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Abstract: Pharmacometrics and the utilization of population pharmacokinetics play an integral role
in model-informed drug discovery and development (MIDD). Recently, there has been a growth in the
application of deep learning approaches to aid in areas within MIDD. In this study, a deep learning
model, LSTM-ANN, was developed to predict olanzapine drug concentrations from the CATIE study.
A total of 1527 olanzapine drug concentrations from 523 individuals along with 11 patient-specific
covariates were used in model development. The hyperparameters of the LSTM-ANN model were
optimized through a Bayesian optimization algorithm. A population pharmacokinetic model using
the NONMEM model was constructed as a reference to compare to the performance of the LSTM-
ANN model. The RMSE of the LSTM-ANN model was 29.566 in the validation set, while the RMSE of
the NONMEM model was 31.129. Permutation importance revealed that age, sex, and smoking were
highly influential covariates in the LSTM-ANN model. The LSTM-ANN model showed potential in
the application of drug concentration predictions as it was able to capture the relationships within a
sparsely sampled pharmacokinetic dataset and perform comparably to the NONMEM model.

Keywords: pharmacometrics; deep learning; population pharmacokinetics; drug concentration
predictions; LSTM; neural networks; Bayesian optimization

1. Introduction

Model-informed drug discovery and development (MIDD) is a valuable resource
assisting in drug discovery and development, regulatory assessment, and life cycle manage-
ment [1,2]. MIDD is an approach that aims to use models and integrate various data sources
to generate information and knowledge to inform drug development and decision-making.
Pharmacometrics and machine learning are approaches utilized within MIDD to aid in
research and development projects. In particular, with regard to pharmacokinetic modeling,
a popular approach toward the prediction of drug exposure (i.e., drug blood concentra-
tion predictions) has been population pharmacokinetic analysis utilizing nonlinear mixed
effects (NLME) modeling. Although widely popular, NLME requires the generation of
statistical models through an iterative trial-and-error process that can be time-consuming
and labor-intensive [3–7].

There has been increasing interest in machine learning and deep learning approaches
to accelerate and enhance the drug discovery and development process [8–15]. Several
studies have been conducted to investigate the use of machine learning or deep learning
approaches toward the prediction of drug blood or plasma concentrations. A backprop-
agation artificial neural network (BPANN) was constructed and validated to predict the
plasma concentrations of rosuvastatin in healthy subjects [16]. The BPANN was also able
to predict pharmacokinetic parameters with no significant differences from the measured
pharmacokinetic parameters of rosuvastatin. Several machine learning algorithms (multi-
ple learning regression, artificial neural networks, regression tree, multivariate adaptive
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regression splines, boosted regression tree, support vector regression, random forest regres-
sion, lasso regression, and Bayesian additive regression trees) were used for the prediction
of a stable tacrolimus dose [17]. It was concluded that the regression tree performed the
best among the machine learning algorithms in both the derivation and testing cohorts.
A long short-term memory (LSTM) model was developed to assess its ability in predicting
valproate concentrations in older patients with epilepsy [18]. When compared with the
population pharmacometrics model of valproate, the developed LSTM model had a better
predictive performance in the external evaluation study. Another study was conducted
to see whether a gated recurrent unit (GRU) model could accurately predict the early
induction kinetics of propofol in morbidly obese and lean subjects [19]. The generated GRU
model with ensembled learning outperformed the compartmental pharmacokinetic model
and had similar performances to the recirculatory model. Despite its potential and promise,
many questions remain unanswered in terms of how deep learning can be used for the
purpose of predicting drug blood or plasma concentrations. One area is the assessment of
how deep learning algorithms can be tuned to generate more accurate predictions. Another
area is how to generate explainable knowledge relevant to pharmacokinetics and drug
development, such as subject-level covariates’ impacts on drug concentrations.

In deep learning, tuning models relies on the algorithm’s hyperparameters. Hyper-
parameters are critical to the behavior of deep learning algorithms. The computational
time and memory cost to generate trained models, the quality of trained models, and the
ability to accurately make predictions based on new inputs are some of the factors related
to the hyperparameters of the model [20]. Bayesian optimization is a class of algorithms
that specialize in optimizing hyperparameters in models that are expensive to evaluate,
such as deep learning algorithms [21,22]. Bayesian optimization has shown success in
optimizing deep learning hyperparameters in various applications [23–27]. It is certainly
an attractive method to investigate for deep learning algorithms applied for the prediction
of drug concentration predictions.

A shortcoming of deep learning algorithms is the limited explanation and interpretabil-
ity of the information extracted from the selected features [28]. This is a hurdle in the drug
development process because scientists and clinicians cannot assess the relevance and
clinical impact of the features (i.e., covariates), deem a deep learning model scientifically
appropriate, or the assess the reliability of results [29,30]. Therefore, the development of
tools and methods that would provide an interpretation of deep learning models is critical.
Permutation importance is a model-agnostic measure of feature importance. It assesses the
intrinsic predictive value of a particular feature toward a model [31]. In the context of drug
concentration prediction, permutation importance can assess the importance of different
patient’s covariates toward model performance.

In this work, we present a novel deep learning framework for drug concentration
prediction in a sparsely sampled pharmacokinetic study. An LSTM-ANN model with
multiple inputs was constructed to predict olanzapine drug concentrations. Bayesian
optimization with four different probabilistic surrogate models was used to optimize
the LSTM-ANN hyperparameters. The performance of the optimized LSTM-ANN was
compared to the performance of a NONMEM model. A measure of permutation importance
was conducted to evaluate the importance of patient’s covariates toward the optimized
LSTM-ANN performance. The novelty of the proposed layered design is that it provides
the flexibility for multiple inputs. This provides the LSTM-ANN model a unique approach
to fully maximize its ability to learn and extract distinctive patterns from different inputs.
In addition, in the context of understanding the impact of patient-specific covariates on
drug concentrations, we present a permutation analysis approach that was designed for the
purpose of understanding covariate importance toward drug concentration predictions.



Pharmaceutics 2023, 15, 1139 3 of 15

2. Materials and Methods
2.1. Study Population

Data used in this project were obtained from The National Institute of Mental Health
Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Access to the
CATIE study data was provided by the NIMH data repository. The CATIE study consisted
of two separate trials to determine the effectiveness of antipsychotics in patients suffering
from either Alzheimer’s disease (AD) or schizophrenia (SZ). The in-depth rationale, study
design, and methods have been published previously [32–34]. Briefly, both trials were con-
ducted from October 2001 to December 2004 at 57 U.S. clinical sites. Inclusion and exclusion
criteria of the CATIE study have been well documented in the literature [33–35]. A portion
of patients from both trials was randomized to be given olanzapine, a second-generation
antipsychotic. In the CATIE-AD trial, patients were given a dose of oral olanzapine from
2.5 to 20 mg/day taken once a day. In the CATIE-SZ trial, patients were given a dose of
oral olanzapine from 7.5 to 30 mg/day taken once or twice a day. Plasma samples were
collected during study visits along with records of the time of last dose and the time of
sample taken. Patients provided from 1 to 6 plasma samples for olanzapine drug concentra-
tion analysis [36,37]. Demographic information of the olanzapine data from the CATIE-SZ
and CATIE-AD studies were summarized using counts for both continuous and discrete
covariates (Table 1).

Table 1. Demographic information of each study and pooled population.

All Patients (n = 523) CATIE-SZ (Schizophrenia
Study) (n = 406)

CATIE-AD (Alzheimer’s
Disease Study) (n = 117)

Observations 1527 1327 200

Age, median years ± SD (range) 45 ± 18 (18–103) 42 ± 10.9 (18–65) 78 ± 8.5 (45–103)

Race, (n)
White

Black/African American
Asian

American Indian
Two or more races

346 253 93
149 131 18
19 14 5
5 4 1
4 4 0

Sex, (n)
Male 332 289 43

Female 191 117 74

Smoking, (n)
Active Smoker 274 267 7

Nonsmoker 249 139 110

Weight, mean weight (kg) ± SD 84.43 ± 22.1 89.34 ± 21.4 67.42 ± 15.07

2.2. Preprocessing of Data

For the population pharmacokinetic study, the data from the two trials were pooled
together for a NONMEM analysis. For deep learning modeling, the data from the two trials
were pooled together and then sorted by date in ascending order. The ordered pooled data
was split into a training set (70% of data) and validation set (30% of data) for development
and validation of the LSTM-ANN regression model. The MinMaxScaling function from the
Scikit-learn Python package was used to transform all covariates and class variable within
the range (0, 1) to aid in algorithm convergence. The equation used by MinMaxScaling was:

xscaled =
x − xmin

xmax − xmin
(1)

where x was a single observation of a feature. The xmin was the minimum value of the
feature, and xmax was the maximum value of the feature. After scaling, the training set
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and validation set were separated based on the dosing variable, covariate, and the drug
concentration (class) as shown in Figure 1.

Figure 1. The proposed workflow began with pooling data from the two CATIE trials. The pooled
data were used for both the NONMEM analysis and the LSTM-ANN model. The LSTM-ANN model
data preprocessing consisted of a data split, followed by scaling, and dividing the data into multiple
input features and class training and validation sets.

2.3. Population Pharmacokinetics

Nonlinear mixed-effects modeling was performed using NONMEM 7.5 (ICON Soft-
ware Development), and statistical analysis was performed in R version with package
Xpose4. The typical population pharmacokinetics analysis includes the development of
structural, statistical, and covariate models as shown in Figure 2.

A covariate analysis was conducted by evaluating the effect of subject-specific covari-
ates on the model parameters. Continuous covariates were tested as follows:

TVCL = θCL ×
(

CC
MedianCC

)θCC

(2)

CL = TVCL ∗ exp(ηiCL) (3)

where TVCL was the typical value of clearance for the population; ηi was the random effect
representing the difference between the ith subject and the population mean clearance.
Random effects of BSV were assumed to be log distributed, with a mean of 0 and a standard
deviation ofω. CC were the continuous covariates being tested against clearance.

Categorical covariates were tested as shown in the following example:

TVCL = [θ1 ∗ (1 − sex)] + [θ2 ∗ sex] (4)

where sex =0 are females, and sex =1 are males. TVCL was the typical value of clearance
for the populations. θ1 was the clearance estimate for females, and θ2 was the clearance
estimate for males.

Both continuous and categorical covariates were tested in a stepwise fashion. A
significance level of (p < 0.01) was used during the covariate search.
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Figure 2. A flowchart showing model development for both the NONMEM analysis and the Deep
Learning approach. The different colors correspond to the different modeling workflows. The
blue represents the NONMEM analysis. Initially, a structural model was built, followed by a
statistical model. Finally, a covariate analysis was completed. The green represents the Deep Learning
approach. First, the LSTM-ANN model was built, followed by a hyperparameter optimization. Last,
a permutation analysis was conducted.

2.4. Neural Networks

All neural network model generation was conducted in Python version 3.9.7 with the
TensorFlow 2.8.0 package. This study focused on two types of neural networks: artificial
neural networks and long short-term memory networks. As shown in Figure 3a, a standard
artificial neural network (ANN) architecture contains an input layer, one or more hidden
layers, and one output layer. The input layer contains features to be entered into the model.
The hidden layers learn and extract patterns within the data by nonlinear transformations
by the way of activation functions. The output layer is the final layer of the network where
the predictions are obtained.

Long short-term memory (LSTM) is a type of recurrent neural network designed to
handle time series data. A standard LSTM contains a cell state, hidden state output, input
gate, forget gate, and output gate. The architecture and equations that explain the behavior
of an LSTM cell are shown in Figure 3b. The cell state (Ct) is the long-term memory of
the cell, while the hidden state (ht) is the short-term memory. The cell state transverses
throughout all LSTM cells in a particular layer and is connected to the input and forget
gate. The input gate (it) examines the input (xt) and determines the amount to update
the cell state. The forget gate ( ft) determines the amount of information from previous
computations to be discarded within the cell state. The output gate (ot) controls which
parts of the cell state should be outputted at a particular time step [38]. Along with the
states, the input gate, forget gate, and output gate work in unison to determine the amount
of information to be extracted and processed for future nodes [39]. Ui, U f , Uo, Ug are the
weight matrix of the gates and their connection to the current input (xt). Wi, W f , Wo, Wg

are the weight matrix of the gates and their connection to the previous hidden state [38].
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Figure 3. Model architecture of Deep Learning models. (A) Structure of an artificial neural network
with an input layer, hidden layer, and an output layer; (B) Structure of the LSTM cell and the equations
that refer to the gates of the LSTM cell; (C) Schematic of the LSTM-ANN model. Each box represents
a different layer within the Deep Learning architecture.

The proposed LSTM-ANN model consisted of long short-term memory (LSTM) layers,
dense layers, dropout layers, input layers, and a flatten layer. The structure of the LSTM-
ANN model is presented in Figure 3c. The deep learning architecture incorporated multiple
inputs to divide the pooled pharmacokinetic dataset into dosing variables and patient
covariates. This was done to incorporate different algorithms and layers in separate stages
of the deep learning workflow to maximize pattern extraction and model development. The
dosing variables training set consisted of the Time Since First Dose (TSFD) and Dose. The
dose variables training set was added to an input layer and fed to an LSTM layer. A dropout
layer with a rate of 0.1 was added after the LSTM layer. The LSTM layer, followed by a
dropout layer with a rate of 0.1, was denoted as L. After L, a flatten layer was added to
complete the LSTM portion of the analysis. The covariate training set consisted of Age,
Count (number of concomitant medications), Inducers (number of inducer concomitant
medications), Inhibitors (number of inhibitor concomitant medications), African American
Race, White Race, Other Race, Sex, Smoking, Substrate (number of substrate concomitant
medications), and Weight. The covariate training set was added to an input layer. The
flatten layer (last layer of the LSTM portion) was concatenated with the input layer that
contained the covariate training data. This concatenated layer was fed to a dense layer.
A dropout layer with a rate of 0.1 was added after the dense layer. The dense layer, followed
by a dropout layer with a rate of 0.1, was denoted as A. After A, an output layer was added
to complete the LSTM-ANN model.

2.5. Bayesian Hyperparameter Optimization

Bayesian optimization was used to optimize the hyperparameters of the LSTM-ANN
model. Bayesian optimization utilizes past performance results to build a probabilistic
model connecting hyperparameters to a probability score on the objective function. This
probabilistic model is in the form of a surrogate model. Parameters of the Bayesian
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optimization algorithms can be found in Supplementary Table S1. The loss function set to
minimize was the training mean square error (MSE).

The hyperparameters and their respective search spaces were the same for all four
surrogate models and random search. Specifically, the hyperparameters to be tuned were
the number of L (LSTM layer followed by a dropout layer with a rate of 0.1), number of
LSTM nodes, number of A (dense layer followed by a dropout layer with a rate of 0.1),
number of ANN nodes, learning rate, and number of epochs. The hyperparameters that
were fixed for all four surrogate models and random search were the activation function
for LSTM nodes, activation function for ANN nodes, optimizer function, batch size, and
time steps. Table 2 presents the search space for each hyperparameters to be tuned and the
option/value for the fixed hyperparameters.

Table 2. Hyperparameters that will be fixed and tested in the LSTM-ANN model.

Hyperparameters of the LSTM-ANN Model

Hyperparameters to Be Tuned Range to Be Tested

Number of L (LSTM + Dropout) 1–3 layers
Number of LSTM nodes 8–256 nodes

Number of A (Dense + Dropout) 1–3 layers
Number of ANN nodes 8–256 nodes

Learning Rate 0.001–0.0001
Number of Epochs 40–120 epochs

Hyperparameters to stay constant Fixed Option/Value

Activation function for LSTM nodes ReLU
Activation function for ANN nodes ReLU

Optimizer function ADAM
Batch Size 1
Time Steps 2

Abbreviations: ANN—Artificial Neural Networks, LSTM—Long Short-Term Memory, ReLU—Rectified linear unit.

The evaluation metric for the optimized LSTM-ANN model was validation root mean
square error (RMSE). The generated model with the lowest validation RMSE from all the
models was chosen as the final model. Bayesian hyperparameter optimization algorithms
were implemented in Python version 3.9.7 with Python packages Optuna version 3.0.3 and
Scikit-optimize version 0.9.0.

2.6. Permutation Analysis

To understand the importance of each covariate toward the optimized LSTM-ANN
model, permutation importance (PIMP) was applied. Permutation importance is a model-
agnostic feature importance metric that examines the importance of a feature toward a
particular model [31]. To evaluate the importance of a particular covariate (C), its values are
randomly shuffled to create a permutated covariate vector (Cp) and then entered into the
optimized LSTM-ANN model. The difference between the permutated RMSE, RMSECp ,
and the baseline unpermuted RMSE was measured, as shown below:

PIMPI = RMSECp − RMSE (5)

where PIMPI was the permutation importance of a particular covariate. The RMSECp and
RMSE was the permutated RMSE and baseline unpermuted RMSE, respectively. This
process was repeated 10 times to calculate the average and standard deviation PIMPI score.
A higher PIMPI score indicated that the covariate C had a higher feature importance. This
PIMP analysis was conducted in Python version 3.9.7.

3. Results

The pooled analysis dataset included 1527 olanzapine drug concentrations obtained
from 523 patients. The CATIE-SZ study contributed 1327 olanzapine drug concentrations
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from 406 patients, while CATIE-AD study contributed 200 plasma olanzapine concen-
trations from 117 patients. The pooled analysis dataset had a higher percentage of male
patients (63%) and higher percentage of white patients (66%). The median age of patients
in the pooled analysis dataset was 45 years with an average weight of 84.43 kg. Patient
demographics and characteristics are summarized in Table 1.

3.1. Population Pharmacokinetics

The structural model that best described the data in the pooled analysis dataset was
a one-compartment model with linear absorption and elimination. The absorption rate
constant Ka could not be reliably estimated, and it was therefore fixed to 0.5 h−1 based on
a previously published population pharmacokinetic model [40]. Evaluation of statistical
error models showed that an additive error model provided a good data fit. The estimated
value of clearance was 15.90 L/h, and the estimated value of the volume of distribution
was 2182 L.

Several patient-specific covariates were tested in a stepwise forward fashion. The
results of the covariate analysis showed that several covariates had a significant effect on
the model pharmacokinetic parameters. The development of the final model is summarized
in Table 3. Three covariates (smoking, sex, and African American race) were added in
a univariate forward selection. The final NONMEM model had a RMSE of 31.129. The
observed concentrations vs. the individual predictions plot from the final model are shown
in Figure 4a.

Table 3. Changes in objective function with the addition of influential covariates.

Model Objective Function
Decrease in Objective Function

From Base Model From Previous Model

Base Model (Structural and Statistical Model) 10,419.333 N/A N/A

Base Model + Smoking Status 10,374.054 45.279 45.279

Base Model + Smoking Status + Sex 10,361.536 57.794 12.518

Base Model + Smoking Status + Sex +
Black/African American Race 10,352.008 67.325 9.528

Abbreviations: N/A—Not applicable.

Figure 4. Observations vs. Predictions plot. (a) NONMEM (note: predictions are individual predictions
(IPRED]); (b) LSTM-ANN (The different colors correspond to drug concentration predictions from the
different datasets. Blue represents the training data, and the green represents the validation data).
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3.2. Neural Networks: Bayesian Hyperparameter Optimization

Four surrogate models and random search hyperparameter optimization algorithms
were explored throughout training and validation of the LSTM-ANN model. Readings for
each of the models can be found in Supplementary Table S2. The final model structure was
optimized by Bayesian hyperparameter optimization with a TPE surrogate model with a
hyperband pruner. The final model structure and training parameters are shown in Table 4.
The best-performing model consisted of a single LSTM layer with eight nodes followed
by two dense layers. The first dense layer had 88 nodes, and the second dense layer had
184 nodes. The optimal learning rate was 0.000125 with an ADAM optimizer. Figure 4
shows the relationship between the observed concentrations and individual predictions
from NONMEM and the LSTM-ANN model. In both models, the observed concentrations
correlated well with the individual predictions. In addition, both models had many
concentrations near the identity line with a large density of concentrations within the range
of 0–100 ng/mL. A plot on the log scale showing the relationship between the observed
concentrations and individual predictions from NONMEM and the LSTM-ANN model can
be found in Supplementary Figure S1. The RMSE for the training set and validation set
was 18.533 and 29.556, respectively.

Table 4. Optimized hyperparameters for the final LSTM-ANN model structure.

Optimized Final Model Structure

Hyperparameters Option/Value

Time Steps 2
Number of L (LSTM + Dropout) 1 layer

Number of LSTM nodes 8 nodes
Activation function for LSTM nodes ReLU

Number of A (Dense + Dropout) 2 layers
Number of ANN nodes in Layer 1 88 nodes
Number of ANN nodes in Layer 2 184 nodes

Activation function for ANN nodes ReLU
Optimizer function ADAM

Learning rate 0.000125
Number of Epochs 69 epochs

Batch Size 1 batch
Abbreviations: ANN—Artificial Neural Networks, LSTM—Long Short-Term Memory, ReLU—Rectified linear unit.

3.3. Permutation Analysis

Permutation analysis was applied to the LSTM-ANN model of best performance based
on Bayesian hyperparameter optimization with the TPE surrogate model and a hyperband
pruner. Eleven covariates (age, sex, smoking, weight, African American race, white race,
other race, substrate, inducers, inhibitors, and count) were shuffled 10-fold, and the average
PIMPI was computed. A list was generated to rank the 11 covariates by the increase of
PIMPI in the validation set, shown in Table 5. Age was the highest ranked covariate with
an average PIMPI score of 4.733. Sex and smoking were the next highest-ranked covariates
with average PIMPI scores of 3.403 and 2.283, respectively. The least influential covariates
toward the optimized LSTM-ANN model were inhibitors and other race with average
PIMPI scores of 0.158 and 0.147, respectively.
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Table 5. Mean PIMP scores from the permutation analysis of the LSTM-ANN model.

Permutation Analysis toward Covariate Importance

Covariates Weight (Average ± SD)

Age 4.733 ± 0.461
Sex 3.403 ± 0.683

Smoking 2.283 ± 0.399
White Race 1.936 ± 0.484

Weight 1.427 ± 0.374
Substrate 1.338 ± 0.415

Black/African American Race 1.204 ± 0.474
Count 0.844 ± 0.436

Inducers 0.730 ± 0.285
Inhibitors 0.158 ± 0.316

Other Race 0.147 ± 0.177

4. Discussion

The current approaches for drug concentration prediction within a population phar-
macokinetic analysis are time-consuming and labor-intensive. In this work, we applied
deep learning approaches to generate an LSTM-ANN model with multiple inputs to predict
olanzapine drug concentrations from the CATIE study. Hyperparameter optimization of
the LSTM-ANN model was achieved through Bayesian optimization with a tree-structured
Parzen estimator (TPE) surrogate model and a hyperband pruner. The final optimized
LSTM-ANN model had an RMSE of 29.556 in the validation set. Permutation analysis
revealed age, sex, and smoking as influential patient covariates toward model performance.

Nonlinear mixed modeling was conducted in NONMEM to provide a benchmark model
for olanzapine drug concentration prediction from the CATIE study. A one-compartment
model with additive error was then selected as the structural and statistical models, re-
spectively. Smoking, sex, and African American race were three patient covariates that
were selected in a stepwise search and added to the base model to produce a final model.
A similar analysis evaluating the magnitude and variability of concentration exposure of
olanzapine from the CATIE study was previously published by Bigos et al. [41]. In that
analysis, the final model was a one-compartment model with additive error including
smoking, sex, and African American race as significant patient covariates. The RMSE of the
final model was 31.129.

The main feature of the deep learning architecture is the use of multiple inputs to
split the pooled pharmacokinetic dataset into dosing variables and patient covariates.
This provided the LSTM-ANN model a unique approach to fully maximize its ability to
learn and extract distinctive patterns. There was little to no change in patients’ covariates
throughout the trials. Due to this lack of variation, the LSTM algorithm would not need to
learn long-term dependencies within the patients’ covariate data. The separation between
dosing variables and patient covariates had a reduction of noise of the time-dependent
signal within the dosing variables as compared with a combined dataset. The extracted
time-dependent pattern by the LSTM was concatenated with the patient covariates and fed
into the ANN algorithm. Relationships within the concatenation of the time-dependent
pattern from the dosing variables and patient covariates were enhanced due to the reduction
of noise as opposed to an input of all variables simultaneously. This approach benefited
the ANN algorithm’s ability to learn and extract distinct relationships within the patient
covariates and the dosing variables.

Initially, dosing variables without the respected patient’s covariates were fed into
the LSTM-ANN model. An LSTM layer with a time step of two was used to learn and
extract the time-dependent patterns within dosing variables. Following the LSTM layer
was a dropout layer with a rate of 0.1. Dropout layers reduce neuron codependency
within a chosen layer by selecting neurons at random to ignore at a given rate. Lowering
neuron codependency has shown success in decreasing model overfitting [42–44]. After the
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dropout layer, a flatten layer was applied to the workflow. Within a LSTM structure, there
is a hidden state that reflexes the short-term memory within the cell. At a given output, an
LSTM only uses the very last hidden state for pattern extraction. This limits the amount
of information the LSTM cell could use for prediction. With the use of a flatten layer, the
LSTM transforms from a matrix to a vector, allowing the use of all previous hidden states
for pattern extraction. This ultimately leads to an increase in model performance due to
the increase of information [45]. The time-dependent patterns learned from the dosing
variables were concatenated with their respected patient covariates. This concatenated
layer was used as an input layer for a standard ANN layer. After the patterns formed
from the concatenation of dosing variable patterns and patient covariates were learned and
extracted from the ANN layer, a dropout layer with a rate of 0.1 was added to limit model
overfitting. Lastly, an output layer was required to generate prediction results.

Due to the complex nature of the deep learning architecture, Bayesian hyperparameter
optimization algorithms were incorporated within the protocol. Each of the four surrogate
models were able to achieve minimization of the training mean square error (MSE), shown
in Supplementary Table S2. Tree-structured Parzen estimators (TPE) with a hyperband
pruner reached minimization with the simplest model hyperparameter structure. Simpler
models tend to be preferred due to their computational efficiency, increased interpretability,
and prevention of overfitting [38,46]. The RMSE of the final optimized LSTM-ANN model
was 29.556 in the validation set, which is lower than the RMSE obtained from the NONMEM
model. The NONMEM model utilized the entire pooled pharmacokinetic dataset, while
the LSTM-ANN model only used the training data to generate a prediction model. Both
models were able to have similar success in prediction from the 0 to 50 ng/mL range;
however, the NONMEM model had better success in predicting concentrations in the
range of 50–150 ng/mL while the LSTM-ANN underperformed. Upon closer inspection
of the training data, there were only 251 olanzapine concentrations within the range of
50–150 ng/mL, which accounted for only 23.5% of the total training data. Due to the low
number of concentration samples, we believe the LSTM-ANN model struggled to learn the
patterns and relationships within this range for prediction in the validation set.

To evaluate the impact of the patient specific covariates included in the analysis dataset
on the LSTM-ANN model, a permutation analysis was conducted. To ensure reliable and
robust results, each patient covariate was shuffled 10-fold, and the average of the results
were computed. Age, sex, and smoking were three patient covariates that displayed a large
impact on model performance. Sex and smoking were two patient-specific covariates that
were found to be both statistically significant in the NONMEM covariate selection analysis
and impactful in the performance of the LSTN-ANN model. This is in accordance with
previous literature findings examining significant factors in olanzapine dosing [47–50].
However, to a lesser extent, the remaining patient covariates have shown to have an impact
on model performance. We believe the LSTM-ANN model was able to utilize other patient
covariates to learn different patterns and relationships to aid in model performance.

There are several advantages to our approach toward drug concentration prediction.
The LSTM-ANN model requires no a priori assumptions on the nature of the relationships
within the analysis data. The model is data driven without a specific model structure
defined beforehand and without bounds of statistical assumptions. The LSTM-ANN model
requires no patient covariate selection; instead, it explores and learns the relationships
within all the patient covariates. With the increase of information, it is highly probable
that the model’s performance will improve, leading to an overall result of more accurate
drug concentration predictions. Another advantage is the unique LSTM-ANN architecture.
With little time-specific variation within the patient covariates, we decided to separate the
covariates from the dosing variables. With the use of multiple inputs, we used LSTM to
learn time-specific patterns within the dosing variables. These patterns were extracted and
added to their respected patient specific covariates. To learn the new relationships between
the patterns extracted from the LSTM and their respected patient specific covariates, ANN
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layers were utilized. We believe the structure of this LSTM-ANN model aids in noise
reduction, allowing important patterns within the data to be highlighted.

Despite the promising results, a few unanswered questions remain. The LSTM-ANN
model’s ability to learn with varying sample sizes is an area that needs exploration. Typi-
cally, a larger sample size will aid in deep learning performance; however, smaller datasets
may benefit from the reduction of noise in the beginning steps of the LSTM-ANN design.
The model’s construction and validation were conducted in the same population. Further
studies are necessary to explore our LSTM-ANN model’s generalizability. Last, an area that
needs further studies for any deep learning based pharmacokinetic model is model inter-
pretability. Explainable AI is an area of machine learning currently working on approaches
to assist in translating deep learning results. Novel techniques from this field may aid in
interpreting the results from the LSTM-ANN model.

Extrapolation outside the training range is an obstacle for any data-driven model,
and our results are consistent with previous findings from other deep learning approaches
toward drug concentration prediction. Previously, Liu et al. explored the application
of LSTMs toward pharmacokinetic-pharmacodynamic modeling with varying dosing
regimens. It was shown that the developed LSTM model was able to reasonably predict the
pharmacodynamics profile under the QD regimen; however, it struggled to predict well
with BID or TID extrapolation [51]. In another study, Lu et al. investigated machine learning
and deep learning approaches toward drug concentration predictions in unseen dosing
schedules and compared them with traditional NLME modeling. It was demonstrated that
machine and deep learning approaches did not extrapolate well, and a new deep learning
approach, Neural-ODE, was introduced [8]. Our findings are consistent with the published
literature showing that the LSTM-ANN model did not perform as well in predicting drug
concentration that were not well represented in the training dataset. It is worth noting
that the CATIE study was designed to be a sparsely sampled study for pharmacokinetic
analysis. This, in turn, means that there are large gaps of time left for the LSTM-ANN to
fill. Further studies exploring how such deep learning models can be optimized to handle
sparsely sampled pharmacokinetics datasets are warranted.

5. Conclusions

In conclusion, an LSTM-ANN model was successfully developed to analyze olanzap-
ine pharmacokinetics and predict drug plasma concentrations. The model produced similar
results to that of a NONMEM model developed using the same dataset. A permutation
analysis for covariates impact evaluation applied on the LSTM-ANN model produced
similar results to that of stepwise covariate analysis in NONMEM. This work shows the
potential of, and adds to the growing evidence to the role of, deep learning approaches in
the field of pharmacometrics and model-informed drug development.
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