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Abstract: The aim of this study was to investigate whether subtle differences in molecular properties
affected polymeric micelle characteristics and their ability to deliver poorly water-soluble drugs into
the skin. D-α-tocopherol-polyethylene glycol 1000 was used to prepare micelles containing ascomycin-
derived immunosuppressants—sirolimus (SIR), pimecrolimus (PIM) and tacrolimus (TAC)—which
have similar structures and physicochemical properties and have dermatological applications. Micelle
formulations were prepared by thin-film hydration and extensively characterized. Cutaneous delivery
and biodistribution were determined and compared. Sub-10 nm micelles were obtained for the three
immunosuppressants with incorporation efficiencies >85%. However, differences were observed
for drug loading, stability (at the highest concentration), and their in vitro release kinetics. These
were attributed to differences in drug aqueous solubility and lipophilicity. Differences between the
cutaneous biodistribution profiles and drug deposition in the different skin compartments pointed to
the impact of differences in thermodynamic activity. Therefore, despite their structural similarities,
SIR, TAC and PIM did not demonstrate the same behaviour either in the micelles or when applied
to the skin. These outcomes indicate that polymeric micelles should be optimized even for closely
related drug molecules and support the hypothesis that drugs are released from micelles prior to
skin penetration.

Keywords: immunosuppressive drugs; molecular similarity; physicochemical parameters; polymeric
micelles; skin topical delivery; TPGS

1. Introduction

The ability of polymeric micelles to encapsulate and to deliver poorly water-soluble
drugs efficiently to the skin has made them of increasing interest for dermatological ap-
plications [1–3]. These aqueous colloidal systems offer a promising alternative to classical
approaches used to formulate drugs with physicochemical properties that are sub-optimal
for cutaneous delivery. The successful formulation of a drug in polymeric micelles is
closely related to the drug-polymer affinity. Whereas the determinant factors influencing
the incorporation of drugs in micelles have been investigated, the parameters affecting
drug release and delivery to the skin have been less explored.

Considering that molecules prescribed to treat skin diseases may have similar struc-
tures and physicochemical properties, a rational approach in the selection of the polymer
excipient to formulate polymeric micelles would help to overcome the high cost and
time-consuming effort generated during the drug development process. In fact, in drug
discovery, molecular similarity is one of the key concepts in the identification of new
compounds. This drug design is based on the principle that molecules with molecular
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similarities are more likely to exhibit similar properties [4]. Therefore, the investigations of
the influence of the physicochemical properties of structurally similar drugs on polymeric
micelle formulation and, subsequently, on drug delivery in the skin would facilitate the
transition from the drug discovery to the drug development process. While computa-
tional approaches already studied this relationship, in vitro experimental outcomes are still
missing [5].

One example of molecular similarity in the dermatology area is the family of immuno-
suppressive drugs, which are widely prescribed to treat autoimmune diseases (Figure 1).
Ascomycin, the parent compound of these molecules, was discovered in a soil sample
collected from Easter Island and isolated from Streptomyces hygroscopicus. Ascomycin
was at first recognized for its antifungal properties and its immunosuppressive activities
were identified with the discovery of sirolimus (SIR) and tacrolimus (TAC) [6]—natural
products isolated from Streptomyces hygroscopicus and Streptomyces tsukubaensis, re-
spectively [7,8]. On the other hand, pimecrolimus (PIM) is a chemical analog that was
synthesized from ascomycin. In fact, once the bioactivities of ascomycin were fully un-
derstood, extensive efforts were made to identify an alternative therapy to corticosteroids
to treat inflammatory skin diseases and PIM was selected for its favorable safety and
pharmacology profiles [9,10]. Despite their different origin, the three immunosuppressive
drugs are structurally similar macrolides (Figure 1; Table 1).
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Different approaches exist to estimate the similarity between molecules. One of them
is to compare the molecules in terms of constitution, meaning the similarity in the backbone
and the functional groups [11]. As highlighted in Figure 1, the difference between PIM
and TAC molecules lies in two different functional groups: in position C-21, an ethyl chain
is present for PIM and an allyl chain for TAC. Moreover, in position C-32, the functional
group is a chlorine and a hydroxyl group for PIM and TAC, respectively. SIR exhibits major
differences, especially with the triene double bond in position from C-17 to C-22, increasing
the SIR molecular weight.

In addition to these molecular similarities, Table 1 summarizes the physicochemical
properties, the mechanism of action and the indications of the three immunosuppres-
sive drugs. SIR, PIM and TAC are characterized by a high molecular weight, a moder-
ate lipophilicity and a poor aqueous solubility. Moreover, the three drugs have similar
bioactivities—their mechanism of action involves a decrease of T-cell proliferation through
the binding to a cytosolic protein, FK-binding protein 12. However, depending on the
molecule, the complex interacts with different targets and at different phases of T-cell
activation [10,12]. Hence, PIM and TAC inhibit calcineurin, while SIR inhibits the mTOR.
Regarding their dermatological indications—TAC (Protopic®; 0.03 and 0.1% v/v) and PIM
(Elidel®; 1% v/v) are prescribed as topical treatment for atopic dermatitis. Moreover, TAC is
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also used off-label to treat moderate psoriatic lesions. Contrary to the two other molecules,
SIR has no approved indication for skin diseases but numerous case studies have recently
investigated the role of SIR in the treatment of facial angiofibromas.

Table 1. Properties of immunosuppressive drugs.

Sirolimus Pimecrolimus Tacrolimus

Physicochemical properties
Molecular weight (g/mol) * 914.2 810.4 804.0

logP * 4.17 4.31 3.23
Aqueous solubility ** Poor Poor Poor

Ionizable No No No
Mechanism of action

Inhibitor of mTOR target [13] Inhibitor of calcineurin target [14] Inhibitor of calcineurin target [14]
Indications

Oral
Topical

Graft rejection
Facial angiofibromas

(off-label) [15,16], Psoriasis
(off-label) [17]

-
Atopic dermatitis,

Psoriasis (off-label) [18]

Graft rejection
Atopic dermatitis,

Psoriasis (off-label) [19]

* Predicted with Chem 3D 16.0, ** Measured experimentally (values presented below in Section 3).

We have previously used polymeric micelles to create aqueous formulations of poorly
water-soluble drugs for cutaneous delivery in order to improve local bioavailability [1,2,20–26].
Given the structural similarities and the similar physicochemical properties of SIR, PIM
and TAC, including their poor aqueous solubility, they were selected to investigate whether
the small differences between them would be sufficient to alter the characteristics of the
drug-loaded polymeric micelles made using D-α-tocopherol-polyethylene glycol 1000
(TPGS), and how they would affect cutaneous drug delivery and biodistribution. Molecule-
dependent differences in drug delivery would lend further support to the hypothesis that
drugs were released from the micelles prior to skin entry and that intact micelles did not
penetrate bulk skin. Therefore, the specific objectives were: (i) to prepare micelles loaded
with SIR, PIM and TAC at different concentrations, (ii) to exhaustively characterize the
micelle formulations in terms of drug content, size, morphology, stability and in vitro drug
release, (iii) to study the cutaneous delivery and biodistribution from the optimized micelle
formulations, and (iv) to identify differences between the results obtained with the different
drug molecules and to explain them.

2. Materials and Methods
2.1. Materials

PIM, TAC, and SIR were purchased from Hangzhou Dayang Chem (Hangzhou, China)
and SIR-D3 (917.2 g/mol) from TLC Pharmaceutical Standards (Aurora, ON, Canada).
Acetronitrile (ACN) (HPLC grade and LC/MS grade) was received from Fisher Scien-
tific (Reinach, Switzerland) and triethylamine from Fluka (Buchs, Switzerland). TPGS
(1513 g/mol) (Figure 2), isopentane, Dulbecco’s phosphate buffered saline (without calcium
chloride and magnesium chloride; DPBS), and acetic acid were purchased from Sigma
Aldrich (Buchs, Switzerland). Formic acid (extra-pure 99%) (FA) was obtained from Bio-
solve Chemicals (Dieuze, France). Brij™ C20-PA-(RB) was purchased from Croda Europe
(East Yorkshire, England). Bovine serum albumin (BSA) was obtained from Axon Lab
(Baden-Dättwil, Switzerland). O.C.T. mounting medium was provided by VWR Chemicals
(Leuven, Belgium). Trifluoroacetic acid (extra-pure 99%) (TFA), acetone and Nile-Red dye
were obtained by Acros Organics (Geel, Belgium). Ultrapure water (Millipore Milli-Q
Gard 1 Purification Pack resistivity >18 MΩcm; Zug, Switzerland) with a filter (Millipak®

40 Millipore) of 0.22 µm was used to prepare all solutions.
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Figure 2. Structure of D-α-tocopherol-polyethylene glycol 1000.

2.2. Analytical Methods
2.2.1. Quantification by UHPLC-UV

The different UHPLC-UV settings for PIM, TAC and SIR are presented in Table 2. The
UHPLC-UV analysis was performed by using a Waters Acquity UPLC® system (Baden-
Dättwil, Switzerland) with a quaternary solvent manager and sample manager and a TUV-
detector (Baden-Dättwil, Switzerland). MassLynx software was used for integration and
data analysis. The UHPLC-UV method was validated based on ICH and FDA Bioanalytical
Method Validation guidelines [27,28].

Table 2. UHPLC-UV settings for detection of sirolimus, pimecrolimus and tacrolimus.

Parameters SIR PIM TAC

Column C8
2.5 µm, 2.1 × 50 mm

C18
2.5 µm, 2.1 × 100 mm

C18
2.5 µm, 2.1 × 100 mm

Mobile phase
(a) ACN and (b) Milli-Q

water + 0.003% TFA
(85:15 v/v)

(a) ACN and (b) Milli-Q
water + 0.1% FA (95:5 v/v)

(a) ACN and (b) Milli-Q
water + 0.1% FA (95:5 v/v)

Column temperature (◦C) 45 45 45
Flow (mL/min) 0.5 0.5 0.5

Volume of injection (µL) 5 5 5
Wavelength (nm) 278 210 210

Retention time (min) 0.48 0.80 0.66
Limit of quantification (µg/mL)

Limit of detection (µg/mL)
3.0
1.0

5.0
1.6

2.0
0.7

2.2.2. Quantification with UHPLC-MS/MS

UHPLC with tandem mass spectrometry detection (UHPLC-MS/MS) was used to
quantify drug release and drug deposition in and permeation across skin during cuta-
neous delivery studies. The Waters Acquity UPLC® system (Baden-Dättwil, Switzerland)
comprised a binary solvent pump, a sample manager and a sample organizer, coupled to
a Waters XEVO® TQ-MS detector (Baden-Dättwil, Switzerland). Isocratic separation was
carried out using a Waters Xbridge BEH C8 2.1 × 50 mm column containing 2.5 µm parti-
cles. For the analysis of PIM and TAC, the mobile phase consisted of a 10 mM ammonium
acetate buffer with 0.01% acetic acid and acetonitrile (10:90 v/v). The flow rate was set
at 0.55 mL/min and the column was thermostatted at 55 ◦C. For the analysis of SIR, the
mobile phase consisted of ultrapure water with 0.1% triethylamine and acetonitrile (15:85
v/v). The flow rate was set at 0.5 mL/min with the column thermostatted at 45 ◦C.

Mass spectroscopy detection was performed with electrospray ionization using the
multiple reaction monitoring (MRM) mode. MassLynx software was used for data inte-
gration and analysis. The UHPLC-MS/MS method was validated based on ICH and FDA
Bioanalytical Method Validation guidelines (results presented in Supplementary Mate-
rial) [20,21]. To compensate for the matrix effect, each injected sample contained an internal
standard at a concentration of 90 ng/mL. PIM and TAC were respectively the internal
standard for each other. For SIR, SIR-D3 was chosen as the internal standard.

The different UHPLC-MS/MS settings for PIM, TAC and SIR are presented in Table 3.
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Table 3. MS7MS settings for detection of sirolimus, pimecrolimus and tacrolimus.

Parameters SIR SIR-D3 PIM TAC

Nature of parent ion [M − H]− [M − H]− [M + NH4]+ [M + NH4]+

Parent ion (m/z) 912.67 915.65 832.50 826.60
Daughter ion (m/z) 590.42 321.21 593.44 616.20
Collision energy (V) 36 40 30 40

Cone voltage (V) 60 52 60 50
Capillary voltage (kV) 3.6 3.0

Source temperature (◦C) 150 150
Desolvation temperature (◦C) 500 500

Desolvation gas flow (L/h) 1000 850
Cone gas flow (L/h) 0 0

LM resolution 1 2.96 2.96
HM resolution 1 15.00 15.00
Ion energy 1 (V) 0.3 0.3
LM resolution 2 2.91 2.91
HM resolution 2 15.24 15.24
Ion energy 2 (V) 0.6 0.6

Limit of quantification (ng/mL) 3.0 / 3.0 3.0
Limit of detection (ng/mL) 1.0 / 1.0 1.0

2.3. Preparation of the Micelle Formulation
2.3.1. Thin-Film Hydration Method

Micelle formulations were prepared using the thin-film hydration method. Briefly,
a known quantity of drug and TPGS was dissolved in 2 mL of acetone. The acetone was
slowly removed by rotary evaporation (Büchi Vac V-513 Rotavapor®; Flawil, Switzerland)
until the formation of a uniform thin-film, which was left under the hood overnight and
then hydrated with 4 mL of ultrapure water. After equilibration for 2 h, the micelle solution
was centrifuged at 10,000 rpm for 15 min (Eppendorf Centrifuge 5804; Hamburg, Germany)
to remove excess drug, and the supernatant was carefully collected.

2.3.2. Optimization of Drug and Polymer Content

The micelle formulation was optimized in order to reach a high drug loading. During
screening studies, TPGS content was kept fixed at 50 mg/mL and different concentrations
of drug (1, 1.25, 1.5, 2, 2.5 and 5 mg/mL) were added during the micelle formulation
process. The formulation with the highest drug content, which satisfied reproducibility and
stability criteria, was chosen for the subsequent in vitro release and skin delivery studies.
Drug loading was determined by UHPLC-UV.

2.4. Characterization of Micelle Formulations
2.4.1. Drug Solubility in Water and Aqueous Solutions of TPGS

Saturated solutions of SIR, PIM and TAC were prepared in water and in an aqueous
solution of TPGS (50 mg/mL). The solutions were kept at room temperature during a 24 h
period of stirring. The samples were then centrifuged and the supernatant was collected
and diluted in ACN prior to a UHPLC-MS/MS analysis. All the samples were prepared
in triplicate.

2.4.2. Thermal Properties

Differential scanning calorimetry (DSC) was performed for the thermal investigation
of the drugs and TPGS (DSC 3 STARe System, Mettler Toledo; Greifensee, Switzerland).
Samples of pure drug, pure TPGS and physical mixtures were sealed in aluminum hermetic
pans with a pierced lid. Each sample was heated from 0 to 200 ◦C at a heating rate of
5 ◦C/min under a nitrogen atmosphere at a flow rate of 80 mL/min. An empty sealed
aluminum pan was used as reference.
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2.4.3. Size and Morphology Characterization

Micelle size was characterized by the hydrodynamic (Zav) and the number-weighted
diameters (dn), measured using dynamic light scattering (DLS) with a Zetasizer Nano-ZS
(Malvern Instruments Ltd.; Malvern, United-Kingdom) at an angle of 90◦ and at a tempera-
ture of 25 ◦C. All measurements were performed in triplicate.

Micelle morphology was analyzed by transmission electron microscopy (TEM) (FEI
Tecnai™ G2 Sphera; Eindhoven, The Netherlands) using negative staining. Briefly, 5 µL of
micelle solution was dropped onto an ionized carbon-coated copper grid (0.3 Torr, 400 V
for 20 s). Then, the grid was put in contact with a 100 µL drop of a saturated uranyl
acetate aqueous solution for 1 s and then for 60 s in another 100 µL drop. The excess
staining solution was removed, and the grid was dried at room temperature prior to
the measurement.

2.4.4. Drug Content Determination

The amount of drug loaded in the micelles was quantified by UHPLC-UV. To ensure
the complete destruction of the micelles and the release of encapsulated drug, samples
were diluted in ACN prior to analysis.

Drug content

(
mgdrug

mL f ormulation

)
=

mass o f drug in the f ormulation (mg)
volume o f the f ormulation (mL)

(1)

Drug loading

(
mgdrug

gpolymer

)
=

drug in the f ormulation
(

mg mL−1
)

copolymer in the f ormulation
(

g mL−1
) (2)

Incorporation e f f iciency (%) =
mass o f drug incorporated in micelles (mg)

mass o f drug introduced (mg)
× 100 (3)

2.4.5. Stability

Stability of the micelle solution was evaluated after storage at 4 ◦C for 5 months. Drug
content and micelle size were determined at a series of time points (day 1, and then after 1,
2, 3, 4, and 5 months).

2.4.6. In Vitro Drug Release from the Micelles

For the in vitro drug release study, the selected dissolution medium consisted of an aque-
ous solution containing 1% Brij™ C20-PA-(RB). The optimal micelle solution—containing 0.2%
of SIR, PIM and TAC—was prepared. 1 mL of micelle solution was dispersed in a dialysis
bag (Spectra/Por® 3, dialysis membrane MWCO 3500, width 18 mm) and put in 13 mL of
dissolution medium. The samples were kept under stirring in a bath maintained at 32 ◦C
during 24 h. Aliquots (1 mL) were withdrawn at predetermined times (0, 1, 2, 4, 6, 9, 12,
and 24 h). Dissolution medium was added to maintain sink conditions. The aliquots were
diluted with ACN prior to UHPLC-MS/MS. All samples were analyzed in five replicates.

2.5. Evaluation of Skin Delivery In Vitro
2.5.1. Porcine Skin Preparation

Porcine ear skin was used for skin delivery studies and was supplied by a local abattoir
(CARRE; Rolle, CH). Briefly, skin samples were processed with a Zimmer air dermatome
(Münsingen, Switzerland) to obtain pieces with a thickness of ∼800 µm. Hair was removed
carefully from the skin surface using clippers. Circular disks of 30 mm were then punched
out (Berg & Schmid HK 500; Urdorf, Switzerland) and stored at −20 ◦C until use, for
a maximum period of 3 months.



Pharmaceutics 2023, 15, 1278 7 of 22

2.5.2. Drug Delivery under Infinite Dose Conditions

Porcine skin samples were mounted in Franz diffusion cells (Milian SA; Meyrin,
Switzerland) with a formulation contact area of 2 cm2. In the donor compartment, the opti-
mal micelle solution 0.2% was applied under infinite dose conditions (500 µL/cm2) during
12 h. The receptor compartment was filled with 10 mL of phosphate buffered saline at pH
7.4 containing 1% BSA. The receiver phase was stirred at 250 rpm and maintained at 32 ◦C
throughout the experiment. These conditions complied with the OECD guidelines [29].
After the experiment, 1 mL of this phase was withdrawn to quantify drug permeation.
Samples were diluted in ACN to precipitate BSA. After centrifugation at 5000 rpm at
4 ◦C during 15 min, the permeation samples were analysed by UHPLC-MS/MS. Each
skin sample was carefully cleaned with a cotton swab and a wash solution to remove the
residual formulation from skin surface.

2.5.3. Investigation of Drug Biodistribution Profile

At the end of the experiment, a small area, 0.8 cm2, was punched out from the 2 cm2

skin samples. These skin discs were snap-frozen in isopentane cooled by liquid nitrogen,
followed by cryotoming (Thermo Scientific CryoStarTM NX70; Reinach, Switzerland)
to obtain two lamellae with a thickness of 20 µm and 19 lamellae with a thickness of
40 µm. These 21 skin slices enabled the amount of drug to be quantified as a function
of position down to a depth of ~800 µm, encompassing the stratum corneum, viable
epidermis and upper and lower dermis, respectively. Drug deposited in each lamella
was extracted in 300 µL of ACN overnight with continuous stirring at room temperature.
The extraction samples were centrifuged at 5000 rpm for 10 min and diluted prior to
UHPLC-MS/MS analysis.

2.5.4. Data Analysis

The statistical methodology is similar to the one presented in Quartier et al. (2019) [30].
It consists in a comprehensive analysis of the difference between the formulations that is
two-fold: first, a quantification of the difference that considers the dependence structure of
the lamellae throughout skin depth, and second, one that quantifies their marginal differ-
ences. The former is conducted through a multivariate approach based on the Mahalanobis
distance between the mean vectors of the two formulations, which assesses whether they
are significantly different for at least one skin slice. The marginal differences are established
using a univariate inference approach based on the Mann–Whitney–Wilcoxon (MWW)
test which assesses the differences of each component of the multivariate mean vectors.
Similar to the ANOVA analysis, the Mahalanobis distance-based test has the advantage of
considering the differences between the two formulations for all skin layers at once. On
the other hand, the MWW approach is informative in that it provides information on the
locations, the directions as well as the magnitudes of the potential differences.

More formally, let µk =
[
µ1k, µ2k, . . . , µJk

]
denote the mean vector of formulation

k ∈ {1, 2, 3} where each component of the vector corresponds to the drug deposition for
the skin lamella at depth j ∈ {1, . . . , J}. For simplicity, consider SIR, PIM and TAC to
correspond to k equal to 1, 2 and 3 respectively.

The p-values are obtained by conducting hypothesis-testing procedures for each of the
Mahalanobis distance-based tests and the MWW test. Taking SIR and PIM as illustrative
examples, the hypotheses for the first test are expressed as follows:

H0: µ1 = µ2, H1: µ1 6= µ2,

and the hypotheses for the second test are given by:

H0: µj1 = µj2, H1: µj1 6= µj2, for j ∈ {1, . . . , J}. (4)

In the case of the MWW test, the p-values need to be corrected for the multiple
comparison problem as the testing procedure is applied for each layer independently,
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which results in an undesired increase of type-I error with the number of conducted tests, J.
We have therefore opted for the False Discovery Rate (FDR) correction [31] which assumes
a conditional (positive) association for the p-values—a plausible assumption for the data
at hand.

3. Results
3.1. Development of Micelle Formulations
3.1.1. Drug Solubility in Water and in Aqueous Solutions of TPGS

The solubility of the drugs was first investigated in water and an aqueous solution of
polymer (Table 4).

Table 4. Solubility of drugs (µM) in water and in an aqueous solution of TPGS.

Water At TPGS Concentration
(33 mM or 50 mg/mL) Increase in Solubility

Drug solubility (µM)

SIR 8.24 ± 0.22 1214.10 ± 123.50 147×
PIM 0.17 ± 0.02 330.32 ± 31.22 1943×
TAC 0.20 ± 0.05 636.74 ± 73.45 3184×

In water, PIM and TAC exhibited very similar and very low solubility, and SIR was
the most soluble molecule. The addition of TPGS in the aqueous solution significantly
increased the aqueous solubility of the three drugs and the differences between them. At
50 mg/mL (33 mM) of TPGS, the concentration used for micelle formulation, the solubility
was highest for SIR, followed by TAC and then PIM (1214.10 ± 123.50, 636.74 ± 73.45 and
330.32 ± 31.22 µM, respectively).

3.1.2. Optimization and Characterization of Micelle Formulation

During micelle preparation, TPGS concentration was kept fixed at 50 mg/mL and
different concentrations of each drug were tested (Table 5). The amount of drug encapsu-
lated was expressed and evaluated in mg/mL (1, 1.25, 1.5, 2, 2.5, 5 mg/mL). Moreover, to
compare the encapsulation of the immunosuppressive drugs into the micelles, the different
formulations were prepared and were characterized in terms of drug content, incorporation
efficiency and size (Figure 3).

Table 5. Composition of micelle formulations prepared with the thin-film hydration method.

Formulation

Target TPGS
Content
(mg/mL)

Target Drug
Content
(mg/mL)

Target Drug
Loading

(mgDRUG/gTPGS)
Drug Loading (mgDRUG/gTPGS) Incorporation Efficiency (%)

SIR PIM TAC SIR PIM TAC

Formulation 1 50 1.00 20 18.1 ± 0.2 17.2 ± 0.0 17.0 ± 1.0 90.7 ± 0.9 85.8 ± 0.0 85.1 ± 5.1
Formulation 2 50 1.25 25 23.3 ± 0.1 21.7 ± 0.0 23.9 ± 0.1 93.3 ± 0.4 86.7 ± 0.0 95.8 ± 0.5
Formulation 3 50 1.50 30 27.7 ± 0.8 25.8 ± 0.0 28.9 ± 1.1 92.2 ± 2.6 85.9 ± 0.0 96.1 ± 3.7
Formulation 4 50 2.00 40 37.5 ± 0.2 36.4 ± 0.0 37.6 ± 2.2 93.7 ± 0.6 91.0 ± 0.0 94.0 ± 5.5
Formulation 5 50 2.50 50 45.8 ± 0.4 45.1 ± 0.0 48.2 ± 0.0 91.7± 0.8 90.2 ± 0.0 96.4 ± 0.1
Formulation 6 50 5.00 100 88.4 ± 1.3 91.6 ± 0.1 101.0 ± 1.4 88.4 ± 1.3 91.6 ± 0.0 101.0 ± 1.4

The six micelle formulations prepared with SIR, PIM and TAC displayed a high
incorporation efficiency, >85% (represented by the columns; Figure 3). Consequently, the
highest drug content (approximately 4.5 mg/mL) was obtained with Formulation 6 for the
three immunosuppressive drugs (represented by the lines, Figure 3). The sizes (dn) of the
micelles were measured and found to be approximately 8 nm with a low polydispersity
(<0.3) for all the formulations (results provided in Supplementary Material; Table S16).

For the micelle solutions with high drug content (Formulations 5 and 6), the stability
in terms of drug content (mg/mL) was also followed for 5 months (Figure 4). The stability
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of Formulation 5 was similar when SIR, PIM or TAC was encapsulated into the micelles.
The drug content was approximately 2.3 mg/mL, which corresponds to 2.5, 2.8 and 2.9 mM
of SIR, PIM and TAC, respectively. For Formulation 6 with the highest drug content, the
micelle solutions loaded with PIM and TAC remained stable during the 5 months, whereas-
SIR loaded micelles became unstable after 4 months. Given that Formulation 5 was stable
for the three drugs, it was chosen for the further in vitro studies.
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Finally, the micelle morphology of Formulation 5 was studied by TEM analysis. As
presented in Figure 5, the images revealed that in addition to the smaller spherical shapes,
“worm-like” structures could also be visualized for the three drug-loaded micelles. These
have been seen previously with SIR but were not always present when other molecules, e.g.,
adapalene [22], or terbinafine and econazole [32] were incorporated into TPGS micelles.
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3.1.3. DSC Analysis

The thermal investigations were performed by DSC. The physical state of each drug
mixed with TPGS was also explored by analyzing the physical mixtures of the drug and
the polymer, according to their proportion in Formulation 5. Figure 6 represents the
thermograms obtained for each sample.
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The endothermic points of pure SIR, PIM and TAC were 181.82 ◦C, 163.11 ◦C and
127.20 ◦C, respectively, corresponding to their melting points. The TPGS thermogram
showed two endothermic points (33.83 ◦C and 39.49 ◦C), characteristic of its crystalline
nature [33,34]. The two melting points were already reported in previous studies and may
be attributed to the different isomers form of TPGS [35].

For the physical mixtures, all thermograms showed the two melting endotherms of
TPGS and the disappearance of the drug endothermic peak, indicating that the three drugs
are more likely to be in the amorphous state. However, the absence of the endothermic
peaks may also be due to a low concentration of the drugs within the physical mixture or the
dissolution of the drug in the melted TPGS during the heating process [36,37]. Thus, X-ray
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diffraction analysis would need to be performed to confirm the amorphous or molecular
dispersed state of the molecules.

3.1.4. Drug Release Kinetics from the Micelles

The optimized Formulation 5 was used for these experiments and its drug content
was adjusted to 2 mg/mL, which corresponds to 2.2, 2.5 and 2.5 mM of SIR, PIM and TAC,
respectively. In vitro drug release kinetics were studied for the three drug-loaded micelles.
In Figure 7, the concentrations of the drug in the release medium are presented as µmol per
liter to standardize the results obtained for each molecule.

Although the drug loading (mgDRUG/gTPGS) in the micelles was similar for the three
drugs, the release kinetics were different. The amount of SIR and TAC released from the
micelles was significantly higher than PIM release. Moreover, PIM release had a linear
profile, whereas for SIR and TAC, the release reached a plateau between 4 and 9 h, before
increasing after 24 h.
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Figure 7. Drug release kinetics from the micelle formulations. Tested groups: sirolimus (black),
pimecrolimus (grey) and tacrolimus (white) micelle solutions 0.2% (mean + SD, n = 5). p-values were
calculated using Kruskal-Wallis rank test; statistical differences were denoted by asterisks (* p < 0.05,
** p < 0.005).

3.2. Skin Delivery from Micelle Formulations 0.2% under Infinite Dose Conditions

Drug delivery studies were conducted using porcine skin. Infinite dose experiments
(500 µL/cm2) were performed with micelle solution 0.2% applied during 12 h. The cuta-
neous biodistribution profiles were constructed and compared for the three drugs.

PIM exhibited the highest cutaneous bioavailability (PIM—287.7± 102.4 pmol/cm2) in com-
parison to SIR and TAC, for which the cutaneous delivery was more similar (SIR—155.5± 46.3 and
TAC—134.8 ± 63.2 pmol/cm2, respectively).

Figure 8 represents the deposited amount of the drugs (in pmol/cm2) in each
40 µm-thick lamella as a function of depth. This data representation was first described
in our previous publication into the cutaneous delivery of SIR from TPGS micelles [21]
introducing the use of the Mahalanobis p-value as a method to determine difference be-
tween formulations when analyzing cutaneous biodistribution data. As explained in that
manuscript, head-to-head comparisons using t-tests were inappropriate since the amounts
present in each successive layer were dependent on the amount in the preceding layer.
Thus, a new multivariate approach was required to address the codependency of the data.
In brief, each panel in Figure 8A–C—presents a comparison of the results obtained for
a given pair of molecules, with one considered to be the “reference” for the comparison.
Thus, in Figure 8A, SIR (reference) is compared to TAC: (i) the plot on the left displays the
“envelope” or range of the amounts of each molecule determined as a function of depth
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in the skin; (ii) the second plot displays the individual cutaneous biodistribution profiles
for each replicate of that molecule (pale line in the respective color, e.g., in Figure 8A, fine
green lines for SIR and fine blue lines for TAC) together with the mean value (thicker line
in the respective color, e.g., in Figure 8A, thick green line for SIR and thick blue line for
TAC)—note that the amounts are presented using a logarithmic scale which is necessary
for the next plot; (iii) the third plot shows the mean log difference in the amounts present at
each depth and presents the difference between the “treatment” and the reference—again,
using Figure 8A as the example, this shows the difference between TAC and SIR. These
differences are expressed as a mean and a confidence interval (with the mean difference
expressed using a color-coded scale).
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Figure 8. Cutaneous biodistribution profile of drugs in porcine skin lamellae (2 × 20 µm + 19 × 40 µm)
to 800 µm (full depth) after 12 h of application time. Tested groups: (A) sirolimus (reference)
vs. pimecrolimus, (B) tacrolimus (reference) vs. pimecrolimus and (C) tacrolimus (reference) vs.
sirolimus. The first graph corresponds to the comparison of drug deposition in the original scale
and the second in the log scale. The mean relative change corresponds to the increase of the second
treatment relative to the reference treatment in the log scale. More specifically it corresponds, for
a given layer, to the ratio between the mean treatment drug and the mean reference drug-1.

For SIR and TAC, the difference in drug deposition is graphically visible in the upper-
dermis (200–360 µm), even though this difference is not statistically relevant when SIR and
TAC depositions in each 40-µm thick skin lamellae are compared. In comparison to TAC
and SIR, PIM deposition is significantly higher in the upper region of the skin (20–180 µm),
corresponding to the epidermis.

4. Discussion
4.1. Development of Micelle Formulations
4.1.1. Aqueous Solubility of the Drugs

TPGS is a non-ionic water-soluble derivative of vitamin E conjugated with polyethy-
lene glycol. It is characterized by a MW of 1513 g/mol, an HLB of 13.2 and a CMC of 0.02%
(0.2 mg/mL) [27]. TPGS was chosen to formulate the polymeric micelles because it has been
approved by the U.S. Food and Drug Administration and European Medicines Agency as
a pharmaceutical ingredient. Over these past years, the role of TPGS in drug delivery has
been studied for various applications in nanomedicine (prodrugs, micelles, liposomes) to
enhance drug solubility, permeability and stability [38,39]. Moreover, TPGS-based micelle
formulations have already demonstrated their ability to enhance the solubility of sirolimus
and other poorly water-soluble drugs (e.g., adapalene) and their efficacy to increase drug
deposition in the skin compared to classical formulations [21,22]. For these reasons, TPGS
was selected to investigate the physicochemical properties affecting the encapsulation and
skin delivery of structurally similar molecules.

The solubility of the three drugs in water and in aqueous solutions of TPGS was
investigated and demonstrated the first differences. Although the drugs are known to
be poorly water-soluble, SIR displayed a significantly higher solubility (8.24 ± 0.22 µM)
compared to PIM and TAC (0.17 ± 0.02 and 0.20 ± 0.05 µM, respectively). The addition of
50 mg/mL of TPGS significantly improved the drug water solubility, due to its surfactant
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role (147-fold for SIR, 1943-fold for PIM and 3184-fold for TAC). This preliminary study
gave the first information about drug aqueous solubility and the interaction between the
drugs and the polymer. It was expected that these results would be reflected during studies
with the micelle formulations.

4.1.2. Micelle Formulations Characterization

To fully investigate the encapsulation of the drugs into the polymeric micelles, six dif-
ferent formulations were prepared, for which TPGS polymer content was fixed at 50 mg/mL
(5% w/w) and the drug content was varied from 1 to 5 mg/mL. Consequently, the drug
loading was screened from 20 to 100 mgDRUG/gTPGS. The six micelle solutions could be
formulated for the three immunosuppressive drugs with an incorporation efficiency higher
than 85% (Figure 3). Moreover, the size of the micelles was not influenced by the nature
of the drug loaded and was measured to be ~8 nm. It was also shown that the process to
formulate the polymeric micelles increased significantly the water solubility of the three
drugs—approximately up to 4.5 mg/mL (corresponding to 4.9 mM for SIR and 5.6 mM for
TAC and PIM), in comparison to a simple addition of the drug in the aqueous solution of
TPGS (1.2, 0.6 and 0.3 mM for SIR, TAC and PIM, respectively). Indeed, during the thin-film
hydration method, the drug is first homogeneously dispersed in the film constituted of
TPGS that will be subsequently hydrated with ultrapure water to promote the drug loading
into the micelles [40].

However, when the stabilities of Formulation 5 and Formulation 6, which had the
higher drug content (2.5 and 5 mg/mL, respectively), were monitored, it was seen that
Formulation 5 remained stable for at least 5 months for the three drugs, whereas some
differences were noticed between the drugs with respect to the stability of Formulation 6.
In fact, Formulation 6 with SIR-loaded micelles became unstable after 4 months, which was
not the case for PIM and TAC. The observations made with Formulation 6 did not correlate
with the results obtained during the solubility study, with SIR having the highest solubility
in the aqueous solution of TPGS. Moreover, when the drug content is expressed in moles
per liter, Formulation 6 incorporated a targeted amount of drug corresponding to 5.5 mM
for SIR and 6.2 mM for PIM and TAC. Therefore, although a lower molar concentration of
SIR was encapsulated, this micelle formulation was the least stable.

The analysis by DSC could not demonstrate a difference in drug-polymer interactions
(Figure 6). In fact, the physical mixtures of the three drugs with the polymer showed that
the drugs were fully dissolved within TPGS. However, it was difficult to attest whether the
drugs were in an amorphous state or simply dissolved in the melted TPGS matrix during
the analysis. Therefore, to help in the understanding of the parameters influencing the
drug encapsulation, the steric and physicochemical properties were detailed for each drug
(Figure 9).

Due to the molecular similarities, the three immunosuppressive drugs exhibit a com-
parable distribution of lipophilic surface (Figure 9). However, since PIM contains a chlorine
atom, the molecule has a higher lipophilic surface in the “head region”. It is also reflected
in the logP value, with PIM having the highest logP: 4.31. This lipophilicity should favor
drug encapsulation into the micelle core, constituted by the hydrophobic segment of TPGS
(D-α-tocopherol). On the other hand, polar surface area (PSA) is lower for PIM (158 Å2),
with PSA being generally inversely proportional to the logP of the molecules [41]. In con-
trast, SIR has the highest PSA (195 Å2), which could explain its higher aqueous solubility
and higher affinity with the hydrophilic tail (PEG chain) but would entail a lower affinity
with the hydrophobic core of TPGS and thus, a lower drug loading (Table 4). Moreover, the
high MW of SIR (914.2 g/mol) could also limit the amount of drug loaded in the micelles.

It was previously demonstrated that the number of H bond donors and acceptors also
plays a role in the encapsulation efficiency of the drugs. In fact, it was suggested that a greater
number of H bond acceptors and donors may increase the drug-polymer affinity [1,42].
However, these assumptions could not be applied in the case of immunosuppressive drugs,
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as SIR has the highest number of H bond donors and acceptors, but lower micelle stability
for a high drug loading.

Other factors such as the affinity of the drug with the polymer (measured with Flory-
Huggins interaction parameter, χ), the interaction of the drug with the polymer (e.g., hy-
drophobic interaction, π-π stacking interaction, electrostatic interaction) and the volume
of the hydrophobic core could also be studied to predict the drug-loaded amount [43–45].
However, the attribution of only one universal parameter to explain drug encapsulation
efficiency is unrealistic [42,46]. This demonstrated that all the different parameters need to
be taken into account to predict the drug incorporation into polymeric micelles.
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4.1.3. In Vitro Drug Release Profile

The concentration (µM) of SIR and TAC quantified in the release medium was signifi-
cantly higher than for PIM (Figure 7). Considering the previous results obtained during
the formulation characterization, i.e., higher aqueous solubility and lower micelle stabil-
ity, it was expected that SIR would be released from the micelle at higher amounts and
faster than the other immunosuppressive drugs. In fact, the drug release from the micelles
also depends on the same parameters affecting drug encapsulation in the micelles [46,47].
Moreover, the slow drug release of PIM could be explained by its low aqueous solubility,
delaying drug diffusion from the inner polymer matrix to the outer phase [48]. However,
TAC also had a low aqueous solubility and its drug release was not delayed. Therefore, it
seemed that, more than aqueous solubility, logP value of the drugs may also have an effect
on the slow or fast release from the polymeric micelles. Indeed, hydrophobic drugs with
a moderate logP such as PIM (4.31) seemed to have a slower release. On the other hand,
TAC had the lowest lipophilicity (3.21) of the three drugs, which could explain its similar
release profile to SIR.
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Moreover, the drug release is also linked to the phase state of the molecule in the
micelle—a drug that is not dissolved in the core compartment will display a delayed drug
release [49,50]. Regarding the results from the DSC, it is more likely that the three molecules
were dissolved in the TPGS matrix (Figure 6). In contrast, an excessive stabilization of
the drug could also prevent fast drug release [49]. These factors are closely related to the
localization of the drug in the micelle, either in the corona or in the core [49,51,52]. All
these parameters demonstrated the complexity involved in predicting the behavior of the
encapsulated drug.

4.2. In Vitro Skin Delivery

The determinant factors influencing the skin delivery of a drug encapsulated in micelles
have remained relatively unexplored. Recently, polymeric micelles emerged in the search
for innovative formulations to enhance the cutaneous drug bioavailability. In fact, it was
demonstrated that molecules lacking the appropriate physicochemical properties for skin
delivery may become good candidates once incorporated in polymeric micelles [1–3,22,26]. In
addition to enhancing aqueous solubility, polymeric micelles also create a drug depot at the
skin surface by increasing the number of molecules in contact with the skin and promote
the accumulation of the drug in the hair follicles [2,22,24–26]. However, the mechanism of
how micelles enhance delivery of drugs into the skin still needs to be investigated.

Considering our tenet that intact polymeric micelles, due to their size, do not penetrate
the skin, cutaneous delivery is mainly influenced by the number of micelles in contact with
the skin, the thermodynamic activity of the system and the physicochemical properties
of the drug. Indeed, due to the heterogeneity of the skin, drug penetration is challenging.
Firstly, the drug needs to partition from the micelle to the stratum corneum, considered
as the skin barrier, and more specifically to the intercellular lipid matrix [53,54]. As was
the case for the in vitro drug release study, the phase state of the molecule in the micelle is
important in predicting drug partitioning. Then, the hydrophilic/lipophilic balance and
the MW of the drug also affect drug diffusion in the different regions of the skin. Indeed, to
diffuse passively through the stratum corneum, before partitioning in the viable epidermis,
it is considered that molecule needs to have a particular range of parameters: low MW
(<500 Da), intermediate lipophilicity (logP 1–3), limited hydrogen-bond-forming capacity
and an adequate solubility [55].

Interestingly, the skin delivery study revealed different results from those predicted
during the in vitro release study. Despite the slow release of PIM from the micelles, PIM
exhibited the highest cutaneous bioavailability (PIM—287.7 ± 102.4, SIR—155.5 ± 46.3,
TAC—134.8 ± 63.2 pmol/cm2, respectively). Moreover, the higher in vitro release of TAC
and SIR from micelles was not reflected in skin delivery experiments. Indeed, the results
of in vitro release studies can have little bearing on drug delivery and these skin delivery
results highlighted the importance of studying the behavior of the micelle formulations
directly in contact with the biological tissue.

To facilitate the interpretation of the results, Figure 10 represents, in percentage terms,
the distribution of the total drug deposition in the different skin layers (stratum corneum,
viable epidermis and dermis). It was first noticed that a high percentage of PIM was
delivered in the stratum corneum. From this observation, it can be assumed that due to its
higher lipophilicity, PIM has a partition coefficient more in favor of entry to the skin than
TAC and SIR. Because the stratum corneum is known to be a “drug reservoir”, a larger
amount of drug deposited in this anatomical region will be more likely to penetrate the
viable epidermis. Actually, the percentage of PIM deposition was also higher in the viable
epidermis in comparison to SIR and TAC. Interestingly, SIR and TAC had a large percentage
of skin deposition in the dermis, even higher than in the viable epidermis for SIR. Hence,
the affinity and the binding of the drugs with skin components could explain the difference
in drug bioavailability.
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Figure 10. Drug deposited (%) in the three skin layers (stratum corneum, viable epidermis, dermis)
from micelle formulation 0.2% of SIR, PIM and TAC.

It was already observed that PIM had a stronger affinity with the components of the
upper layers of the skin compared to TAC [56]. In fact, although a similar binding was
found for the protein corresponding to macrophilin-12 (also called FK-binding protein
12—the targeted cytosolic protein of immunosuppressive drugs), PIM showed a higher
capacity-binding to other skin proteins. It is possible to assume that the stronger interaction
with the skin components as well as the higher lipophilicity of PIM led to a higher drug
deposition in the upper layers of the skin in comparison to TAC and SIR.

Moreover, the effect of the lipophilicity/hydrophilicity distribution on the skin de-
livery of PIM and TAC was also previously studied by Meingassner et al. [57] and Billich
et al. [58]. It was shown that the permeation of PIM across the skin was lower than TAC,
independent of the skin origin (porcine or human) and formulation composition. The dif-
ference in the permeation results was related to the lipophilicity of the drugs (logP of 4.31
and 3.23 for PIM and TAC, respectively). In fact, an increase of drug lipophilicity decreased
the systemic exposure of the drug, as it was also demonstrated in vivo when the marketed
products of PIM and TAC, Elidel® and Protopic® respectively, were compared [59]. In the
present study, the effect of lipophilicity/hydrophilicity distribution was reflected with the
lower percentage of PIM deposition in the dermis (known as a hydrophilic layer [60]) in
comparison to TAC, which will consequently decrease the systemic exposure of the drug.
In contrast, the considerable percentage of SIR deposited in the dermis can be related to its
higher aqueous solubility. However, the permeation across the skin of SIR, TAC and PIM
could not be compared since the concentration was under the limit of quantification for the
three drugs (<3 ng/mL); contrary to the previous studies [57,58] the micelle solutions used
here were applied for only 12 h instead of 48 h.

Finally, to go a step further in the investigation, the penetration pathway though
the hair follicles could also be studied for the micelle formulations loaded with the three
immunosuppressive drugs. Indeed, the outcomes of skin delivery might also be explained
by a different preferential pathway of the drugs and their related micelle formulations.

4.3. Summary of the Comparative Studies

This work was conducted to help in the understanding of factors affecting the mi-
celle formulation and the skin delivery of structurally similar drugs. Indeed, despite the
preparation of standardized micelle formulations (the same amount of drug per g of poly-
mer), the characteristics of formulations and the cutaneous bioavailability were not the
same for the three immunosuppressive drugs—close structural similarities did not lead
to similar micelle formulation properties and skin deliveries. Table 6 summarizes these
different observations.

The molecular structure and the physicochemical properties of the immunosuppres-
sive drugs were examined in detail to identify the determinant parameters. Although it
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was difficult to attribute one factor to the behavior of drug-loaded micelles, the aqueous
solubility and the lipophilicity of the immunosuppressive drugs appeared to play a major
effect. These findings demonstrated that, despite the high degree of similarity between the
three drugs, each molecule is unique and it is unlikely that it will be possible to select a
universal micelle formulation for all drugs.

Table 6. Summary of the comparative studies for the three drugs.

Sirolimus Pimecrolimus Tacrolimus

MW *** ** **
logP ** *** *

Solubility in water *** * *
Solubility in aqueous solutions of TPGS *** * **

Stability in micelle formulation ** *** ***
In vitro drug release *** * ***

Cutaneous drug delivery * *** *

* low, ** medium, *** high.

5. Conclusions

This work had as an objective to investigate whether it was feasible to “standardize”
polymeric micelle formulations of drugs with molecular similarities, with a view to facilitat-
ing the drug development process. In these studies, the focus was on the use of polymeric
micelles to develop aqueous formulations of poorly water-soluble drugs for drug deliv-
ery into the skin. Throughout the investigations, the physicochemical parameters of the
drugs were highlighted to explain the drug-polymer interactions that occurred during mi-
celle formulation. Despite their structural and physicochemical similarities, SIR-, PIM- and
TAC-loaded micelles were found to behave differently in the initial characterization studies.

Furthermore, it was also shown that the three formulations behaved differently in
cutaneous delivery studies and that, once the drug was delivered into the skin, these factors
also governed drug bioavailability and biodistribution. In the context of cutaneous drug
delivery, the observation that the amounts of drug delivered and the biodistribution were
different and drug-dependent, also supported the hypothesis that drugs are first released
from the micelles, which disaggregate on contact with the skin, and do not themselves enter
the stratum corneum (although they might accumulate in appendageal structures). At this
point, the physicochemical properties of the “free” drug in the formulation determine its
partitioning into the skin and subsequent transport.

These results suggested that it is not necessarily possible to assume that polymeric
micelle formulations made using a given polymer of structurally related drugs with similar
physicochemical properties will behave in an identical manner. Small variations in physico-
chemical properties will affect formulation characteristics and, in the case of topical drug
delivery, bioavailability and biodistribution. However, it will be interesting to perform
in vivo studies to confirm whether any differences found in vitro are again observed and
whether they are clinically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/pharmaceutics15041278/s1, Figure S1 Chromatograms of ACN blank, unloaded micelles, PIM
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of (a) PIM 832.50 > 604.50, b) TAC 826.60 > 616.20 and (c) mixture of compounds prepared in ACN;
Figure S3: Respective MRM traces on XEVO TQ MS of (a) PIM 832.50 > 604.50, (b) TAC 826.60 > 616.20
and (c) mixture of compounds prepared in skin matrix; Figure S4: Respective MRM traces of PIM in
skin samples (832.50 > 604.50): (a) PIM in matrix, (b) blank permeation and (c) blank extract of skin;
Figure S5: Chromatograms of ACN blank, unloaded micelles, TAC standard (40 µg/mL) and TAC
loaded in micelles; Figure S6: Respective MRM traces on XEVO TQ MS of (a) TAC 826.60 > 616.20,
(b) PIM 832.50 > 604.50 and (c) mixture of compounds prepared in ACN; Figure S7: Respective
MRM traces on XEVO TQ MS of (a) TAC 826.60 > 616.20, (b) PIM 832.50 > 604.50 and (c) mixture
of compounds prepared in skin matrix; Figure S8: Respective MRM traces of TAC in skin samples
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(832.50 > 604.50): (a) TAC in matrix, (b) blank permeation and (c) blank extract of skin, Figure S9:
Chromatograms of ACN blank, unloaded micelles, SIR standard (30 µg/mL) and SIR loaded in
micelles, Figure S10: Respective MRM traces on XEVO TQ MS of (a) SIR 912.67 > 321.21, (b) SIR
912.67 > 590.42, (c) SIR-D3 915.65 > 593.44 and (d) mixture of compounds prepared in ACN; Figure S11:
Respective MRM traces on XEVO TQ MS of (a) SIR 912.67 > 321.21, (b) SIR 912.67 > 590.42, (c) SIR-D3
915.65 > 593.44 and (d) mixture of compounds prepared in skin matrix, Figure S12: Respective MRM
traces of SIR in skin samples (912.67 > 590.42 and 321.29): (a) SIR in matrix, (b) blank permeation and
(c) blank extract of skin; Table S1: Intra- and inter-day precision and accuracy for quantification of PIM
in ACN with UHPLC-UV; Table S2: Intra- and inter-day precision and accuracy for quantification
of PIM in ACN with XEVO TQ MS); Table S3: Intra- and inter-day precision and accuracy for
quantification of PIM in skin matrix with XEVO TQ MS; Table S4: Validation of PIM extraction from
total skin samples; Table S5: Validation of PIM extraction from sliced skin samples; Table S6: Intra-
and inter-day precision and accuracy for quantification of TAC in ACN with UHPLC-UV; Table S7:
Intra- and inter-day precision and accuracy for quantification of TAC in ACN with XEVO TQ MS;
Table S8: Intra- and inter-day precision and accuracy for quantification of TAC in skin matrix with
XEVO TQ MS; Table S9: Validation of TAC extraction from total skin samples; Table S10: Validation
of TAC extraction from sliced skin samples; Table S11: Intra- and inter-day precision and accuracy for
quantification of SIR in ACN with UHPLC-UV; Table S12: Intra- and inter-day precision and accuracy
for quantification of SIR in ACN with XEVO TQ MS; Table S13: Intra- and inter-day precision and
accuracy for quantification of SIR in skin matrix with XEVO TQ MS; Table S14: Validation of SIR
extraction from total skin samples; Table S15: Validation of SIR extraction from sliced skin samples;
Table S16: Micelle size expressed in terms of number-weighted diameters for the six formulations.
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