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Abstract: Antibody–drug conjugates (ADCs) are a potential and promising therapy for a wide
variety of cancers, including breast cancer. ADC-based drugs represent a rapidly growing field
of breast cancer therapy. Various ADC drug therapies have progressed over the past decade and
have generated diverse opportunities for designing of state-of-the-art ADCs. Clinical progress
with ADCs for the targeted therapy of breast cancer have shown promise. Off-target toxicities
and drug resistance to ADC-based therapy have hampered effective therapy development due to
the intracellular mechanism of action and limited antigen expression on breast tumors. However,
innovative non-internalizing ADCs targeting the tumor microenvironment (TME) component and
extracellular payload delivery mechanisms have led to reduced drug resistance and enhanced ADC
effectiveness. Novel ADC drugs may deliver potent cytotoxic agents to breast tumor cells with
reduced off-target effects, which may overcome difficulties related to delivery efficiency and enhance
the therapeutic efficacy of cytotoxic cancer drugs for breast cancer therapy. This review discusses the
development of ADC-based targeted breast cancer therapy and the clinical translation of ADC drugs
for breast cancer treatment.

Keywords: ADCs; breast cancer; drug resistance; non-internalizing ADCs; targeted therapy

1. Introduction

ADC-based drugs span the gap between mAb and cytotoxic drugs used to enhance
the therapeutic effectiveness of cancer therapy, including breast cancer. The four key
components of an ADC are the targeting antigen, the monoclonal antibody (mAb), the pay-
load, and the linker. ADCs consist of an anticancer mAb conjugated to a cytotoxic payload
through an engineered chemical linker that enables the effective targeting of tumor cells and
a killing effect simultaneously [1]. ADCs have combined characteristics of both chemother-
apeutics and targeting agents by joining them with a linker. ADC drugs have shown anti-
cancer effectiveness against human epidermal growth factor receptor 2-positive (HER2+)
breast cancers as well as anti-cancer effects on HER2-low and HER2-negative breast cancer
and in triple-negative breast cancer (TNBC) patients [2]. The HER2 is overexpressed in
20% of breast cancer patients. Before the availability of HER2-directed mAbs, the prognosis
for HER2 breast cancer was significantly low. Several novel HER2-targeting mAbs have
been fabricated to bind to the HER2 receptor with more specificity than trastuzumab or to
have the ability to bind to additional epitopes to improve function or to prompt a greater
immunologic response [3]. These ADCs are developed to selectively deliver the payload
directly to the target site in tumors [4]. The treatment of HER2-positive breast cancer is
being greatly enhanced by ADCs such as trastuzumab deruxtecan, ARX788, and ZW49
and are proficiently utilized to deliver the potent cytotoxic drugs by using mAbs with low
off-target toxicities. Usually, ADCs are stable in the circulation, and they readily target
and finally release their payloads in the vicinity of the cancer cells. Internalization and the
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intracellular transport mechanism of ADCs have a positive impact on the cytotoxicity of
ADCs. Each component can affect the efficacy and safety of the ADC drug. Therefore, ADC
development needs to consider all these components, including the choice of the target
antigen, the mAb, the cytotoxic payload, the linker and the conjugation approach [1].

The vital step of ADC development is the selection of target antigens [5]. Once the
ADC is administered, the antibody binds to the target antigen on the tumor cells and is
internalized by the tumor cells. The optimal target antigen should be tumor-specific with
a homogeneous expression pattern and high levels of expression, rapidly internalizing
with minimal ectodomain shedding. The level of antigen expression critically affects the
therapeutic index of ADC drugs as it defines the amount of the cytotoxic payload that
will be internalized into the cancer cells. Therefore, selection of target antigen is crucial
for the effective internalization of ADCs into target cells. In solid tumors, the correlation
between surface antigen density and intracellular ADC concentration has an optimal
linear relationship [5]. The payload is then released into the lysosome, where the linker is
decoupled, depending on intercellular conditions such as low pH and proteosome-induced
degradation. The cytotoxic payload may kill cancer cells as a result of DNA damage. Cancer
cells may also be inhibited by microtubule disrupting agents. Some membrane permeable
payloads (e.g., SN-38) can cross the cell membrane and exert a cytotoxic killing effect
on bystander cancer cells, which may or may not express target antigens (Figure 1) [2,6].
The ADC internalization and extracellular pathway may have a crucial impact on the
cytotoxicity of ADC [7].
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Currently, more than 12 ADCs have received Food and Drug Administration (FDA)
approval for hematological malignancies and solid tumors, and around 100 ADC drugs are
currently in different phases of clinical trials [1,8]. Most of the ADCs are in different phases
of clinical trials for solid tumors, including breast cancers (Figure 2) [1,9–14]. The majority
(seven out of twelve) of the approved ADCs target non-solid tumors. All approved ADCs
employ internalizing antibodies, and the majority of them utilize cleavable linkers. In 2000,
the first ADC drug Mylotarg (gemtuzumab ozogamycin) was approved by the US-FDA
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for adults with acute myeloid leukemia (AML), which was the early approach for ADC-
targeted cancer therapy. The ADC drug ado-trastuzumab emtansine or T-DM1 (Kadcyla) for
HER2-positive metastatic breast cancer was FDA approved in 2013. Currently, the clinical
advancement of ADC drugs for breast cancer therapy has emphasized three FDA-approved
agents: trastuzumab emtansine, trastuzumab deruxtecan and sacituzumab govitecan.
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In 2020, sacituzumab govitecan received accelerated approval for metastatic TNBC
(triple-negative breast cancer) patients who have received at least two prior therapies for
metastatic disease. In 2021, the FDA finally approved sacituzumab govitecan (Trodelvy
by Immunomedics Inc., Morris Plains, NJ, USA) for patients with unresectable, locally
progressed or metastatic TNBC who had experienced two or more prior systemic treat-
ments, with at least one of them for metastatic disease. In 2022, another ADC drug,
fam-trastuzumab deruxtecan-nxki (Enhertu), received FDA approval for unresectable or
metastatic HER2-low breast cancer patients who had received prior chemotherapy for a
metastatic disease or had developed disease relapse during or within six months of finish-
ing adjuvant therapy. Around 40 to 50% of breast cancer patients have tumors with low
HER2 expression. HER2-low breast cancer is defined as immunohistochemistry [IHC]1+
or IHC2+ with no HER2-amplification (in situ hybridization test negative, ISH–) [15]. In
February 2023, the US-FDA approved sacituzumab govitecan-hziy for the treatment of
patients with unresectable locally progressed or metastatic hormone receptor positive
(HR+) and HER2-negative (IHC 0, IHC 1+ or IHC 2+/ISH–) breast cancer patients who
have experienced endocrine-based therapy and at least two more systemic therapies for
metastatic disease [6,16]. This approval of sacituzumab govitecan-hziy for (HR+) and
HER2-negative breast cancer patients was based on the TROPiCS-02 (NCT03901339) trial.

Sacituzumab govitecan is composed of an antibody coupled to topoisomerase I in-
hibitor (SN-38) through a proprietary hydrolysable linker, and it targets human trophoblast
cell-surface antigen 2 (TROP-2), which is overexpressed in many epithelial cancers, in-
cluding a majority of breast cancers [6]. An overexpression of TROP-2 in breast cancer
is allied with a poor prognosis and a low survival rate. TROP-2 is also known as tumor
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associated calcium signal transducer 2 (TACSTD2), which is a cell surface glycoprotein
functioning as a transmembrane transducer of intracellular calcium signals. TROP-2 plays
roles in cell proliferation, invasion, migration, apoptosis, and treatment resistance by bind-
ing to or interacting with several molecules. The TROP-2-targeting ADCs make TROP-2
an accessible and innovative therapeutic target for advanced metastatic cancer [17]. The
FDA has accepted for review a biologics license application (BLA) for vic-trastuzumab
duocarmazine (SYD-985) for the treatment of HER2-positive patients with unresectable,
locally advanced or metastatic breast cancer [18].

ADC-based drugs signify a growing field of cancer therapy, including for breast cancer.
Different ADC drug technologies advanced over the past decade have generated a variety of
opportunities for engineered innovative ADCs [19]. Advances in the engineering of linkers
and the appearance of novel payloads has led to progress for innovative ADCs for cancer
therapy [1]. Prospective antigen targets were revealed for both solid and hematological
tumors [20,21]. Many potential cytotoxic agents have been found, including microtubule
inhibitors, anthracycline, auristatins, and maytansinoids [22–26] (Figure 3). Further, new
generations of linkers have been introduced to improve the therapeutic applications of ADC
drugs [19,21,27–29]. Bispecific antibodies have been designed to improve both the potency
and specificity of ADCs to deliver multiple classes of payloads [30–33]. The majority of
currently utilized ADCs use human immunoglobulin G (IgG) antibody, the most frequently
utilized isotype of antibodies (found in serum) for cancer immunotherapy. Since the size of
the mAb is larger compared to the cytotoxic payload (around 90% of mass of any given
ADC) it may hamper the delivery of ADC-based drugs to target cells and, hence, may
hamper their efficiency. Although this does result in a reduced distribution of cytotoxic
payload to healthy tissues, including metabolizing and eliminating organs (liver, intestines,
muscle, skin etc.), overall, it may affect the pharmacokinetics and pharmacodynamics as
well the antitumor efficacy of ADCs. Small-size antibodies or fractions or alternatives
may be utilized in ADCs to reduce these difficulties. There are many studies that utilize
antibodies derived from IgGs or small binding proteins, small molecules, and peptides for
ADC construction, such as antigen-binding fragments (Fab), single chain variable fragments
(scFv), variable domains (VHH; known as nanobodies), diabodies, affibodies, knottin,
DARpin, dAb, and bicyclic peptides (Figure 3). Because of their smaller size compared to
regular IgGs, they demonstrate enhanced pharmacokinetics for tumor penetration [34–36].
Therefore, modified ADCs with smaller IgG alternatives or small-format drug conjugates
may be an effective and innovative therapeutic for cancers, including breast cancer.

Furthermore, the combination approaches that utilize ADCs in clinical trials are being
explored extensively, for example by combining them with immune checkpoint inhibitors
(ICIs) and chemotherapeutics.

Thus, the development of new ADC drugs has offered huge opportunities for the
treatment of cancer, including breast tumors [34]. The experience with existing ADCs has
been useful in developing new generations of more effective ADCs, such as site-specific
conjugations developed for the fabrication of ADCs to produce homogeneous ADCs with a
drug-to-antibody ratio of 2 or 4 as well as those with improved pharmacokinetics [19].

Currently, ADC drugs require internalization to release the cytotoxic payload, which
generates a hurdle for therapeutic development in that it requires cancer cell targets that
overexpress internalizing antigens for effective intracellular processing [8].

However, an alternative strategy is emerging for the extracellular release of the payload
from cleavable linkers: its binding to weakly internalizing antigens or other constituents
of a tumor, such as secreted proteins in the tumor microenvironment (TME). This may
eliminate the dependence on the overexpression of antigen, avoid inefficient internalization,
and potentially improve the variety of cancer targets in the components of the extracellular
tumor matrix for an enhanced therapeutic effect [8].

In addition to the well-recognized ADC targets, including HER2, EGFR, FGFR and
c-MET, there are many emerging ADC target antigens, including TROP-2, CD-25, EpCAM,
demonstrating promising outcomes in solid tumor therapy in preclinical and clinical
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settings (Table 1) [8,37]. For non-internalizing ADCs, secreted extracellular proteins and
abundant stromal and vasculature components containing collagen, fibrin, fibronectin, and
tenascin-C are emerging as prospective targets (Table 1) [8].
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Table 1. ADC target antigens/proteins/stromal and vasculature components for the treatment of
solid tumors.

Type Categories of ADC Target Antigens or Other Targets ADC Target Antigens or Other Targets

1 Well-established ADC target antigens HER2, EGFR, EGFRvIII, c-MET, EGFR2, EGFR3

2 ADC target antigens overexpressed on cancer cells EpCAM, BCMA, TROP-2, LIV-1, AXL, HER3, CD166,
CEACAM5, GPNMB, Mesothelin, CD70

3 Non-internalizing ADC target cell-surface antigens CD20, CD21, CD72, TAG72, CEACAM5, and NKA27

4 ADC target antigens in tumor microenvironment CD25/IL2R, B7-H3, ANTXR1

5 ADC target antigens in cancer stem cells (CSCs) PTK7, ROR1, 5T4

6 Targeting secreted proteins Gal3BP, LRG1, and MMP9.

7

Targeting abundant stromal and
vasculature components containing collagen, fibrin,

fibronectin, and
tenascin-C

Collagen, fibrin, fibronectin, and
tenascin-C

2. Internalizing and Non-Internalizing ADCs

The majority of the current ADC drugs utilize the internalizing mechanism. After the
ADCs’ binding to the target antigen expressed on the cancer cell, the ADCs are internalized
through endocytosis and subsequently degraded in the lysosome, and the cytotoxic payload
is released (Figure 4A) [8]. The membrane permeable cytotoxic payload may pass out of the
cell from which it was released and exert a bystander killing effect on surrounding tumor
cells with or without antigen expression. In recent years, some internalizing ADCs have
received FDA approval for clinical use. However, internalizing ADCs suffer from several
drawbacks. The internalizing ADCs rely on a high expression of antigens, and many tumors
lack such antigen expression. As antibodies are large proteins, they inadequately penetrate
tumors due to sluggish diffusion. Furthermore, the antibodies’ continuous binding to cancer
cells at the outer edge of the tumors close to blood vessels may prevent their dispersion
and thus bind to cancer cells deeper within the tumor through the antigen barrier. Cancer
cells also acquire resistance to antibodies due to alterations in several processes, including
internalization, trafficking, antigen reuse, and a lysosomal degradation mechanism [38,39].
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Non-internalizing ADCs may utilize an alternative mechanism of action. In non-
internalizing ADCs, instead of necessitating lysosomal disintegration to release payload
intracellularly, the ADC’s labile linkage may provide the release of the payload into the
extracellular TME, targeting the distinct chemical/enzymatic atmosphere of the tumor, and
they may disperse into neighboring cancer cells to exert their cytotoxic effect (Figure 4B).
Non-internalizing ADCs do not need antigen overexpression on cancer cells, and may target
several physiological features common to most of the aggressive cancers. The extracellular
release of the payload may also facilitate a deeper diffusion of the cytotoxic drugs into
tumors due to easy penetration, and it may exert a bystander effect. Non-internalizing
ADCs may be suitable for targeting cancers with dense tumor stroma, such as TNBC and
pancreatic ductal adenocarcinoma (PDAC). Therefore, a non-internalizing ADC may serve
as a broad-spectrum anti-cancer therapy.

Internalizing ADCs usually utilize non-cleavable linkers, which involve the mAb
degradation of their integral amino acids for the release of a cytotoxic payload into the
lysosome. The charged nature of attached amino acids render it incapable of dispersing
across the cell membrane and inhibit nearby cancer cells through a bystander effect. ADCs
that use non-cleavable linkers necessitate effective cellular trafficking. Non-cleavable link-
ers are effective for internalizing ADCs. Among the currently approved ADCs for breast
cancer therapy, only trastuzumab emtansine possesses a non-cleavable linker (Figure 3).
Cleavable linkers have a chemical trigger that are dissociated in the specific location of
tumors to release the cytotoxic payload. Many cleavable linkers are currently utilized in
ADCs, such as acid-labile hydrazones, reducible disulfides and enzyme-cleavable linkers
(e.g., valine-citrulline). Several FDA-approved breast cancer ADCs, including sacituzumab
govitecan, and trastuzumab deruxtecan, have cleavable linkers (Figure 3). Most of the cleav-
able linkers are susceptible to intracellular cleavage. However, chemical and enzymatic
cleavage triggers may exist extracellularly [18,19]. Further, expiring tumor cells may release
high concentrations of intracellular species (including glutathione and protease) into the
TME, which facilitate the development of non-internalizing ADCs. Non-internalizing ADC
mechanisms may involve targeting membrane proteins, the TME and the tumor stroma or
vasculature. As a result, non-internalizing ADCs provide a wider choice of antigen targets,
avoid insufficient internalization and trafficking to the lysosome, improve the bystander
effect, and enhance tumor penetration to deeper cancer cells (Figure 4B). Internalizing
ADCs’ tumor cells can acquire resistance mechanisms. However, non-internalizing ADCs
may reduce the drug resistance.

Internalization is key to the effectiveness of ADCs with cleavable linkers. How-
ever, increasingly, several indications suggest a contrary mechanism. The dying tumors
may release the intracellular linker triggers into the extracellular TME, facilitating the non-
internalizing mechanisms of ADC. These linkers may be incorporated into non-internalizing
ADCs. Therefore, the concept that the linker must persist in circulation before internaliza-
tion and detachment within the cancer cells may need to be modified for non-internalizing
ADCs. The linkers comprising ester or carbonate groups with modest stability in circulation
have been utilized in integration with antibodies targeting the stromal constituents in the
TME, permitting a persistent local drug release into tumors. Carbonate linkers already
have been proven in a clinical setup (Sacituzumab govitecan). This linker type may be
utilized only with moderately cytotoxic payloads. However, off-target toxicity due to labile
linkages should be investigated [8].

ADCs’ effectiveness depends on several features of target antigens [2,5]. For internal-
izing ADCs, the overexpression of target antigens on the cancer cells is necessary. However,
no or low-level expression on healthy cells is needed. The landscape of antibody–antigen
interactions may dictate the extent of the internalization of the ADCs. For the effective
internalization of ADCs, the antibody must prompt rapid receptor internalization, intracel-
lular trafficking, and lysosomal degradation. On the other hand, non-internalizing ADCs
may not require a substantial rate of internalization after antibody binding because these
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intracellular steps are not significant for the non-internalizing ADCs’ mechanism [8]. The
pros and cons of internalizing and non-internalizing ADCs is summarized in Table 2.

Table 2. The pros and cons of internalizing and non-internalizing ADCs.

Internalizing ADCs Non-Internalizing ADCs

Restricted choice of antigen targets Broader choice of antigen targets

Necessitates overexpression of internalizing antigens Circumvents inefficient internalization and trafficking
to lysosomes

Cancer cells may acquire resistance related to internalization Improved bystander effect and tumor penetration
May have limited cancer target May be promising for targeting a wider range of cancers

Target antigens expressed on cancer cells May target proteins other than those expressed in cancer cells,
stromal and other tumor factors

3. Development of ADC Drugs for Targeted Breast Cancer Therapy

Breast cancer is the most frequently diagnosed cancer in women, which is the second
most prevalent cause of death among cancers. In 2020, 11.7% of newly diagnosed cancer
cases were for breast cancer, which significantly endangered women’s health worldwide
and was the main cause of female death [7,40].

Currently utilized therapies for breast cancer are chemotherapy, radiation therapy and
surgical resection. These options are associated with severe side effects, therapy resistance
and disease recurrence. In metastatic disease, therapy options are more limited, and a
majority of patients will die from the disease. In recent years, targeted therapy using
ADCs have greatly advanced the treatment of breast cancer by utilizing HER2-targeted,
HR-targeted, and TNBC-targeted ADCs [41].

3.1. Human Epidermal Growth Factor Receptor-Targeted ADC Therapy for Breast Cancer
3.1.1. HER2-Targeted ADCs

HER2-targeted therapies of breast cancer have shown promising results in clinic. Some
of the HER-2 targeted therapies have been approved by FDA (Trastuzumab emtansine,
Trastuzumab deruxtecan), and some others are in late stages of clinical trials (Trastuzumab
Duocarmazine, Disitamab Vedotin etc.).

3.1.2. Trastuzumab Emtansine

Trastuzumab emtansine (TDM-1) was approved for the treatment of patients with
unresectable or metastatic HER2-positive breast cancer. The approval was based on the
EMILIA trial for patients who received trastuzumab and taxane or reverted during the
therapy or within 6 months following adjuvant therapy [42]. DM1 is a highly potent
cytotoxic agent for inhibiting tubulin polymerization and causes death in proliferating
cancer cells [1,6,43]. The TDM-1 ADC drug was approved as a monotherapy and is utilized
as second-line therapy.

The KATHERINE trial supported TDM1-1 as the standard adjuvant treatment for
patients with HER2-positive breast cancer [44]. The development of TDM-1 as a first-line
therapy for HER2-positve metastatic breast cancer or as a neoadjuvant therapy has not yet
been shown.

T-DM1 remains a second-line standard therapy for HER2-positive breast cancer pa-
tients. According to the phase III MARIANNE trial, the TDM-1 with or without pertuzumab
demonstrated no improvement in PFS as a first-line treatment for metastatic HER2-positive
breast cancer [42]. The CLEOPATRA trial showed that pertuzumab added to taxane
and trsatuzumab improved both PFS and OS [45–47]. The neoadjuvant KRISTINE study
demonstrated that docetaxel, carboplatin and trastuzumab plus pertuzumab improved
pCR in a significant number of patients compared to the T-DM1 plus pertuzumab arm. The
CompassHER2-RD study (NCT04457596) assessed whether the integration of T-DM1 with
tucatinib was better than TDM-1 alone in metastatic breast cancer patients pretreated with
trastuzumab plus taxane.
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3.1.3. Trastuzumab Deruxtecan

Trastuzumab deruxtecan was approved based on the results of the DESTINY-Breast01
study. This approval is for breast cancer patients with HER2-positive unresectable or
metastatic disease who received a minimum of two previous anti-HER2 therapies [1].
T-Dxd is made of a humanized anti-HER2 mAb and a cleavable tetrapeptide-based linker
attached to a potent cytotoxic topoisomerase I inhibitor, an exatecan derivative. T-Dxd
possesses a high drug-to-antibody ratio (DAR) (8), which facilitates the release of a high
concentration of payload [48]. However, DAR is one of the crucial factors in determining the
efficacy of ADCs. DAR values are important for the therapeutic index of ADCs. A low DAR
(i.e., few drug molecules on each antibody) may cause reduced efficacy, while a high DAR
may affect ADC structure, stability, and antigen binding, resulting in poor pharmacokinetics
for ADC drugs because of higher hydrophobicity and lower solubility [34]. The DAR of
the majority of the ADCs currently in clinical trial are in the range of 2 to 4. Hence,
controlling the DAR of ADCs during ADC preparation is a key process, and the real-time
DAR analysis of in situ ADC drugs may be an effective approach. Currently, there are
several methods for DAR measurement, including UV-visible spectroscopy, hydrophobic
interaction chromatography, RP-HPLC, and LC-MS. The antibody deglycosylation of ADC
samples simplifies DAR measurement. Although deglycosylation is time consuming, an
optimal deglycosylation of ADCs and a rapid LC-MS analysis for DAR detection with
real-time monitoring may be an effective approach to control and optimize the DAR of
ADCs in clinic [49].

Upon binding to HER2, T-Dxd is internalized and trafficked intracellularly to the lyso-
some [50]. The linker is stable in plasma and experiences a specific breakup by lysosomal
cathepsins, which are overexpressed in cancer cells [51–54]. The payload can readily cross
the cell membrane (~5 nm) due to its membrane-permeable nature, and it exerts an effective
cytotoxic effect on bystander cancer cells, irrespective of HER2 expression levels [55].

Both the in vitro and in vivo pharmacological function of T-Dxd was evaluated and
compared to T-DM1 using patient-derived xenograft (PDX) models [54]. The highest
non-severe toxic dose of T-Dxd was 30 mg/kg in cynomolgus monkeys [54]. The study
also evaluated the efficiency of T-Dxd in T-DM1-unresponsive PDX-models with HER2
expression (high and low) [55]. T-Dxd demonstrated a bystander cancer-cell-killing effect
in addition to direct cytotoxicity. The T-Dxd cytotoxic payload is strongly membrane-
permeable compared to T-DM1. T-Dxd demonstrated low or no systemic toxicity due to a
bystander effect.

T-Dxd was investigated in several clinical trials for solid tumors focusing on breast
cancer. In 2015, a phase I first-in-human trial included highly treated patients with pro-
gressed HER2-positive breast cancer [48]. Breast and other cancer patients were enrolled
at two locations in Japan. The highest tolerable dose was not achieved based on primary
tumor inhibition and safety data obtained in this trial. The recommended dose was selected
as 5.4 to 6.4 mg/kg body weight. In another phase I study, patients with HER2-positive
progressed breast cancer who had previously received T-DM1 therapy were examined
in a T-Dxd trial at fourteen centers, including eight in the USA and six in Japan [51]. A
phase Ib study assessed the effectiveness of T-Dxd in HER2-low progressed or metastatic
breast cancer when treated with the recommended dosage [52]. Heavily pretreated patients
were enrolled for this study, and 37% (20/54) demonstrated a confirmed radiological re-
sponse. Treatment-related adverse effects of grade 3 or more were detected in 63% (34/54)
of patients including a low neutrophil count, low WBC count, anemia, hypokalemia, low
platelet count, aspartate aminotransferase (AST) high, low apatite, febrile neutropenia,
cellulitis and diarrhea with three fetal effects due to interstitial lung disease (ILD). The
preliminary clinical studies of T-Dxd demonstrated prospective anticancer activity in both
HER2-positive and HER2-negative breast cancer patients, with a significant percentage
of patients suffering modest to serious side-effects, particularly with T-Dxd allied poten-
tial ILD.
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T-Dxd received FDA approval in 2020 [56]. In 2019, the primary outcomes of the
DESTINY-Breast01 trial (NCT0348492) were issued [6,56]. This phase II, two-part, single
group, multicenter trial of T-Dxd assessed T-DM1 patients with HER2-positive metastatic
breast cancer. After a median follow up of 11.1 months, at the recommended dose
(5.4 mg/kg) of T-Dxd, 60.9% (112/184) of patients showed a confirmed radiological re-
sponse. The median number of previous lines of therapy for metastatic patients was
6 months. The median PFS was 16.4 months. The commonly observed side effects of
grade 3 or more were neutropenia in 20.7% (38/184) patients, anemia in 8.7% (16/184),
and nausea in 7.6% (14/184). T-Dxd-allied ILD was observed in 13.6% (25/184) of patients
experiencing any-grade ILD. In December 2019, an update of the study demonstrated a
generally tolerable safety profile with the formerly finished outcomes [57]. In the follow up
period, five patients (2.7%) died due to the ILD. T-Dxd received accelerated FDA approval
in December 2019 due to this study outcome. T-Dxd also received approval from the
European Medicine Agency (EMA) and Swissmedic, in the meantime.

The DESTINY-Breast02 study is a phase III, open level, randomizing one of two arms,
T-Dxd versus treatment of physician choice (TPC) (a combination of capecitabine with
either trastuzumab or lapatinib) trial for HER2-positive metastatic breast cancer patients
previously treated with T-DM1. Fam-trastuzumab deruxtecan-nxki led to higher response
rates and longer survival times in a third-line setting for HER2-positive metastatic patients
pretreated with T-DM1. According to the result form the DESTINY-Breast02 phase III
study presented at the 2022 San Antonio breast cancer symposium (Abstract GS2-01),
among the 608 patients enrolled and treated with T-Dxd, 69.7% experienced an objective
response compared to TPC (29.2%). Those patients treated with T-Dxd were 64% less
likely to experience disease progression than the patients that received TPC. The PFS was
17.8 months for T-Dxd-treated patients versus 6.9 months (TPC). The OS was 39.2 months
for the patients treated with T-Dxd versus 26.5 months with TPC [58].

The outcomes of the DESTINY-Breast03 trial were presented in 2021 [6,41]. In this
phase III trial, T-Dxd was evaluated and compared to T-DM1 in breast cancer patients
pretreated with trastuzumab and taxane. The 12-month PFS was 75.8% for T-Dxd and
34.1% for T-DM1. The OS was 94.1% for T-Dxd and 85.9% for T-DM1. The median therapy
duration was favorable with T-Dxd compared to T-DM1. The second-line treatment with
T-Dxd led to a noticeably longer OS compared to T-DM1 in patients with HER2-positive
metastatic breast cancer, according to updated results from the DESTINY-Breast03 phase
III study presented at the San Antonio Breast Cancer Symposium on 6–10 December 2022.
The DESTINY-Breast03 study compared the efficacy and safety of T-Dxd with those treated
with T-DM1 in patients with HER2-positive metastatic breast cancer that advanced on or
after first-line treatment. This study confirmed the benefit of T-Dxd for PFS and the sub-
stantial improvement in OS. Future analyses of the DESTINY-Breast03 trial may investigate
the efficacy of T-Dxd in patients with brain metastasis to discover predictive markers of
response. Further, ongoing studies aim to determine the efficacy and safety of T-Dxd as
first-line therapy for patients with HER2-positive metastatic breast cancer. A shortcoming
of the trial was the disproportionate enrollment of Asian patients compared to the US and
European patients. An additional restriction was that the median OS was not reached at
the time of this analysis [59].

T-Dxd has been allied with higher rates of toxicities, including grade 5 events [60].
The study demonstrated that Japanese patients were more susceptible to growing ILD after
therapy with T-Dxd than those of other origins. According to the DESTINY-Breastcancer01
trial, the median time to onset of treatment-related lung diseases was 6 months. Monitoring
the patient’s signs and symptoms related to lung disease and consulting with pulmonologist
may be helpful during T-Dxd therapy [61]. Further studies are required to assess the best
tracking and handling of ILD associated with T-Dxd treatment.
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3.1.4. Trastuzumab Duocarmazine

Trastuzumab duocarmazine (SYD985) is an anti-HER2 ADC composed of anti-HER2
mAb with the same sequence of trastuzumab, conjugated to a cleavable linker comprising
duocarmycin. Duocarmycin results in DNA degradation in cancer cells, eventually result-
ing in cancer cell death [62]. Proteases, such as cathepsin B secreted by tumor cells, could
be active extracellularly, which would facilitate a bystander killing effect [63]. Trastuzumab
duocarmazine demonstrated prospective preclinical cancer cell killing efficiency in breast
tumors with different HER2 expression levels (either low or high) [64].

The results of a first-in-human, phase I clinical trial of trastuzumab duocarmazine eval-
uated dose-escalation and expansion (NCT02277717) in 146 patients with HER2-positive
locally progressed or metastatic solid tumors, refractory to standard cancer therapy [65]. A
prospective ORR of 33% (16/48) was observed (n = 48) according to response evaluation
criteria in solid tumors (RECIST). Among the 47 evaluable patients, ORR was 28% (9/32)
among the patients with HER2-positve and HER2-low and 40% (6/15) among the patients
with HER2-negative and HER2-low, respectively.

The phase III TULIP trials included the evaluation of the PFS of trastuzumab duo-
carmazine versus TPC (NCT03262935). The preliminary result of the TULIP study was
reported at the 2021 ESMO meeting [66]. In this study, which enrolled 437 patients, the
median PFS was 7 months. Trastuzumab duocarmazine may be a promising therapy
for HER2-positive breast cancer patients with heavily pretreated, locally progressed or
metastatic disease.

3.1.5. Disitamab Vedotin

The ADC drug disitamab vedotin (RC48-ADC) consists of an mAb (disitamab) that
targets HER2 and a cleavable linker conjugated to the microtubule-disrupting, synthetic
antineoplastic agent monomethyl auristatin E (MMAE). Investigations have demonstrated
that RC48-ADC inhibits tumor cells, effectively targeting HER2 [67]. Superior tumor
inhibition of disitamab vedotin compared to T-DM1 was exhibited by xenograft models [67].
In a phase I trial, disitamab vedotin demonstrated good tolerability and promising efficiency
(ORR 46.7%) in locally progressed or metastatic HER2-positive breast cancer patients [68]. A
randomize phase II trial is currently assessing the efficiency of disitamab vedotin 2 mg/kg
given every 2 weeks (NCT03500380). A randomized phase III trial is currently assessing the
efficacy and safety of disitamab vedotin versus TPC in patients with low HER2-expressing
metastatic breast cancer who experienced disease progress during or after one line of
therapy for metastatic disease (NCT04400695) [1,6,68].

3.1.6. Sachituzumab Govitecan in HR+ and HER2-Negative Breast Cancer Therapy

The US-FDA has approved Sacituzumab govitecan-hziy for the treatment of patients
with unresectable locally progressed or metastatic hormone receptor positive (HR+) and
HER2-negative breast cancer. This approval is for breast cancer patients who experienced
endocrine treatment and a minimum of two more systemic therapies for metastatic dis-
ease. Sacituzumab govitecan is comprised of an antibody coupled to a topoisomerase I
inhibitor through a hydrolysable linker. This is the first approved ADC drug targeting
TROP-2 for the treatment of metastatic HR+ and HER2-negative breast tumors [1,6,18].
This approval for Sacituzumab govitecan-hziy is based on the phase III TROPiCS-02 trial.
Sacituzumab govitecan-hziy is now recommended by the national comprehensive cancer
network (NCCN) guideline. The TROPiCS-02 is a global, multicenter study comparing
Sacituzumab govitecan-hziy to TPC [1,6,69].

The TROPiCS-02 trial demonstrated an OS benefit of 3.2 months from Sacituzumab
govitecan-hziy compared to TPC (single agent chemotherapy, median OS:14.4 months ver-
sus 11.2 months) for patients with metastatic HR+ and HER2-negative breast tumors [1,6].
In this study, Sacituzumab govitecan-hziy established a 34% reduction in disease progres-
sion risk or death. The median PFS was 5.5 months versus 4 months. Recently, sacituzumab
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govitecan-hziy received FDA approval for patients with metastatic HR+ and HER2-negative
breast cancer [16].

3.1.7. Other ADCs Targeting Human Epidermal Growth Factor Receptor

HER3 is upregulated in metastatic breast cancer and other cancers, and it has been
associated with poor outcomes [70,71]. The ADC drug patritumab deruxtecan (U3-1402)
consists of human anti-HER3 IgG1 mAb conjugated to a topoisomerase I inhibitor via
a cleavable linker. The assessment of the NCT02980341/JapicCTI-163401trial exhibited
prospective tumor inhibition activity in heavily pretreated patients with HER3-expressing
metastatic breast cancer [72–74].

ARX-788 is an innovative ADC consisting of anti-HER2 mAb, a noncleanable linker
and a proprietary of MMAF (Amberstatin 269 or AS269). ARX-788 demonstrated more
efficacy than T-DM1 for the inhibition of breast tumors resistant to T-DM1 [2,75]. ARX-788
is effective against breast cancer and other cancers. An ARX-788 ADC drug is currently
undergoing two phase I clinical studies (NCT02512237, NCT03255070). Further, a different
phase II clinical study is also assessing ARX-788 for HER2-positive metastatic breast tumor
therapy (NCT05018676), HER2-mautated or HER2-overexpressed cancers (NCT05041972),
HER2-low breast tumors (NCT05018676), and HER2-positive breast cancers with brain
metastasis (NCT05018702) [75].

The A166 ADC drug consists of an anti-HER2 antibody and an effective MMAF-based
payload (duostatin-5) conjugated via a cleavable valine-citrulline linker [76]. A phase I/II
clinical trial of A166 ADC demonstrated clinical efficacy in patients with recurrence or
progressed cancers. Patient’s responses were detected at the dose level of 3.6 mg/km and
4.8 mg/kg. An ORR of 36% was found at the effective dose (NCT03602079).

The ADC drug MRG002 consists of an anti-HER2 IgG1 mAb, a microtubule- disrupting
agent, and MMAE, and is conjugated through a valine–citrulline cleavable linker [77]. This
ADC drug exhibited a prospective breast tumor inhibition in patient-derived xenograft
mouse models with a varying level of HER2 expression in preclinical study. Better MRG002
also exhibited higher cytotoxic potential compared to trastuzumab or T-DM1 in a xenograft
mouse model. Further, combinations of MRG002 with an anti-PD-1 antibody showed
noteworthy tumor inhibition activity. A phase I trial of MRG002 monotherapy is ongoing
for breast cancer (CTR20181778, NCT04941339). Currently, several phase II studies with
MRG002 are ongoing, evaluating its efficacy in multiple HER2-positive or HER2-low
cancers [78].

Another innovative ADC drug, ALT-P7 (HM2-MMAE), is composed of trastuzumab
biobetter HM2 conjugated to the payload MMAE [79]. A phase I study is evaluating the
ALT-P7 ADC drug with HER2-positive breast tumor patients (NCT03281824). ALT-P7
exhibited a safety profile tolerable with dose-limiting toxicities found at 4.8 mg/kg and
4.5 mg/kg [80].

The HER-directed ADC drug ADC GQ1001 is a novel ADC drug with a trastuzumab
mAb and DM1 cytotoxic payload, currently undergoing phase I/II clinical trial (NCT04450732)
for HER2-positive tumors [2]. The trttuzumab zuvotolimod (SBT6050) ADC drug with an
anti-HER2 mAb and toll-receptor 8 agonist payload is currently undergoing a phase I/II
clinical trial (NCT 04460456) to asses anti-cancer activity against solid tumors, including
breast cancer, as monotherapy and in combination with PD-1 inhibitors (such as pem-
brolizumab and cemiplimab) [2,81]. The SBT6050 developer is Silverback Therapeutics.
SBT6050 targets the pertuzumab binding domain of HER2 and is designed to be utilized
in combination with standard-of-care agents, including trastuzumab-containing regimens.
Further, XMT-1522 ADC is currently undergoing phase I/II clinical trial (NCT02952729)
for HER2-expressing progressed breast cancer therapy. This ADC drug is composed of
mAb HT19, a polymer linker and a dolaflexin payload with DAR 12 [6]. ZW49 ADC with
a N-acyl sulfonamide auristatin payload and cleavable linker is in phase I clinical trial
(NCT03821233) for HER2-positive metastatic breast tumor. Another ADC drug targeting
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HER2 with a cytotoxic payload, a Tubulysin-based microtubule inhibitor, a cleavable linker,
and a bystander cell-killing effect is in phase I/II clinical trial (NCT02576548).

3.2. Triple-Negative Breast Cancer-Targeted ADC Therapy
3.2.1. Sacituzumab Govitecan in TNBC Therapy

TNBC is allied with a poor prognosis and has limited therapy options due to the
missing of targets such ER, PR and HER2. TROP-2 is a calcium signal transducer found
in a majority of epithelial carcinomas. It is overexpressed in breast cancer and TNBC
tumors. TROP-2 is expressed in healthy tissues as well, with low expression. The ADC
drug Sacituzumab govitecan targeting TROP-2 in TNBC cells has received approval from
the FDA for TNBC therapy [82]. Sacituzumab govitecan consists of anti-TROP-2 mAb hRS7
IgG1κ and a cleavable linker CL2A conjugated to the SN-38. SN-38, an active metabolite of
irinotecan, inhibits topoisomerase I and causes cell death due to DNA breaking by hindering
the repair of DNA strands [77,83]. Sacituzumab govitecan demonstrated substantially
increased tumor reduction compared to irinotecan in a TNBC-xenograft mouse model [84].

Sacituzumab govitecan received accelerated FDA approval for TNBC patients in
2020. In 2021, Sacituzumab govitecan received regular approval by FDA for patients with
unresectable locally progressed or metastatic TNBC. This approval is for patients who
experienced two or more prior systemic therapies, with a minimum of one of them for
metastatic disease. Sacituzumab govitecan was first investigated by Bardia et al. in the
IMMU-132-01 trial (NCT01631552), which was a phase I/II basket study that included
108 patients with advanced epithelial cancer who experienced a minimum of two previous
therapies for metastatic TNBC [85]. The outcome of the study with metastatic TNBC
patients was published in 2019 [86]. According to the study outcome, the ORR was 33%
(34.3% BIR). The median OS was 13 months, and the median PFS was 5.5 months. The
most common grade 3/4 adverse effects were observed in 42% of the patients (45/108)
and included febrile neutropenia in 8% (9/108). Thirty-six TNBC patients experienced a
radiological response, including thirty-three patients with a partial and three patients with
a complete response. Finally, Sacituzumab govitecan demonstrated durable responses in
patients heavily pretreated for metastatic disease.

The result of the phase III ASCENT trial led to the final approval of Sacituzumab
govitecan by the FDA [87]. In a biomarker analysis of the ASCENT study, the efficacy
of SG was evaluated [88]. The study showed that the clinical benefit of Sacituzumab
govitecan versus TPC was irrespective of the level of TROP-2 expression or BRCA1/2
mutation status. Patients with a high or medium TROP-2 expression level got an advantage
from Sacituzumab govitecan therapy versus TPC in terms of ORR, PFS and OS. Because
of the low number of patients with low TROP-2 expression, a definitive conclusion was
difficult to make. Another subgroup analysis of TNBC patients with brain metastasis in the
ASCENT study (n = 61) demonstrated better efficacy for Sacituzumab govitecan compared
to TPC [89]. Therefore, the ASCENT study showed Sacituzumab govitecan as a later-line
systemic therapy.

3.2.2. TNBC Therapy with Ladrituzumab Vedotin

Ladrituzumab vedotin (SGN-LIV1A) is a novel humanized IgG1 ADC targeting LIV-1.
LIV-1 is expressed frequently in breast cancer and is also expressed in a variety of cancer
types. Ladrituzumab vedotin mediates the delivery of monomethyl auristatin E (MMAE),
which facilitate anticancer activity through cytotoxic tumor cell killing and prompts im-
munogenic cell death (Figure 5) [90]. Ladrituzumab vedotin targets LIV-1 and is connected
to MMAE through a cleavable linker. LIV-1 expression is observed in both ER-positive
breast cancer and TNBC [91,92].
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Preclinical studies demonstrated that ladrituzumab vedotin binds explicitly to the
extracellular domain of LIV-1. After internalization, ladrituzumab vedotin releases its
payload by proteolysis in the lysosome and results in the inhibition of microtubulin and
prompts apoptosis [91].

A phase I study evaluated the safety, acceptability, pharmacokinetics, and tumor
inhibition activity of ladrituzumab vedotin in patients with LIV-1-positive, unresectable,
locally progressed or metastatic breast cancer who had a minimum of two or more cytotoxic
treatments; ladrituzumab vedotin was administered every 3 weeks (NCT01969643) [93].
The outcome of the study was published in 2021 [94].

In an I-SPY study (NCT0102379) ladrituzumab vedotin was evaluated in patients
with stage II/III breast cancer with neoadjuvant therapy with pCR as a major endpoint
compared paclitaxel weekly for 12 weeks [95]. This study demonstrated no preeminence
of the arm with ladrituzumab vedotin over the control with regard to assessed pCR [95].
Both ADCs and ICIs are emergent in the development of TNBC therapy. Therefore, the
integration of ladrituzumab vedotin with pembrolizumab (NCT03310957) and with ate-
zolizumab (NCT03424005) was evaluated in a phase Ib/II study. The preliminary data
for the combination of ladrituzumab vedotin and pembrolizumab demonstrated that of
51 patients evaluated for safety and tolerability, 44 patients (86%) who received a PRP2D
(preliminary recommended phase 2 dose) of 2.5 mg/kg reported treatment-allied adverse
effects, including nausea [63]. The most frequent grade 3 or higher adverse effects observed
in (5%) patients including neutropenia. In the 26 patients that were evaluated for efficacy
and followed for at least 3 months, the ORR was 54%. Finally, the trial demonstrated that
the combination regimen had an acceptable toxicity profile and prospective efficiency in
metastatic TNBC patients.

4. ADCs Emerging as Promising Therapeutics for Breast Cancer Patients in
Clinical Settings

As of February 2023, a total of twelve ADCs have received approval for different can-
cers, including three for breast cancer and TNBC therapy. Currently, more than 100 ADCs
are in different phases of clinical trial. Among them, at least 13 are being evaluated for
breast cancer therapy. ADCs targeting either HER or TNBC are potential therapeutics for
breast cancer patients. The development of ADCs in the last decade has revolutionized
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breast cancer therapy [96–102]. Currently, two HER-directed ADCs have received FDA
approval for HER2-positive metastatic breast cancer patients: ado-trastuzumab emtansine,
trastuzumab deruxtecan. Very recently, sacituzuma govitecan has received FDA approval
for HER2-negative metastatic breast cancer. On the other hand, sacituzumab goviteacn was
previously approved by the FDA for TNBC patients [1,6,8]. There are also several ADC
drugs in different phases of clinical trial for breast cancer patients (Table 3). Clinical and
translational strategies may play a crucial role in enlightening the therapeutic windows for
ADCs [103–105]. Although some potential ADCs used as monotherapy have demonstrated
prospects in the clinical setting, combination approaches may be more effective to improve
drug efficacy and reduce drug resistance in the clinical setting [102,106]. Further, clinical
biomarkers to improve the choice of patients and the monitoring of response indication are
also crucial for the enhancement of the therapeutic index of ADC drugs.

Table 3. ADC drugs for breast cancer therapy either approved or in various phases of clinical trial.

ADC Drug Target Payload DAR Bystander
Effect Status Adverse

Effects Ref.

Ado-
trastuzumab

emtansine
HER2

Matansine
(Microdubule

disrupting
agent)

3–4 No

Approved in 2013, for
HER2-positive MBC

pretreated with
trastuzumab and taxane

(Adjuvant)

AST/ALT
raises, throm-
bocytopenia,
neuropathy

[2,6]

Trastuzumab
deruxtecan HER2

Deruxtecan
(topoiso-
merase I
inhibitor)

8 Yes

Approved in 2019 for
HER2-positive MBC

pretreated with
trastuzumab and taxane

- [2,6,105]

Trastuzumab
duocarmazine HER2 Duocarmycin

prodrug 2.8 Yes Not approved, phase III
Fatigue,

conjunctivitis,
dry eyes

[6,104]

Disitamab
vedotin HER2 MMAE 4 No

Not approved for breast
cancer yet, in phase III.
Approved for gastric or

gastroesophageal
junction cancer by

NMPA (China)

Neutropenia,
AST/ALT

raises
[2,6,104]

Sacituzumab
govitecan TROP-2

SN-38 (topoiso-
merase I
inhibitor)

7.6 Yes

Received accelerated
approval for metastatic
TNBC in 2020, and full

approval in 2021. In 2023,
received FDA approval

for HER2- negative
breast cancer

Neutropenia,
anemia,
diarrhea

[2,6,16,41,88]

Ladrituzumab
vedotin

LIV-1
(TNBC) MMAE 4 No Not approved, phase III Neutropenia,

anemia [2,6,104]

ARX-788 HER2 MMAF 1.9 – Not approved, phase I/II – [2,104]

A166 HER2 Duostatin-5 N/A – Not approved, phase I/II – [2,104]

MRG002 HER2 MMAE 3.8 – Not approved, phase I/II – [2,104]

ALT-P7 HER2 MMAE 2 – Not approved, phase I – [2,104]

GQ1001 HER2 DM1 N/A – Not approved, phase I – [2,104]

SBT6050 HER2
Toll-like

receptor 8
agonist (TLR8)

N/A – Not approved, phase I/II – [2]

ZW49 HER2
MBC

N-acyl
sulfonamide

auristatin
2 No Phase I - [2]

MEDI4276 HER2

Tubulysin-
based

microtubule
inhibitor

4 Yes Phase I/II - [104]

XMT-1522 HER2 dolaflexin 12 - Phase I/II _ [6]

Patritumab
deruxtecan HER3

Deruxtecan
(topoiso-
merase I
inhibitor)

8 – Not approved, phase I/II – [2]
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5. Conclusions and Future Perspective

ADCs, either targeting human epidermal growth factor receptor or TROP-2, are
prospective treatment approaches for breast cancer patients. The growth of ADC-based
drugs in the last decade has greatly enhanced breast cancer therapy. Three HER2-targeted
ADCs have received approval for HER2-positive metastatic breast cancer patients, and one
ADC drug was approved by the FDA for TNBC therapy. There are also many promising
ADC drugs for breast cancer patients undergoing different phases of clinical trials. Ways
to enhance the cancer cell uptake of ADCs have been key and have been allied with ADC
development because most of the current ADCs depend on the expression of target antigens
on tumor cells. An optimal patient selection approach necessitates the consideration of
the intratumoral heterogeneity of the target antigen and dynamic changes in antigens
associated with treatment and disease stages and optimizing the threshold of target antigen
expression to improve ADC therapy in the clinical setting. Systemic toxicity is one of the
major factors for the failure of ADCs in the clinical setup. Following ADC administration,
the released payload rapidly appears within systemic circulation, which may cause systemic
toxicity. Plasma exposure to released payload relates, partly, to the early deconjugation
of the payload in circulation due to insufficient linker stability. Cleavable ADC linkers
are frequently hydrolyzed at significant rates, leading to the premature release of the
cytotoxic payload in the extra-tumoral compartments. Lipophilic payloads demonstrate
high permeability through plasma membranes. Consequently, the free payload enters non-
targeted cells via membrane diffusion, resulting in unwanted cytotoxicity. Approximately
0.1% of the administered ADC drugs are delivered to targeted tumor cell populations, with
the vast majority of the injected dose catabolized ‘off-site’ within non-targeted healthy cells,
leading to a potential unwanted toxicity. Off-site ADC toxicity may be of two types: on-
target and off-target. On-target toxicity is due to the ADC binding to targeted cell surface
protein of healthy cells, and off-target toxicity is due to non-targeted ADC binding [107].

The increasing attrition rate of ADCs with antimitotic payloads is due to suboptimal
efficacy at the maximum tolerated doses (MTDs) during clinical trial. Recent development
of ADCs demonstrated the utilization of more potent DNA-damaging payloads. Highly
potent ADCs often lead to high efficacy; however, their efficacy is hindered by their life-
threatening toxicities. Therefore, the unwanted toxicity limits the clinical benefit of ADCs
by restricting the tolerable doses to amounts below the levels required to provide optimal
anticancer effect. Studies have demonstrated that for many ADCs, the exposures at the clin-
ical MTDs were much lower than the exposures essential for efficacy in preclinical models.
The approaches to extend the therapeutic windows of ADCs through the attenuation of
ADC toxicities might permit enhanced MTDs and, afterward, better clinical results [107].

Hepatotoxicity is included in one of the black box warnings for T-DM1 treatment,
presenting as asymptomatic transient increases in serum transaminase. Black box warnings
were added to the Sacituzumab govitecan label for severe or life-threatening neutropenia
and severe diarrhea. Further, ILD and pneumonitis are included in the black box warning
for patients treated with T-Dxd [107]. Toxic effects may be connected to several factors,
including antibody, payload, linker and target antigen expression levels, and payload
internalization mechanisms. Utilizing the bystander tumor cell killing effect, a proper
pairing of cytotoxic payload, modification of properties of antibodies and linkers through
the use of innovative conjugation technologies and drug/linker chemistry, regulation and
optimization of DAR, utilization of bi-specific antibodies, non-internalizing ADC-based
alternate mechanisms of action, and combination therapy strategies should be explored
to overcome ADC drug resistance and enhance the effectiveness and the safety profile of
ADC drugs. Clinical and translational policies may have an important role in increasing
the therapeutic spectrum of ADCs. Clinical biomarkers to augment choice of patients and
monitor the response signal are also crucial for advancing the therapeutic index of ADC
drugs for effective breast cancer therapy and reduced mortality.
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