic
of Serbia (decision number 323-07-00073/2017-05/04). Male Wistar albino rats, which
weighed 200–250 g and were 10–12 weeks of age, and were bred in the vivarium of the
Faculty of Medicine, University of Niš, were used for all of the experimental series. A
week before the experimentations, the animals were separated and housed in stainless
steel cages under standard conditions (room temperature 20–24 ◦C, with a 12 h light/dark
regime). The animals had free access to food and water, except for the last 24 h before the
experiments, when they were deprived of food.

2.3.2. Isolation and Placement of Ileum and Trachea

After anaesthesia, the thorax and the aorta of the rats were dissected and the ileum
and trachea were isolated and cleaned off the mesentery and connective tissue, respec-
tively. The ileal and tracheal fragments were placed in a 20 mL tissue bath, containing
Tyrode’s or Krebs’ solution, respectively, and maintained at 37 ◦C with a constant introduc-
tion of a mixture of oxygen (95%) and carbon dioxide (5%). Tyrode’s solution contained
NaCl (150 mM), KCl (2.7 mM), MgCl2 (2 mM), NaHCO3 (12 mM), NaH2PO4 (0.4 mM),
CaCl2 (1.8 mM), and glucose (5.5 mM). Kreb’s solution consisted of NaCl (137 mM), KCl
(2.81 mM), CaCl2 (1.8 mM), MgCl2 (0.1 mM), NaH2PO4 (0.417 mM), NaHCO3 (11.9 mM),
and glucose (11.10 mM). The fragments were stretched and stabilized for at least 30 min
(ileum) or 60 min (trachea) before starting experiments [21]. The changes in the contractility
of the organs were recorded using the system Transducer-TSZ-04-E (Experimetria Ltd.,
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Budapest, Hungary). The data were analyzed using the SPEL Advanced ISOSYS Data
Acquisition System software.

2.3.3. Experimental Design with Ileum

The first experimental series analyzed the effects of S. sclarea methanolic extracts on
spontaneous contractions of the isolated rat ileum. The extract solutions were added in
cumulative doses in the range from 0.005 to 1.5 mg/mL after the period of adaptation,
forming a concentration–response curve. The result of the spasmolytic effect of each extract
concentration was expressed as a percentage in relation to the initial spontaneous activity of
the isolated ileum (% of inhibition of ileal contractility). Papaverine was used as a positive
control with the concentrations of 0.01–3 µg/mL [25].

The second experimental series examined the effects of the extracts on the contractions
induced by a high concentration of potassium ions by adding KCl solution (80 mM) after
the adaptation period. The tonic contractions of the ileum were followed by the addition
of the cumulative doses of each extract solution (0.005–1.5 mg/mL) at 15 min intervals.
The relaxations of the ileum smooth muscles, pre-contracted with potassium ions, were
expressed as the percentage of the control response mediated by potassium ions. The
same procedure was carried out with a calcium channel antagonist, verapamil, with the
concentrations range of 0.015–1.5 µg/mL [25].

In the last series, contractions of ileum smooth muscles were stimulated by the cu-
mulative addition of acetylcholine solutions in concentrations of 5, 15, 50, 150, 500, and
1500 nM after a period of adaptation. A control curve of the dose-dependent contractions
was constructed according to the obtained results. The ileum segments were washed
with Tyrode’s solution until stable spontaneous contractions were established again. Each
extract was added at a concentration of 0.5 mg/mL and 1.5 mg/mL to the bath, and after
5 min, a series with the same acetylcholine concentrations was repeated. New curves of the
dose-dependent acetylcholine contractions were constructed. The spasmolytic effects of the
S. sclarea extracts were presented through a series of curves showing the contractile effect of
acetylcholine (%) in the presence of the extracts compared with the effect of acetylcholine
without them. The same procedure was repeated with atropine (140 nM), a non-selective
muscarinic receptor blocker [25].

2.3.4. Experimental Design with Rat Trachea

The first series of experiments studied the effects of the S. sclarea methanolic extracts
on tracheal contractions caused by carbachol. Carbachol was added at a concentration
of 1 µM after spontaneous contractions were established. The extracts were cumulatively
added to the organ bath (0.005–1.5 mg/mL). The spasmolytic effects of the extracts were
presented as an inhibition percentage of the contractile action of carbachol. Atropine was
used as a positive control (0.41–100 µg/mL) [18].

The second set of experiments studied the spasmolytic effects of the extracts on
contractions induced by a high concentration of potassium ions (KCl, 80 mM) after the
period of stabilization. The extracts were added at the same cumulative concentration.
The relaxations of tracheal spasms by the extracts were expressed as a percentage of the
contractile action inhibition carried out by the potassium ions. Verapamil was used as a
positive control (0.41–100 µg/mL) [18].

2.4. Molecular Docking Analysis

Simulation of molecular docking of the ligands to the target protein was performed
using the AutoDock Vina software. Dominant phytochemicals, previously determined
in S. sclarea extracts, and verapamil, as a standard drug, were considered as ligands.
The structures of ligands were retrieved from PubChem (https://pubchem.ncbi.nlm.nih.
gov, accessed on 20 January 2022) with the following CID numbers: 5281792 rosmarinic
acid, 689043 caffeic acid, 5280443 apigenin, 5280445 luteolin, 161271 salvigenin, 12304093
apigenin-7-O-glucoside, 45933934 luteolin-7-O-glucoside, and 2520 verapamil (standard

https://pubchem.ncbi.nlm.nih.gov
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drug). Guided by the results of in vitro studies that indicate that the spasmolytic activity
of S. sclarea extract is mainly mediated via calcium-mediated signaling pathways, voltage-
gated calcium channels belonging to this signal pathway were selected as the target. The
three-dimensional crystal structure of the voltage-gated calcium channel subunit beta2a
(PDB: 1T0J) used as the target protein was obtained in PDB format from the RCSB Protein
Data Bank (https://www.rcsb.org, accessed on 20 January 2022). The target protein and
ligands were prepared in a dockable PDBQT format using AutoDock Tools. The coordinates
of the grid box center were adjusted in the binding pocket of the standard drug (x: −3.348,
y: 3.044, and z: −12.198), while the box dimensions were 20 × 20 × 20 Å. To compare
the in silico performance, the binding affinities of the selected ligands with the target
molecule were calculated and scored according to their affinity scores calculated through
the binding free energy (kcal/mol). The molecular interactions of docked complex ligand–
target protein were determined using the AutoDock Vina analysis and visualized with the
BIOVIA Discovery Studio Visualizer.

2.5. Evaluation of Antimicrobial Activity of the Extracts

The antimicrobial activity of the S. sclarea methanolic extracts was estimated with
laboratory control strains from the American Type Culture Collection (ATCC). Gram (+)
bacteria used in the evaluation were: Staphylococcus aureus ATCC 6538, Enterococcus faecalis
ATCC 9433, Streptococcus pneumoniae ATCC 6301, Streptococcus pyogenes ATCC19615, Bacillus
cereus ATCC 11778, and Lysteria monocytogenes ATCC 15313. The following bacteria were
selected for the testing of the effects of the extracts against Gram (−) representatives:
Pseudomonas aeruginosa ATCC 9027, Proteus mirabilis ATCC 12453, Salmonela enteritidis
ATCC 13076, Escherichia coli ATCC 8739, Enterobacter aerogenes ATCC 13048, and Klebsiella
pneumoniae ATCC 10031. A fungus (yeast), Candida albicans ATCC 24433, was used for
assessing antifungal activity. The antimicrobial activity of the extracts was evaluated
using the microdilution method according to the CLSI (Clinical and Laboratory Standards
Institute) [26].

Overnight broth cultures of the tested bacteria and the yeast were used for the prepa-
ration of the suspensions, which were adjusted to 0.5 McFarland standard turbidity (corre-
sponded to 1.5 × 108 CFU (colony forming units)/mL for the bacteria and 1.5 × 107 CFU/mL
for the yeast). Primarily, the extracts were dissolved in a sterile 10% aqueous solution
of dimethyl sulfoxide. Serial double dilutions of the extracts, in the range from 0.1 to
100 mg/mL, were prepared in microtiter plates (96-well) with an inoculated nutrient broth.
The final volume of the wells was 100 µL and the final concentrations were 2 × 106 for the
bacteria and 2 × 105 for the yeast. The incubation of the microtiter plates was performed
at 37 ◦C for 24 h for the bacteria or at 25 ◦C for 48 h for the yeast. Microbial growth
was detected by a 0.5% aqueous solution of 2,3,5-triphenyl tetrazolium chloride (20 µL)
added to each well [27]. The minimal concentration of the extract with no visible growth
of microorganisms was defined as the minimum inhibitory concentration (MIC). The min-
imum bactericidal/fungicidal concentration (MBC/MFC) was defined as the minimal
concentration of the extract that killed 99.9% of the tested bacteria or the yeast. For the
determination of the MBC/MFC of the extract, the broth was taken from each well with
no visible growth and inoculated into an agar (Mueller–Hinton agar at 37 ◦C for 24 h for
the bacteria or Sabouraud dextrose agar 25 ◦C for 48 h for the yeast). Sterile 10% aqueous
DMSO solution was used as a negative control. Chloramphenicol, streptomycin, and
nystatin (0.008–16 µg/mL) were used as the controls.

2.6. Statistical Analysis

The final results are expressed as mean values of three or six parallel measurements ± the
standard deviations (chemical composition or spasmolytic analyses, respectively), except
for the antimicrobial activity. The EC50 values, which presented the concentrations causing
50% of maximal response, were obtained by a regression analysis. Student’s t-test or one-
way ANOVA with Duncan’s post hoc test were used for the determination of significant

https://www.rcsb.org
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statistical differences between/among the means (p < 0.05 or p < 0.01). Statistical analyses
were carried out using the SPSS 20.0 statistical package (SPSS, Inc., Chicago, IL, USA).

3. Results
3.1. Chemical Characterization of the Extracts

The yields of the extractions were 12.75% for the MM extract, 11.93% for MU, 19.65%
for M80M, and 13.30% for M80U. The HPLC analysis of the extracts indicated the presence
of phenolic acids as well as flavon type flavonoid aglycons and flavon type flavonoid hetero-
sides (Figure 1). Table 1 displays the content of the individual compounds. Rosmarinic acid
was predominant in all of the extracts in the range of 171.99 ± 1.88–197.48 ± 2.00 µg/mg.
The M80M extract contained the highest quantity of phenolic acids and flavonoid hetero-
sides, while aglycons were mostly present in the extracts prepared with absolute methanol.
Dominant aglycon in the extracts was salvigenin, followed by luteolin and apigenin.
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4. rosmarinic acid, 5. luteolin, 6. apigenin, and 7. salvigenin.

Table 1. Chemical composition of the Salvia sclarea L. extracts determined by HPLC.

Compounds
RT

(min)
MM MU M80M M80U

µg/mg

caffeic acid 20.5 0.79 ± 0.02 a 0.63 ± 0.04 b 0.97 ± 0.07 b 0.81 ± 0.01 a

luteolin-7-O-glucoside 29.0 5.18 ± 0.21 a 5.65 ± 0.34 a 8.84 ± 0.54 b 5.61 ± 0.31 a

apigenin-7-O-glucoside 32.5 5.63 ± 0.21 a 4.56 ± 0.02 b 7.00 ± 0.55 c 4.45 ± 0.18 d

rosmarinic acid 33.5 175.66 ± 2.02 a 177.77 ± 1.89 a 197.48 ± 2.00 b 171.99 ± 1.88 c

luteolin 39.3 1.45 ± 0.01 a 1.13 ± 0.01 b 0.96 ± 0.02 c 0.80 ± 0.02 d

apigenin 42.7 0.78 ± 0.01 a 0.78 ± 0.00 a 0.72 ± 0.00 b 0.53 ± 0.00 c

salvigenin 53.0 3.72 ± 0.09 a 4.05 ± 0.02 b 2.54 ± 0.04 c 2.27 ± 0.01 d

RT: retention time. The results represent the mean of the three measurements ± the standard deviation. Different
lowercase letters in the rows indicate a statistically significant difference in compound content among extracts
(Duncan’s test, p < 0.05).

Based on the obtained values of the content of phytocompounds in the extracts, the
maceration method generally proved to be more effective. This difference is especially
noticeable between the extracts prepared with 80% methanol.

3.2. Spasmolytic Effects of the Extracts on Spontaneous Ileum Contractions

The S. sclarea methanolic extracts exhibited the significant, dose-dependent, and
spasmolytic effect of the ileum smooth muscle in the first experimental series by reducing
the spontaneous contractions. The lowest EC50 value was determined for the extract M80M.
In addition, this extract, MM, and MU acted in a similar manner with the narrow range of
EC50 from 2.44 ± 0.10 to 2.69 ± 0.22 mg/mL and the inhibitions of maximal concentrations
(1.5 mg/mL) from 28.96 ± 1.86 to 34.73 ± 1.20%. The M80U extract was less effective
(Table 2; Figure 2). The maximal concentration of papaverine (0.003 mg/mL), used as a
positive control, was able to reduce 97% of all spontaneous ileum contractions.

3.3. Spasmolytic Effects of the Extracts on KCl-Induced Ileum Contractions

The extracts had an inhibitory activity on the contractions induced by the application
of KCl solution (80 mM). Ileum smooth muscle relaxation was dose-dependent, with the
range of EC50 values from 3.69 ± 0.30 to 5.76 ± 0.34 mg/mL (Table 2; Figure 3). The best
activity was achieved after the addition of the MM extract, whose maximal concentration
of 1.5 mg/mL was able to reduce contraction to 74.71 ± 2.29%. Verapamil was used as a
control in this study, whereby a maximum concentration of 0.0015 mg/mL reduced the
contraction to 5%.
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Table 2. Spasmolytic effects of the Salvia sclarea L. extracts and controls on the spontaneous and
KCl-induced ileum contractions.

EC50

Spontaneous Contractions KCl-Induced Contractions

mg/mL

MM 2.62 ± 0.24 a 3.69 ± 0.30 a

MU 2.69 ± 0.22 a 4.90 ± 0.33 b

M80M 2.44 ± 0.10 a 5.76 ± 0.34 c

M80U 4.59 ± 0.33 b 4.63 ± 0.26 b

papaverine 1.2 × 10−4 ± 0.1 × 10−4 c /
verapamil / 6.3 × 10−4 ± 0.5 × 10−4 d

The results represent the mean of the three measurements ± the standard deviation. Different lowercase letters in
columns indicate a statistically significant difference in EC50 values among extracts and controls (Duncan’s test,
p < 0.05).
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Figure 2. Inhibitory effects of the Salvia sclarea L. extracts and papaverine on spontaneous contractions
of the isolated rat’s ileum: (a) effects of the MM and MU extracts and papaverine; (b) effects of the
M80M and M80U extracts and papaverine. Each point represents the mean value of percentages
with respect to the spontaneous contractions in the Tyrode solution (control) ± SD of six segments
(Student’s t-test, * p < 0.05, ** p < 0.01 vs. Tyrode).
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Figure 3. Inhibitory effects of the Salvia sclarea L. extracts and verapamil on the KCl-induced contrac-
tions of the isolated rat’s ileum: (a) effects of the MM and MU extracts and verapamil; (b) effects of
the M80M and M80U extracts and verapamil. Each point represents the mean value of percentages of
maximal response ± SD of six segments (Student’s t-test, * p < 0.05, ** p < 0.01 vs. control).

3.4. Spasmolytic Effects of the Extracts on Acetylcholine-Induced Ileum Contractions

The tested extracts were able to reduce ileum contractions induced by cumulative
doses of acetylcholine with statistical significance (p < 0.01). The control EC50 values of
acetylcholine were modified and increased after the addition of all the extract concentra-
tions (0.5 and 1.5 mg/mL) (Table 3; Figure 4). The M80U extract stood out in this series
of experiments modifying the baseline EC50 value of acetylcholine (0.17 ± 0.00 nM) two
times after the application of 0.5 mg/mL. An even greater increase in the EC50 value of
acetylcholine was observed after applying a dose of 1.5 mg/mL (62.15 ± 3.22 nM and
contractions reduction from baseline 100% to 59.78 ± 3.10%). The effects of the other
methanolic extracts were significantly lower: M80M > MM > MU. Atropine, a muscarinic
receptor antagonist, was used as a positive control in the concentration of 140 nM, modi-
fying the EC50 value of acetylcholine from 0.10 ± 0.00 nM to 18,261.96 ± 958.32 nM and
reducing acetylcholine-induced ileum contractions to 16.02%.
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Figure 4. Inhibitory effects of the Salvia sclarea L. extracts and atropine on the acetylcholine (Ach)-
induced contractions of the isolated rat�s ileum: (a) the values of control, Ach + MM (0.5 mg/mL) and 
Ach + MM (1.5 mg/mL); (b) the values of control, Ach + MU (0.5 mg/mL), and Ach + MU (1.5 mg/mL); 
(c) the values of control, Ach + M80M (0.5 mg/mL), and Ach + M80M (1.5 mg/mL); (d) the values of 
control, Ach + M80U (0.5 mg/mL), and Ach + M80U (1.5 mg/mL); and (e) the values of control, Ach 

Figure 4. Inhibitory effects of the Salvia sclarea L. extracts and atropine on the acetylcholine (Ach)-
induced contractions of the isolated rat’s ileum: (a) the values of control, Ach + MM (0.5 mg/mL)
and Ach + MM (1.5 mg/mL); (b) the values of control, Ach + MU (0.5 mg/mL), and Ach + MU
(1.5 mg/mL); (c) the values of control, Ach + M80M (0.5 mg/mL), and Ach + M80M (1.5 mg/mL);
(d) the values of control, Ach + M80U (0.5 mg/mL), and Ach + M80U (1.5 mg/mL); and (e) the values
of control, Ach + atropine (140 nM). Each point represents the mean value of percentages of maximal
response ± SD of six segments (Student’s t-test, * p < 0.05, and ** p < 0.01 vs. control).
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Table 3. The EC50 values of acetylcholine without extracts and atropine (control), the EC50 values of
acetylcholine with the addition of the Salvia sclarea L. extracts in concentrations of 0.5 mg/mL and
1.5 mg/mL, and the EC50 values of acetylcholine with the addition of atropine (140 nM).

MM MU M80M M80U Atropine

EC50 of Acetylcholine (nM)

control 0.29 ± 0.01 a 0.03 ± 0.00 a 0.01 ± 0.00 a 0.17 ± 0.00 a 0.10 ± 0.00 a

0.5 mg/mL 0.40 ± 0.01 b 0.12 ± 0.00 b 0.15 ± 0.00 b 0.36 ± 0.00 b /
1.5 mg/mL 18.21 ± 0.65 c 0.47 ± 0.01 c 7.25 ± 0.22 c 62.15 ± 3.22 c /

140 nM / / / / 18,261.96 ± 958.32 b

The results represent the mean of six measurements ± standard deviation. Different lowercase letters in columns
indicate statistically significant difference in EC50 values among control and different extracts (positive control)
concentrations (Duncan’s test, p < 0.05).

3.5. Spasmolytic Effects of the Extracts on KCl-Induced Tracheal Contractions

After a single dose of KCl (80 nM) all tested extracts expressed inhibitory effects on
tracheal rat smooth muscle contractions in a dose-dependent regime (Table 4). Samples were
characterized as moderate spasmolytic agents, whereby extracts prepared by the maceration
method were stronger, especially M80M. A maximal concentration of 1.5 mg/mL of this
extract inhibited the contractions by 15.37 ± 0.81 and 17.22 ± 0.99%, respectively (Figure 5).
Verapamil inhibited 74.23 ± 1.20% of the contractions at the maximum concentration
(100 µg/mL) with an EC50 value of 15.23 ± 0.08 µg/mL.

Table 4. Spasmolytic effects of the Salvia sclarea L. methanolic extracts and controls on the KCl-and
carbachol-induced tracheal contractions.

EC50

KCl-Induced Contractions Carbachol-Induced Contractions

mg/mL

MM 6.27 ± 0.16 a 6.92 ± 0.04 a

MU 15.38 ± 1.02 b 3.26 ± 0.02 b

M80M 6.03 ± 0.33 a 1.36 ± 0.01 c

M80U 9.02 ± 0.11 c 4.26 ± 0.04 d

verapamil 1.53 × 10−2 ± 8.00 × 10−5 d /
atropine / 9.78 × 10−3 ± 0.00 f

The results represent the mean of the three measurements ± the standard deviation. Different lowercase letters in
columns indicate a statistically significant difference in compound content among extracts and controls (Duncan’s
test, p < 0.05).
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3.6. Spasmolytic Effects of the Extracts on Carbachol-Induced Tracheal Contractions 
Methanolic S. sclarea extracts had a relaxing effect on the tracheal smooth muscle 

contractions induced by a single dose of carbachol (1 µM) (Table 4; Figure 6). The M80M 
extract stood out in in its series with the lowest EC50 (1.36 ± 0.01 mg/mL) and an inhibition 
of 54.09 ± 1.66% achieved with a maximum concentration of 1.5 mg/mL. Atropine, used as 
a control, inhibited 84.89 ± 2.00% of the tracheal contractions with an EC50 value of 9.78 ± 
0.00 µg/mL. 

Figure 5. Inhibitory effects of the Salvia sclarea L. extracts and verapamil on the KCl-induced contrac-
tions of the isolated rat trachea: (a) effects of the MM and MU extracts and verapamil; (b) effects of
the M80M and M80U extracts and verapamil. Each point represents the mean value of percentages of
inhibitions ± SD of 6 segments (Student’s t-test, * p < 0.05, and ** p < 0.01 vs. control).
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3.6. Spasmolytic Effects of the Extracts on Carbachol-Induced Tracheal Contractions

Methanolic S. sclarea extracts had a relaxing effect on the tracheal smooth muscle
contractions induced by a single dose of carbachol (1 µM) (Table 4; Figure 6). The M80M
extract stood out in in its series with the lowest EC50 (1.36 ± 0.01 mg/mL) and an inhibition
of 54.09 ± 1.66% achieved with a maximum concentration of 1.5 mg/mL. Atropine, used
as a control, inhibited 84.89 ± 2.00% of the tracheal contractions with an EC50 value of
9.78 ± 0.00 µg/mL.
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of inhibitions ± SD of six segments (Student’s t-test, * p < 0.05, and ** p < 0.01 vs. control).

3.7. Molecular Docking Analysis

The results of the molecular docking analysis with the binding affinities and residues of
the amino acids involved in the ligand–target binding, including their interatomic distance
(Å), are listed in Table 5. The results show that the docking scores of all tested ligands are
negative, with the binding energies in the range from −5.8 to −8.6 kcal/mol. This suggests
that ligands are able to bind to the target protein. The docking score of the tested ligands
with voltage-gated calcium channels is as follows: apigenin-7-O-glucoside = luteolin-7-O-
glucoside, salvigenin, luteolin, apigenin, rosmarinic acid = verapamil, and caffeic acid. The
most prominent apigenin-7-O-glucoside and luteolin-7-O-glucoside both had a binding
score of −8.6 kcal/mol. For a deeper analysis of the interaction profile, two-dimensional
structures of the binding pocket of the target protein in a complex with tested ligands were
constructed (Figure 7). The analysis of the interaction profile shows that in the case of both
mentioned compounds binding via conventional hydrogen bonds to the amino acid residue,
Arg65 is involved, similar to the binding of the standard drug verapamil to its binding
pocket. In the case of apigenin-7-O-glucoside, the length of this bond was 2.21 Å; while in
the case of luteolin-7-O-glucoside, it was slightly longer. Apart from this hydrogen bond
interaction, apigenin-7-O-glucoside forms conventional hydrogen bonds with the residues
of Val109 and Glu381, while luteolin-7-O-glucoside forms conventional hydrogen bonds
with Pro326, Val109, and Gln380. Such a developed hydrogen bond network contributes
greatly to the binding affinity value. Regarding the hydrophobic/electrostatic interactions,
both apigenin- and luteolin-7-O-glucoside achieved a π-cation interaction via Arg227 such
as verapamil. Beyond, both apigenin- and luteolin-7-O-glucoside showed a poorer network
of hydrophobic interactions compared to verapamil (Table 5).
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Table 5. Docking score of dominant compounds in the Salvia sclarea L. methanolic extract considered
as ligands and voltage-gated calcium channel.

Compounds Binding Affinity
(kcal/mol) Hydrogen Bonds Electrostatic/Hydrophobic Bonds

V −6.6 Conventional hydrogen bond:
Arg65 (2.36)

π-Cation: Arg227 (4.23)
Alkyl: Lys110 (4.12), Ala409 (4.50), Lys90 (4.13),

Pro336 (4.38)
π-Alkyl: Ala409 (5.06), Tyr402 (4.64), Tyr406 (5.00)

A −6.7
Conventional hydrogen bond:

Asp91 (2.05), Glu111 (2.86),
Ala405 (2.30)

π-Cation, π-donor hydrogen bond: Lys110 (2.92)
π-Anion: Asp91 (4.07)

π-Alkyl: Ala409 (5.37), Ala405 (5.31), Ala409 (4.06),
Leu108 (5.34), Lys110 (4.22)

AG −8.6

Conventional hydrogen bond:
Val109 (2.09), Glu381 (2.33),

Arg65 (2.21)
Carbon hydrogen bond:

Ser382 (3.65), Ser330 (3.49)

π-Cation: Arg227 (4.24), Arg227 (4.26)
π-Anion: Asp384 (3.85), Asp384 (3.84)

π-π T-shaped: Phe92 (4.83)

L −6.8
Conventional hydrogen bond:
Phe383 (2.49), Asp384 (2.55),
Pro326 (2.47), Arg65 (2.65)

π-Alkyl: Pro336 (4.98)

LG −8.6

Conventional hydrogen bond:
Pro326 (2.61), Val109 (1.82),
Gln380 (2.45), Arg65 (2.52)

Carbon hydrogen bond:
Ser382 (3.56), Ala335 (3.64),

Pro336 (3.67)

π-Cation: Arg227 (4.17), Arg227 (4.00)
π-Anion: Asp384 (3.40), Asp384 (3.96)

π-π T-shaped: Phe92 (4.82)

S −6.9

Conventional hydrogen
Bbond: Pro336 (2.49), Arg65

(2.70), Arg65 (2.14)
Carbon Hydrogen Bond:

Ala335 (3.51)

Alkyl: Pro378 (4.61), Lys90 (3.85)
π-Alkyl: Ala327 (5.26)

RA −6.6
Conventional hydrogen bond:

Pro336 (2.72), Arg227 (2.74),
Arg227 (2.95)

π-Alkyl: Pro336 (5.05), Ile338 (5.35), Lys90 (4.60)

CA −5.8 Conventional hydrogen bond:
Pro336 (2.11) π-Alkyl: Pro336 (4.89)

V—verapamil; A—apigenin; AG—apigenin-7-O-glucoside; L—luteolin; LG—luteolin-7-O-glucoside; S—salvigenin;
RA—rosmarinic acid; and CA—caffeic acid.

3.8. Antimicrobial Activity of the Extracts

According to the obtained results of the MIC and MBC/MFC values, the extracts are
moderate antimicrobial agents (Table 6). The effects were more prominent toward Gram (+)
bacteria compared to Gram (−). In addition, their bactericidal effects were almost minor
with the MBC values of 100 or >100 mg/mL, with the exception of the M80M extract, which
had somewhat stronger effects on P. aeruginosa (50 mg/mL). The MU extract, prepared with
absolute methanol and the ultrasound method, showed the best antimicrobial effectiveness,
particularly toward S. aureus, B. cereus, and L. monocytogenes, with the MIC values of 6.25,
12.5, and 25 mg/mL, respectively. Its bacteriostatic effects against Gram (−) bacteria were
mostly expressed toward P. aeruginosa and E. aerogenes with the MIC values of 50 mg/mL.
The effects on the yeast, C. albicans, were of no great importance because the MIC and MFC
values of the extracts were 100 and/or >100 mg/mL. The DMSO aqueous solution showed
no activity against the investigated microbial strains. MICs/MBCs values of the used posi-
tive controls were expectedly much lower (chloramphenicol 0.06–7.81/0.12–15.61 µg/mL,
streptomycin 0.16–0.6/0.16–0.6 µg/mL, and nystatine 3.91–7.81 µg/mL).
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π-Anion: Asp384 (3.40), Asp384 (3.96) 

π-π T-shaped: Phe92 (4.82) 

S −6.9 
Conventional hydrogen Bbond: Pro336 (2.49), 

Arg65 (2.70), Arg65 (2.14) 
Carbon Hydrogen Bond: Ala335 (3.51) 

Alkyl: Pro378 (4.61), Lys90 (3.85) 
π-Alkyl: Ala327 (5.26) 

RA −6.6 
Conventional hydrogen bond: Pro336 (2.72), 

Arg227 (2.74), Arg227 (2.95) 
π-Alkyl: Pro336 (5.05), Ile338 (5.35), Lys90 (4.60) 

CA −5.8 Conventional hydrogen bond: Pro336 (2.11) π-Alkyl: Pro336 (4.89) 
V—verapamil; A—apigenin; AG—apigenin-7-O-glucoside; L—luteolin; LG—luteolin-7-O-
glucoside; S—salvigenin; RA—rosmarinic acid; and CA—caffeic acid. 
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Table 6. Minimum inhibitory concentrations (MIC) and minimum bactericidal/fungicidal
(MBC/MFC) concentrations of the Salvia sclarea L. extracts and standards (S) on bacterial Gram
(+) and Gram (−) strains and a yeast.

Extracts MM MU M80M M80U S

Bacterial Strain MIC/MBC
(mg/mL)

MIC/MBC
(mg/mL)

MIC/MBC
(mg/mL)

MIC/MBC
(mg/mL)

MIC/MBC
(µg/mL)

Gram (+) ATCC Chlor.

Staphylococcus aureus 6538 12.5/>100 6.25/>100 12.5/100 25/>100 7.81/15.61
Streptococcus pneumoniae 6301 100/>100 100/>100 50/>100 100/100 0.06/0.12

Streptococcus pyogenes 19615 >100/>100 >100/>100 100/>100 100/>100 0.25/0.49
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Table 6. Cont.

Extracts MM MU M80M M80U S

Bacterial Strain MIC/MBC
(mg/mL)

MIC/MBC
(mg/mL)

MIC/MBC
(mg/mL)

MIC/MBC
(mg/mL)

MIC/MBC
(µg/mL)

Enterococcus faecalis 9433 >100/>100 >100/>100 100/>100 100/>100 3.91/7.81
Bacillus cereus 11778 25.0/>100 12.5/>100 12.5/>100 50/>100 7.81/15.61

Listeria monocytogenes 15313 25.0/>100 25/>100 50/>100 50/>100 0.25/0.49

Gram (−) ATCC Str.

Pseudomonas aeruginosa 9027 100/>100 50/>100 50/50 100/100 0.60/0.60
Proteus mirabilis 12453 >100/>100 >100/>100 100/100 100/>100 0.30/0.30

Salmonella enteritidis 13076 100/>100 >100/>100 100/100 100/>100 0.30/0.30
Escherichia coli 8739 100/>100 >100/>100 100/>100 100/>100 0.16/0.16

Enterobacter aerogenes 13048 100/>100 50/>100 100/>100 100/>100 0.60/0.60
Klebsiella pneumoniae 10031 100/>100 100/>100 100/>100 100/>100 0.30/0.30

fungal strain MIC/MFC
(mg/mL)

MIC/MFC
(mg/mL)

MIC/MFC
(mg/mL)

MIC/MFC
(mg/mL)

MIC/MFC
(µg/mL)

yeast ATCC Nys.

Candida albicans 24433 100/>100 100/>100 100/>100 >100/>100 3.91/7.81

Chlor.—chloramphenicol; Str.—streptomycin; Nys.—nystatin.

4. Discussion

Many factors of plant extraction have important roles in its efficiency, primarily the
type of solvent and method of extraction. The most commonly used methods include
conventional techniques, such as maceration, percolation, infusion, decoction, or hot con-
tinuous extraction. However, in the last three decades, various new, alternative techniques,
such as ultrasonic and microwave extraction, or supercritical fluid extraction, were de-
veloped [28]. We used the ultrasound-assisted extraction because it is a technique that
generally achieves high reproducibility in a short period of time and a high yield of bioac-
tive compounds. Additionally, this technique is characterized by its simplicity, a low
temperature during processing, and a reduced consumption of solvents and energy [29].
On the other hand, the disadvantage of this extraction technique is the risk of possible free
radicals formation when the ultrasound energy exceeds 20 kHz [29,30]. The ultrasound
method was shown to be very good in terms of the extraction yield in previous studies,
although some studies show it to be weaker than Soxhlet extraction, maceration, or mi-
crowave extraction [31,32]. Another extraction technique used is single maceration. It is a
traditional method that involves the extraction of plant material at room temperature for a
minimum of three days [30]. Its advantage is reflected in the use of a cold solvent, which
reduces the possibility of the decomposition of active compounds. The content of phyto-
compounds in the extracts indicates that the maceration method was more effective. The
extract prepared with this method, using a more polar solvent (80% methanol), contained
the highest quantity of phenolic acids and flavonoid heterosides. In addition, absolute
methanol extracted higher amounts of flavonoid aglycones, compared to 80% methanol,
due to its lower polarity.

Functional gastrointestinal disorders include a number of morphological and physi-
ological disorders characterized by impaired intestinal motility, visceral hypersensitivity,
changes in mucosal function, immune system, altered microbiota, and nervous system
processes [33]. The term “functional” generally refers to disturbances in the neuromuscular
function of the affected part of the gastrointestinal tract that induce discomfort [33,34].
The Salvia species was traditionally used in the therapy of various gastrointestinal com-
plaints [35]. In addition, the European Medicinal Agency published a monograph on
S. officinalis leaf, indicating its use as traditional herbal medicine in mild dyspeptic com-
plaints, such as heartburn and bloating [36]. Previous studies confirmed that other Salvia
species could be potential therapeutic agents in functional gastrointestinal disorders as
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well [37–40]. In this study, methanolic S. sclarea extracts exhibited inhibitory effects to a
lesser or greater extent in all experimental models performed on the isolated rat ileum.
The contractions of smooth ileum muscles are the result of the increased concentration of
free calcium ions in the cytoplasm, which is achieved through voltage-dependent L-type
channels or by the release from the intracellular depot [41]. Spontaneous contractions of the
smooth ileal muscle were effectively reduced with EC50 ranging from 2.44 ± 0.10 mg/mL
to 4.59 ± 0.33 mg/mL. The weakest activity was achieved with the M80U extract, which
was characterized by the lowest concentration of rosmarinic acid, flavonoids aglycons,
and flavonoids heterosides. The other three extracts exhibited similarly in spasmolytic
activity. Furthermore, the extracts were able to reduce the contractions stimulated by a high
single dose of the KCl solution (80 mM). Smooth muscle contractility is triggered by the
depolarization of the smooth muscle membrane, which is caused by high concentrations
of potassium ions opening the voltage-dependent L-type channels, causing extracellular
calcium ions to enter the cell and cause the contraction [42]. Therefore, the inhibitory effects
of the tested extracts on the potassium ion-induced contractions can be explained by the
blocking of voltage-dependent L-type calcium channels and the opening of potassium
channels. The extract prepared with absolute methanol and maceration turned out to be the
best, having the highest amount of apigenin and luteolin. The third series of experiments
conducted on the rat ileum showed the inhibitory effects of S. sclarea methanolic extracts
on contractions induced by acetylcholine, suggesting that the effects of the extracts are
mediated by the action on the muscarinic receptors. It is known that the gastrointestinal
tract has an abundance of M2 and M3 muscarinic receptor subtypes, whereby the M2 sub-
type is more prevalent. The acetylcholine neurotransmitter causes the contractions of the
isolated ileum primarily through the M3 receptor pathway, which involves the hydrolysis
of phosphoinositol and the mobilization of intracellular calcium ions [43], as well as the
opening of voltage-dependent calcium L-type channels [44]. The tested extracts, in both
concentrations (0.5 and 1.5 mg/mL), were able to reduce the smooth muscle contractions
induced by cumulative doses of acetylcholine. While it was the weakest in reducing spon-
taneous and KCl-induced contractions, the M80U extract was the strongest in this series of
experiments. This extract modified the baseline EC50 value of acetylcholine two times after
the application of the first dose and over three hundred times after applying the dose of
1.5 mg/mL. The effects of the other methanolic extracts were lower and were distributed
in the following manner: M80M > MM > MU.

The phytocompounds, determined in the S. sclarea extracts, are likely to be highly
responsible for the aforementioned effects. Results of the in vitro studies suggest that
the spasmolytic activity of S. sclarea methanolic extract is mediated via calcium-mediated
signaling pathways. The seven major phytocompounds of this extract were docked to a
voltage-gated calcium channel belonging to this signal pathway [45], using verapamil as the
standard drug. A higher negative value of binding energies presented in Table 5 indicates
that the ligand could bind to the protein stronger [46]. Concerning binding affinities, it is
observed that the most prominent were apigenin-7-O-glucoside and luteolin-7-O-glucoside,
both with a binding score of −8.6 kcal/mol. The length of the conventional hydrogen
bond with amino acid residue Arg65 of 2.21 Å in the case of apigenin-7-O-glucoside can be
classified as strong (in the range of 2.2 to 2.5 Å), while the distance of 2.52 Å in the case
of luteolin-7-O-glucoside can be categorized as medium strong (within the range of 2.5 to
3.2 Å). The more developed network of hydrophobic interactions observed for verapamil
compared to apigenin- and luteolin-7-O-glucoside could partially explain its better activity
recorded in in vitro assays. Namely, although hydrophobic interactions contribute less to
binding energy compared to hydrogen bonds, because they are not as strong, they often
play an important role in many biological mechanisms [47].

In addition to the methanol extracts of S. sclarea, the inhibiting effects of excellent
smooth muscle ileum contractions were reported for the S. sclarea ethanolic extracts and es-
sential oil [18,48]. Rosmarinic acid, as the prevalent compound in the extracts, was proven
to be an effective spasmolytic agent in in vitro conditions. Bazylko et al. (2009) [49] and
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Randjelovic et al. (2022) [18] confirmed its activity in spontaneous KCl- and acetylcholine-
induced ileum contractions. In addition, Lemmens-Gruber et al. (2006) [50] and
Abdalla et al. (1994) [51] showed that apigenin and luteolin exhibit excellent spasmolytic
activities on isolated guinea pig ileum. Furthermore, these flavones significantly inhibit the
smooth muscle contractility of rat ileum induced by high potassium concentrations, while
apigenin also had an effect on reducing acetylcholine-induced contractions [52].

Many studies showed that the extracts and essential oils of plant species of the Lami-
aceae family exhibit inhibitory effects on the isolated trachea of experimental animals, and
it is well known that these aromatic drugs are traditionally widely used in respiratory
disorders of this type [53,54]. The tested S. sclarea extracts had a moderate relaxing effect
on tracheal smooth muscle contractions caused by a single dose of KCl and carbachol.
The best spasmolytic effects in both systems were achieved by the M80M extract, which
is characterized by the highest quantity of the more polar compounds: rosmarinic acid,
caffeic acid, and luteolin- and apigenin-7-O-glucoside. As shown in previous studies,
the compounds determined in these extracts exhibited bronchodilator activity. Namely,
rosmarinic acid, luteolin, and apigenin were able to inhibit the contractions of tracheal
smooth muscle induced by various spasmogenic agents [51,55–57].

Aromatic plant species were long recognized and widely used as antibacterial, an-
tifungal, antiviral, or antiparasitic agents [58]. Plant polyphenols are characterized by
good antimicrobial properties and their presence in extracts significantly contributes to
the inhibition of growth and destruction of microorganisms [59]. According to numerous
in vitro studies, polyphenols, identified in the tested extracts, exhibit such effects [18,60–64].
Salvia species, along with S. sclarea methanolic extracts, are stronger antimicrobial agents
toward Gram (+) compared to Gram (−) bacteria, which also applies to most plants [65].
The explanation for this fact lies in the structure of the cell wall of Gram (−) bacteria, which
is more complicated and represents a specific barrier for the entry of macromolecules [66].
Furthermore, our investigation confirmed that the S. sclarea methanolic extracts had better
effects on inhibiting the growth of tested bacteria than killing them, which was also shown
by the S. sclarea ethanolic extracts [18]. It is of particular importance that the investigated
extracts were active against S. aureus, keeping in mind its great pathogenicity, especially
in regards to its effect on respiratory organs [67]. The MU extract, characterized with
the highest quantity of apigenin and salvigenin, was leading in its activity with the MIC
value of 6.25 mg/mL. In addition, the extracts showed a significant antimicrobial effect
against B. cereus, responsible for foodborne illnesses, followed by nausea, vomiting, and
diarrhea [68]. The MU and M80U extracts stood out in their activity, with both having
MIC values of 12.5 mg/mL. The significance of the bacteriostatic activity of the extracts,
especially MM and MU, against L. monocytogenes, is that this bacterium is a cause of serious
infection, listeriosis, which is characterized by an occasional febrile gastroenteritis in im-
munocompetent persons and even by a possible fatal outcome [69]. Recent studies showed
that the S. sclarea extracts could be useful as antimicrobial agents against other Gram (+) bac-
teria, such as S. epidermidis, B. megaterium, B. brevis, Micrococcus luteus, and Mycobacterium
smegmatis [70,71]. Among Gram (−) bacteria, P. aeruginosa and E. aerogenes showed a mildly
higher sensitivity to the presence of the extracts. Namely, the MU and M80M extracts acted
as anti-pseudomonal agents with MIC values of 50 mg/mL, which is important because
P. aeruginosa is the cause of opportunistic and hospital-acquired infections, having a high
resistance to antibiotics [72]. Previous investigations of the antimicrobial characteristics
of S. sclarea extracts toward Gram (−) bacteria demonstrated their inhibitory effects on
P. mirabilis, S. enteritidis, K. pneumoniae, E. coli, and Aeromonas hydrophila growths [18,71,73].
The investigated extracts did not prove to be effective against the yeast C. albicans with
values of MICs/MFCs over 100 mg/mL, which was in accordance with other studies of
antifungal properties of S. sclarea extracts [73,74].
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5. Conclusions

The present study offers a deeper understanding of the gastrointestinal and bron-
chodilator activity and the potential use of the S. sclarea methanolic extracts in phytotherapy.
The extracts successfully reduced spontaneous and induced ileum and tracheal contractions
in in vitro conditions. Polyphenolic compounds determined in the extracts, rosmarinic and
caffeic acid, apigenin, luteolin, salvigenin, and luteolin- and apigenin-7-O-glucoside could
be responsible for the manifestation of the spasmolytic activity, which was supported by
the in silico analysis. The antibacterial effects of the extracts were moderate, being better
bacteriostatic than bactericidal agents; however, they could be supportive agents in the
control of gastrointestinal and respiratory disorders.

The investigated S. sclarea extracts might be used as potential herbal remedies, al-
though further studies should be aimed at their efficacy in clinical trials.
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sclarea L. ethanolic extracts on gastrointestinal and respiratory spasms. S. Afr. J. Bot. 2022, 150, 621–632. [CrossRef]

19. Lu, Y.; Foo, L.Y. Polyphenolics of Salvia—A review. Phytochemistry 2002, 59, 117–140. [CrossRef]
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