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Abstract: Over the last decades, comprehensive two-dimensional gas chromatography (GC×GC) has
emerged as a significant separation tool for high-resolution analysis of disease-associated metabolites
and pharmaceutically relevant molecules. This review highlights recent advances of GC×GC with
different detection modalities for drug discovery and analysis, which ideally improve the screening
and identification of disease biomarkers, as well as monitoring of therapeutic responses to treatment
in complex biological matrixes. Selected recent GC×GC applications that focus on such biomarkers
and metabolite profiling of the effects of drug administration are covered. In particular, the technical
overview of recent GC×GC implementation with hyphenation to the key mass spectrometry (MS)
technologies that provide the benefit of enhanced separation dimension analysis with MS domain
differentiation is discussed. We conclude by highlighting the challenges in GC×GC for drug discovery
and development with perspectives on future trends.

Keywords: GC×GC; metabolomics; drug discovery and development; mass spectrometry; biomarkers;
tuberculosis; cancer; COVID-19; psychiatric disorder

1. Introduction

Drug discovery and development have become challenging over the years due to
the continuous demand for appropriate strategies aimed at effectively treating diseases or
clinical conditions [1–4]. Despite the critical need for new and improved drugs, the current
process is arduous and expensive, not to mention the high risk of failure. It has been globally
accepted that bioanalysis, conceptually termed as the quantitative measurement of biomark-
ers, chemical entities, biologics, and/or their metabolites in biological matrixes, plays a
pivotal role in understanding the pharmacological and toxicological properties across all
phases in the drug development pipeline (i.e., initial research, drug discovery, preclinical
development, nonclinical investigation, clinical trial, and post-approval studies) [5,6]. In-
deed, numerous bioanalytical strategies (e.g., sample preparation, method development,
and validation) are constantly progressing toward achieving high-throughput analyses and
rigorous characterization, particularly when dealing with complex biological specimens
(e.g., blood, feces, hair, plasma, saliva, serum, tissues, and urine) intended for diagnosis,
prognosis, and treatment of diseases or clinical conditions [7–13].

The contribution of ‘-omics’ technologies is massive in bioanalytical research in
which genomics, transcriptomics, proteomics, and metabolomics have long been rec-
ognized as cost- and time-efficient approaches in implementing the search for critical
biomarkers [14,15]. Among these, metabolomics-based strategies, which involves high-
throughput identification and quantitative analysis of small molecules (<1500 Da) in the
metabolome [16], are gaining wider attention over the last decade owing to the ability
to facilitate a better understanding of complex phenotypes in diverse biological systems.
While gene and protein expressions predict cell functioning, metabolites are much closer to
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phenotypes and hence possess the ability to closely reflect the actual cellular activities or
environments [17,18]. Metabolomics allows deeper insights into the alteration of crucial
metabolites by internal and/or external stimuli (e.g., drug administration, environment,
and disease progression) in contrast to the other ‘-omics’. To date, over 200,000 metabolites
have been tabulated in the Human Metabolome Database (HMDB) v.5 [19], highlighting
the notable complexity of metabolic profiles in diverse biological systems. The presence of
drugs (and their metabolites) at low concentration levels as well as the inherent complexity
of biological samples further complicate the analysis [20,21]. Nevertheless, technologi-
cal advances in various chromatographic techniques (e.g., liquid chromatography (LC),
supercritical fluid chromatography (SFC), and gas chromatography (GC)), along with im-
proved detection capabilities, have rendered the discovery and analysis of pharmaceutical
compounds possible, at trace levels that were unattainable several years ago [22–24].

GC is well established as an effective tool of choice for the separation of low molecular
weight (semi)volatile chemical entities, where the column stationary phase and dimensions
serve as the main aspects governing chromatographic efficiency and resolution [25,26].
Since the invention of the capillary column by Golay, numerous developments (e.g., column
type/phase and coating techniques) have taken place over the years owing to the break-
through in the separation power and inertness (as compared to packed column), which sub-
sequently led to countless applications of GC in many fields such as petrochemicals [27–29],
foods [30–34], plants [35–38], pharmaceuticals [39–44] and others [45–48]. Despite the
versatility and high separation power of the technique, classical one-dimensional (1D)
GC poses the limitation of not sufficiently disentangling critically co-eluted components
due to its limited peak capacity and overwhelming number of distinct components with
high chemo-diversity in real-life biological samples. While the use of deconvolution pro-
cedures in GC coupled with mass spectrometry (MS) may be useful for the identification
of overlapping components, the outcome is very much subject to the uniqueness of the
components’ individual spectra [49]. Consequently, the demand for greater peak capacity
to resolve these intricate mixtures of molecules gave impetus to further developments. The
advent of multidimensional GC presents an opportunity to address the issues of sample
dimensionality by expanding the separation space, along with increasing resolving power.
This review will briefly provide an overview of the multidimensional GC (MDGC) tech-
niques with a particular focus on the current advances in state-of-the-art comprehensive
two-dimensional GC (GC×GC). Recent applications of GC×GC in bioanalytical studies
covering disease-related biomarkers and host response to drug treatment published within
the period of 2013−2022 will be reviewed. Moreover, challenges and future perspectives of
GC×GC in pharmacometabolomics will be discussed.

2. Multidimensional Gas Chromatography

MDGC is a high-performance separation technique that ideally employs the combina-
tion of two (or more) ‘orthogonal’ columns—implying they should have distinctly different
selectivity toward analytes—which are connected in a sequential fashion via interfacing
devices [50,51]. MDGC can be implemented using two main experimental arrangements,
namely (i) the classical heart-cutting (H/C) MDGC; and (ii) GC×GC. The first applica-
tion of H/C MDGC was demonstrated by Simmons and Synder in 1958, where selected
portion(s) of eluents (or heart-cut(s)) were transferred using a switching valve from the
first-dimension (1D) column into second-dimension (2D) column of disparate selectivity for
additional separation [52]. In 1968, Deans then pioneered the microfluidic flow-switching
mechanism that we know today as the Deans’ switch, which has brought a lasting and
substantial impact on the practice of MDGC [53]. It was commemorated in a paper by
Sharif et al. after a half-century of progress, innovations, and applications [54]. Several
other innovations have also been developed (e.g., cryogenic trapping and double ovens) to
further enhance the quality of separation in MDGC [55,56]. As discussed by Giddings [57],
the concept of multidimensionality involves the requirement of two conditions: (i) the
analytes present in a sample should be subjected to two or more independent separation
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mechanisms (i.e., columns’ selectivity); and (ii) the resolution of analytes achieved in the
1D separation is preserved until the whole separation process is complete. Although the
separation space is now expanded, H/C MDGC, as described here, cannot be regarded as
a truly ‘comprehensive’ separation system due to the incapability of providing maximum
resolution to the entire sample components. In cases where many peaks of interest demand
critical separation across the whole sample, multiple heart-cut samplings are required to
acquire a full-spectrum analysis of a sample, which may cause a dramatic shift/increase
in the total analysis time [58]. Notwithstanding its limited application, H/C MDGC is still
considered a prime choice for target analysis. Further details on H/C MDGC have been
discussed previously in several reviews [49,59–63] and will not be reiterated here. This brief
summary of H/C MDGC serves only as a prelude to the current knowledge of GC×GC.

3. Comprehensive Two-Dimensional Gas Chromatography

In retrospect, GC technology has undergone one of the most outstanding break-
throughs, with the introduction of GC×GC using resistively-heated modulation by Liu and
Phillips in 1991, which fully demonstrated the concept of comprehensiveness in multidi-
mensional separation [64]. Since then, the research interest in GC×GC bloomed with many
fundamental studies and extensive reviews reported on its early developments and various
applications [61–63,65–72]. Today, it has been widely recognized that GC×GC significantly
outperforms 1D GC on peak capacity, providing peak capacities of >20,000 [73], which
can essentially translate to superior separation performance for the analysis of complex
chemical entities.

3.1. Technical Implementations

From a technical perspective, GC×GC can be considered an extension of MDGC
approaches, where multiple heart cuts are continuously sampled from a conventional
1D column at a defined modulation period (PM), into a short 2D column for additional
separation, throughout the entire analysis. An interfacing device, commonly known as
a modulator, is specially configured to periodically sample, re-focus and re-inject contiguous
‘slices’ of 1D fractions rapidly into the 2D column. Ideally, the separation in 2D should be
completed before the injection of the next 1D fractions, thus avoiding the recombination
of 1D component separation in 2D. The present-day modulation systems can be broadly
categorized into two types, namely thermal and valve-based (including flow). A thermal
modulator employs temperature control, either using a refrigerant unit or a cryogen to trap
analytes and introduce them into the 2D via rapid heating. A valve-based modulator utilizes
gas flow for the control and isolation of portions of the 1D eluate before redirecting them
for 2D separation, in which case a longer 2D is used [74]. Among these, thermal modulation
systems appear to be more prevalent due to a greater degree of sensitivity enhancement
and better modulation performance [74]. A major disadvantage of thermal modulation
is the high consumption of cryogen (e.g., liquid nitrogen and liquid carbon dioxide) to
trap and focus volatile components, as well as the bulkiness of the instrumentation [75].
Recent innovations in GC×GC modulator technology are moving toward simpler and more
economical devices. Currently, a few notable studies have demonstrated the practicability
of cryogen-free thermal modulators that provides relatively good portability and low
operational cost compared to cryogenic modulators [76–84]. For instance, the solid-state
modulator (SSM) employs mica-thermic heating and thermoelectric cooling (also known as
Peltier cooling) on a mechanically moving modulation column that continuously oscillates
back and forth between the hot and cold zones, achieving modulation without the need
for cryogens [77]. Duty cycle, injection pulse width, PM, and resulting peak capacity
in 2D separation are among the important parameters in gauging the performance of
modulation [74]. The development, advantages, and shortcomings of various modulation
systems have been comprehensively reviewed and can be found elsewhere [74,85–87].

In order to ensure reliable reconstruction of the 1D separation, analysts need to define
a sufficient number of modulations across the 1D peak, which can be defined using the
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term modulation ratio (MR; peak 1wb divided by PM) [88]. Khummueng et al. imply that
an MR of 3.0 is sufficient for quantitative measurement, while an MR ~1.5 is sufficient for
qualitative analysis [88]. For practitioners, the PM settings need to be properly selected to
avoid the phenomenon of over- or under-sampling that would potentially compromise
the integrity of the 2D separation. A relatively short PM (i.e., large MR values) might
reduce the solute’s detectability and increase the tendency of wraparound, while a longer
PM generates fewer modulation events that degrade the 1D separation in addition to
potentially overloading the 2D column [89]. A typical GC×GC arrangement requires
two columns to be interfaced through the modulator, with the outlet of the 2D column
connected to a detection system. In this instance, analysts should carefully decide the
stationary-phase combinations that act as the basis to enhance chemical selectivity. It is
worth noting that the stationary-phase chemistry governs the strength and types of mass
transfer interactions (e.g., dispersive interactions, dipole-dipole, dipole-induced dipole
interaction, etc.) with the solutes, and the Abraham solvation parameter model has been
extensively used to characterize such interactions [90–92]. Ionic liquid (IL) phases represent
new classes of novel GC stationary phases that offer additional selectivity for the separation
of polar and nonpolar molecules [93], which currently remain underexplored for GC×GC-
based metabolomic studies. The high polarities of IL phases are expected to benefit the
analysis of a wide range of polar metabolites and will be useful in adjusting the phase
selectivity differences for 1D and 2D. For practitioners, the degree of orthogonality can
be used as a guideline for the selection of column sets to maximize the utilization of the
2D separation space, which ideally translates to better-resolving power. A few metrics
have been reported as potential measures of orthogonality of GC×GC separations [94–99].
Apart from deducing the appropriate stationary-phase chemistries for 1D and 2D, the
elution of all pulsed peaks in 2D should be completed within the selected PM to avoid
wraparound, and such requirements necessitate the use of fast-elution short narrow-bore
columns as the 2D when cryogenic modulators are used. Several comprehensive reviews
have summarized the GC×GC column selection and optimization strategies and will not
be reiterated here [50,100–102].

The very narrow chromatographic bandwidths generated by 2D apply constraints
upon the types of detectors, necessitating fast data acquisition speed. For modulated peaks
with 2wb of 100 ms, a detector sampling rate of ≥100 Hz is required for the reliable construc-
tion of a Gaussian peak, which is best afforded by the universal flame ionization detector
(FID). Kueh et al. demonstrated the first application of GC×GC–FID for the screening of
illicit drugs and their metabolites in biological fluids [103]. While providing a sufficiently
fast acquisition rate (up to 500 Hz), a FID is unable to provide descriptive information,
which reduces its applicability for bioanalysis, especially for untargeted metabolic profiling
of biological samples. The coupling of GC×GC to MS remains the preferred option for
bioanalysts due to its informing power, facilitating molecular structure identification and
confirmation. The use of GC×GC with quadrupole MS (QMS) with a reduced mass scan-
ning range designed to maximize scan frequency (42–235 Da; approximately 20 Hz) for the
profiling of underivatized drugs was first demonstrated by Song et al. [104]; the relatively
low sampling rate of QMS in full scan mode renders it less ideal for untargeted screening
purposes. Recently, a few studies have demonstrated the applicability of GC×GC with
triple quadrupole MS (MS/MS) for targeted analysis, illustrating a notable improvement
in detection sensitivity and selectivity [105–107]. However, GC×GC–MS/MS operated in
MRM modes have not yet been evaluated for quantitative bioanalytical studies. On the
other hand, time-of-flight MS (TOFMS), capable of attaining high acquisition speeds (up to
200 Hz for high-resolution TOFMS and 500 Hz for low-resolution TOFMS) without spec-
trum distortion, has been widely used as the MS of choice for GC×GC analysis [108,109].
The hyphenation of GC×GC to various MS for a wide range of metabolomics studies
has been recently reviewed [67,110,111]. Numerous studies have succinctly demonstrated
the applicability of GC–high-resolution mass spectrometry (GC–HRMS) for the screen-
ing of drugs and their metabolites in biological matrixes [112–117]; however, the use of
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GC×GC–HRMS for bioanalytical studies remained underexplored. HRMS such as accurate
mass TOFMS (accTOFMS), Fourier Transform Ion Cyclotron Resonance MS (FTICRMS),
and Orbitrap technologies are capable of providing high accuracy m/z measurements (typi-
cally within 0.001 amu) with mass accuracy of less than 5 ppm [118,119]. This feature can
greatly advantage elemental formula prediction for unknowns and improve the accuracy
of library matching for metabolite annotation and identification. However, the low data
acquisition rate of Orbitrap and FTICRMS limits their applicability due to the associated
difficulties in collecting sufficient data points for an accurate reconstruction of narrow
modulated peaks. With continual improvement in data acquisition speed, the hyphenation
of GC×GC to HRMS is expected to flourish as a “super-resolution” analytical tool that can
generate a wealth of informative data in a single analysis for complex biological samples.
It is anticipated that the scope of GC×GC–HRMS applications will soon be expanded
to drug metabolism research, harnessing its unrivaled chromatographic separation and
MS-informing power.

3.2. Data Acquisition and Analysis

Continuing advancement in MS detection methods has enabled the handling of high
detector acquisition frequencies (50 to 200 Hz) to accommodate the narrow peaks gen-
erated by 2D in GC×GC [120]. Such a high sampling rate results in the generation of
high-dimensional data sets and data files up to several hundred gigabytes for HRTOFMS,
complicating manual data manipulation. Clearly, there remains a need for robust and
reproducible data analysis strategies, possibly with a reduced intervention of the analyst,
to take advantage of the massive data. Chemometrics has therefore been applied to the
interpretation and optimization of analytical methods by applying mathematical and com-
putational methods to extract relevant information from chemical or process data [121].
Since the compounds of interest are known a priori in targeted analysis, deconvolution or
decomposition approaches would suffice to mathematically separate, identify, and quantify
overlapping analytes [122,123]. In cases where the coelution of target analytes is critical,
more sophisticated data handling may be desirable. Untargeted analysis, on the other hand,
contains unknown analyte composition or compounds of interest, and thus the analysis
is much more complex. While any classical GC software can be used for data acquisi-
tion, specific software (commercial or open-source) such as ChromaTOF, Canvas-2DGC,
OpenChrom, and Guineu is required for the reconstruction of signal and generation of
two-dimensional plots or data [120]. These signals are then pre-processed to correct various
artifacts (e.g., missing values (or data), noise, baseline shifts, multiplicative effects, and
peak shifts) and assist in the accurate prediction of chemically-relevant features [124]. It
should be noted that this step carries the risk of eliminating only certain types of arti-
facts as well as potentially useful information. Defined as the lack of one or more entries
in the matrix containing the experimental data, missing values are often mishandled in
data preprocessing and may give rise to severely biased results within pharmaceutical
research as well as diminished statistical power [125–127]. Davis et al. have recently re-
viewed several imputation strategies to address various types of missing values in GC×GC
data [127]. The incorporation of artificial intelligence (AI) in analytical chemistry has al-
lowed ground-breaking advances, especially in the pharmaceutical industry, where it is
anticipated to assist in producing quicker, cheaper, and more effective drug discovery and
development technologies [128,129]. Automated data processing approaches, including
machine learning, feature selection, discriminant analysis, and regression analysis, have
been continually evolving to address problematic variations across multiple GC×GC chro-
matograms. More recently, the integrated implementation of data alignment approaches
(pixel-based, peak table-based, and tile-based) with chemometrics in software packages
have been described in detail, enabling simpler extraction of information with minimal user
impact (Figure 1) [123,130]. Given that data analysis typically entails a number of integrated
approaches, there is not yet any evaluation tool or data processing workflow available that
can be deemed as the most ideal for gleaning the required information. Further details
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and drawbacks on data acquisition, pre-processing, and analysis of GC×GC have been
comprehensively reviewed elsewhere [120,123,130–133].
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Chemical Society, Washington, DC, United States; and (b) chemometrics techniques, adapted with per-
mission from Ref. [131]. Copyright © 2023 by the authors; Elsevier B.V., Amsterdam, The Netherlands.

4. Applications of GC×GC in Drug Discovery and Analysis

The discovery and development of new drugs and treatment strategies generally
commence with the establishment of targets and/or the understanding of the underlying
disease mechanisms responsible for the etiology and pathological progression in biological
systems [4,134]. The whole process, starting from early academic exploration to regulatory
approval and use, is lengthy and expensive as it takes around 10–15 years or longer, with
an average cost of over $1–2 billion [4,135]. Despite the emergence of many advanced
technologies by which clinical drug discovery and development pipelines find their way
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into many scientific disciplines (e.g., artificial intelligence, biomedical, pharmaceutical, etc.),
its high attrition rate during the process remains a key issue. Metabolomics is now leading
to a paradigm shift in the discovery, development, delivery, and dosage of drugs, with the
advantage of being a cheap, rapid, and sensitive option [136,137]. Figure 2 illustrates how
metabolomics-based approaches may be performed in the discovery and development of
new therapeutics. By gaining new metabolic insights into pathogenesis, especially using
GC×GC, drug targets, and leads could then be identified and assessed to shed further
light on individualized therapeutic intervention. Although its application is quite recent
in this field, GC×GC has demonstrated significant potential in improving the quality of
drug research and development. Selected clinical and pharmacological studies involving
disease-related biomarkers and host response to drug treatment in the last 10 years will be
discussed in this section, with additional details summarized in Table 1.
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Table 1. Summary of GC×GC strategies in the field of drug discovery and analysis.

Disease Target/Study Matrix Sample Preparation and Derivatization Stationary-Phase Combination Modulator Detector Ref.

Tuberculosis Isoniazid resistance in
Mycobacterium
tuberculosis

M. tuberculosis
strain

Liquid extraction with
CHCl3/MeOH/water (1:3:1) followed by
derivatization with MXHCl in pyridine and
BSTFA with 1% TMCS.

1D: Rxi-5Sil MS (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17 MS (1.0 m × 0.10 mm ID
× 0.10 µm df)

Dual-stage
cryogenic
modulator a

TOFMS [138]

Metabolomic profiling
of Tb and
non-Tb patients

Urine Liquid extraction with ethyl acetate,
followed by diethyl ether. Sample was
derivatized with BSTFA, TMCS,
and pyridine.

1D: Rxi-5Sil MS (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17Sil MS (0.9 m × 0.10 mm ID
× 0.10 µm df)

Cryogenic
modulator a

TOFMS [139]

Characterization of
successful and failed Tb
treatment outcomes

Urine Liquid extraction with ethyl acetate,
followed by diethyl ether. Sample was
derivatized with BSTFA, TMCS,
and pyridine.

1D: Rxi-5Sil MS (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17 MS (0.9 m × 0.10 mm ID
× 0.10 µm df)

Cryogenic
modulator a

TOFMS [140]

Prediction of Tb
treatment failure at the
time of diagnosis

Urine Liquid extraction with ethyl acetate,
followed by diethyl ether. Sample was
derivatized with BSTFA, TMCS,
and pyridine.

1D: Rxi-5Sil MS (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17 MS (0.9 m × 0.10 mm ID
× 0.10 µm df)

Cryogenic
modulator a

TOFMS [141]

Antimicrobial
mechanisms of colistin
sulfate on
M. tuberculosis

M. tuberculosis
strain

Liquid extraction with
CHCl3/MeOH/water (1:3:1) followed by
sample derivatization with MSTFA and
1% TMCS.

1D: Rxi-5Sil MS (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17 MS (1.2 m × 0.25 mm ID
× 0.25 µm df)

NA b TOFMS [142]

Metabolic profiling
of M. tuberculosis in the
presence and absence
of ciprofloxacin

M. tuberculosis
strain

Liquid extraction with
CHCl3/MeOH/water (1:3:1) followed by
derivatization with MXHCl in pyridine and
BSTFA with 1% TMCS.

1D: Rxi-5Sil MS (28.8 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17 MS (1.2 m × 0.25 mm ID
× 0.25 µm df)

NA b TOFMS [143]

Antimycobacterial
mechanism of
decoquinate
derivative RMB041

M. tuberculosis
strain

Liquid extraction with
CHCl3/MeOH/water (1:3:1) followed by
derivatization with MXHCl in pyridine and
BSTFA with 1% TMCS.

1D: Rxi-5Sil MS (28.8 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17 MS (1.2 m × 0.25 mm ID
× 0.25 µm df)

NA b TOFMS [144]
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Table 1. Cont.

Disease Target/Study Matrix Sample Preparation and Derivatization Stationary-Phase Combination Modulator Detector Ref.

Cancer Effect of docetaxel
treatment on ovarian
cancer cells and
stem cells

OVCAR-3
ovarian cancer
cell and isogenic
ovarian cancer
stem cell

Extracts were dried using vacuum
concentrator and derivatization with
OMXHCl in pyridine, MSTFA, and
1% TMCS.

1D: HP-5 (30 m × 0.32 mm ID
× 0.25 µm df)
2D: Rtx-200 (2 m × 0.25 mm ID
× 0.25 µm df)

NA b TOFMS [145]

Metabolic differences
between ovarian cancer
cells and their stem cells

OVCAR-3
ovarian cancer
cell and isogenic
ovarian cancer
stem cell

Extracts were dried using vacuum
concentrator and derivatized with
OMXHCl in pyridine, MSTFA, and
1% TMCS.

1D: HP-5 (30 m × 0.32 mm ID
× 0.25 µm df)
2D: Rtx-200 (2 m × 0.25 mm ID
× 0.25 µm df)

NA b TOFMS [146]

Antiproliferative role of
menaquinone (vitamin
K2) on the leukemic
Jurkat cell line

Jurkat and
lymphoblast
cells

Extracts were dried using vacuum
concentrator and derivatized with
OMXHCl in pyridine, MSTFA, and
1% TMCS.

1D: HP-5 (30 m × 0.320 mm ID
× 0.25 µm df)
2D: Rtx-200 (2 m × 0.25 mm ID
× 0.25 µm df)

NA b TOFMS [147]

Aromatic amines in
smokers’ urine

Urine volatiles Liquid extraction with diethyl ether
followed by back extraction with
concentrated hydrochloric acid (37 %).
Samples were derivatized through
diazotization and iodination. Derivatized
analytes were extracted by HS-SPME
method with PDMS/DVB fiber.

1D: DB-5 (30 m × 0.25 mm ID
× 0.25 µm df)
2D: BPX50 (2.7 m × 0.15 mm ID
× 0.15 µm df)

Cryogenic
modulator a

TOFMS [148]

Coronavirus
disease

Large-scale
metabolomic profiling

Plasma Liquid extraction with ACN/IPA/water
(3:3:2) solution. Sample was derivatized
with MOX and BSTFA.

1D: Rxi-5Sil MS (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17Sil MS (2 m× 0.25 mm ID
× 0.25 µm df)

LECO QuadJet
thermal
modulator

TOFMS [149]

Targeted metabolite
changes in children
with SARS-CoV-2
infection

Breath samples Collection of breath samples into
SamplePro FlexFilm sample bag, then
transferred into thermal desorption
sorbent tubes.

1D: Stabilwax (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rtx-200 MS (5 m × 0.25 mm ID
× 0.10 µm df)

Flow
modulator a

TOFMS [150]
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Table 1. Cont.

Disease Target/Study Matrix Sample Preparation and Derivatization Stationary-Phase Combination Modulator Detector Ref.

Untargeted
metabolomic profiling
of COVID-19 and
non-COVID-19
patients

Exhaled breath
condensate

Liquid extraction with ACN/IPA/water
(3:3:2) solution. Sample was derivatized
with MOX and BSTFA.

1D: Rxi-5Sil MS (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17Sil MS (2 m× 0.25 mm ID
× 0.25 µm df)

LECO QuadJet
thermal
modulator

TOFMS [151]

Untargeted
metabolomics profiling
to predict protection
against infection

Serum Liquid extraction with ACN/IPA/water
(3:3:2) solution. Sample was derivatized
with MOX and BSTFA.

1D: Rxi-5Sil MS (30 m × 0.25 mm ID
× 0.25 µm df)
2D: Rxi-17Sil MS (2 m × 0.25 mm ID
× 0.25 µm df)

LECO QuadJet
thermal
modulator

TOFMS [152]

Psychiatric
disorder

Post-mortem molecular
profiling of three
psychiatric disorders

Brain tissue Frozen brain tissue was homogenized in
50% MeOH and dried using vacuum
concentrator. Derivatization was carried
out with OMX in pyridine and MSTFA.

1D: Rtx-5MS (20 m × 0.25 mm
× 0.5 µm df)
2D: Rtx-200MS (2.5 m × 0.18 mm
× 0.2 µm df)

Cryogenic
modulator a

TOFMS [153]

Olanzapine side effects
on hepatic metabolism

Mice liver and
plasma

Liquid extraction with ice-cold MeOH
followed by drying with centrifugal
evaporator and dissolved in ACN. Sample
derivatization was carried out with
MTBSTFA and 1% TBDMSCI.

1D: DB-5MS (60 m× 0.25 mm ID
× 0.25 µm df)
2D: DB-17MS (1 m × 0.25 mm ID
× 0.25 µm df)

LECO QuadJet
thermal
modulator

TOFMS [154]

Dysregulation of
cortisol secretion

Urine volatiles Urine volatiles were extracted by HS-SPME
method with
DVB/CAR/PDMS-coated fiber.

1D: Rxi-624 Sil MS (60 m × 0.25 mm
× 1.4 µm df)
2D: Stabilwax (1 m × 0.25 mm
× 0.5 µm df)

QuadJet
cryogenic
modulator a

TOFMS [155]

a Detailed information not available. b No information available. Abbreviations: ACN: acetonitrile; BSTFA: N,O-bis(trimethylsilyl) trifluoroacetamide; CAR: Carboxen; CHCl3: chloroform;
COVID-19: Coronavirus disease; DVB: divinylbenzene; HS–SPME: head-space solid-phase microextraction; IPA: isopropyl alcohol; MeOH: methanol; MOX: methoxyamine; MSTFA: N-
methyl-N-trimethylsilyl) trifluoroacetamide; MTBSTFA: N-(tertbutyldimethylsilyl)-N-methyltrifluoroacetamide; MXHCl: methoxamine hydrochloride; OMX: O-methoxylamine;
OMXHCl: O-methylhydroxylamine hydrochloride; PDMS: polydimethylsiloxane; Tb: Tuberculosis; TBDMSCI: tert-butyldimethylchlorosilane; TMCS: trimethylsilyl chloride;
TOFMS: time-of-flight mass spectrometry.
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4.1. Tuberculosis

Tuberculosis (Tb) is one of the leading causes of death due to the infection of a bac-
terial pathogen, Mycobacterium tuberculosis, with common symptoms such as bad cough
with mucus, pleurisy, hemoptysis, dyspnea, wheezing, weakness/fatigue, weight loss,
loss of appetite, chills/fever, and night sweats [156]. According to World Health Orga-
nization (WHO), approximately 10.6 million people suffered from Tb, with 1.6 million
deaths reported in 2021 [157]. The first-line Tb therapy under the Directly Observed Treat-
ment Short-Course (DOTS) as a Tb control strategy, recommended by WHO, includes
a six-month regimen with isoniazid, rifampicin, pyrazinamide, and ethambutol. Previous
efforts have been made by researchers, particularly Loots’ group, in which the bacterial
strain [138,142–144], as well as urine samples of Tb patients [139–141], were subjected
to GC×GC to further understand the disease mechanism and elucidate the roots of Tb
treatment failure.

Poor adherence of Tb patients to the prescribed drug treatment causes an alarming
prevalence of multidrug resistance, where such resistance arises from extended treatment
duration as well as the generation of adverse side effects [143]. Multidrug-resistant Tb is
declared a health security issue as only one in three drug-resistant Tb patients accessed
treatment in 2020 [157]. The earliest work of GC×GC on Tb was reported by Loots in 2014,
where the metabolomic profiling of two different isoniazid-resistant cultured strains of
M. tuberculosis (H15 and H71) and wild-type TB72 parent (control) strain was performed
using GC×GC–TOFMS [138]. Monoresistance to isoniazid was stated as the most common
form of drug resistance in Tb patients. The use of principal component analysis (PCA) led to
the identification of 23 biomarkers capable of discriminating between the three strains. The
majority of the compounds (alkanes, alcohols, fatty acids, and compounds related to a direct
adaption to oxidative stress) were observed to be at the comparatively elevated level in both
isoniazid-resistant strains as opposed to the wild-type parent strain. As a result, the current
study was able to provide a more holistic elucidation of the compensatory mechanisms
linked to katG mutation and the resulting isoniazid resistance in M. tuberculosis through
metabolic pathways and metabolites involved, complementing the mechanisms proposed
by various genomic and proteomic studies, which were not completely understood. This
study pioneered research on the exploration of the metabolomics of drug-resistant strains
that led to Tb treatment failure. Subsequently, Luier and Loots applied GC×GC–TOFMS
to evaluate the metabolomic profiles of urine samples from Tb-positive and -negative
groups [139]. Out of 507 compounds detected, 12 urinary Tb metabolite markers were
discovered to distinguish these two subjects. The presence of unique biomarkers was
induced by the adaptation of the host metabolome and/or host-pathogen interactions.
Such alteration led to abnormalities in the host’s metabolism of fatty acids and amino acids
(i.e., tryptophan, phenylalanine, and tyrosine), resulting in a metabolite profile similar to
that of phenylketonuria patients. This study sheds light on the mechanism of the abnormal
symptoms related to Tb and offers potential avenues for the development of more effective
treatment methods.

The capacity of metabolomics via utilization of GC×GC–TOFMS to predict prognosis
from monitoring Tb progression in the early phase of the DOTS treatment regimen was also
demonstrated by Loots’s group [140,141]. In 2017, the differentiation of urine metabolites
was observed in successful (n = 26) and unsuccessful (n = 15) treatment groups from PCA
scores plots, using urine samples collected at the time of diagnosis and after treatment at
week 26 [140]. Following the aim of the study to identify biomarkers for the early prediction
of treatment response, only the former PCA result was further evaluated, which resulted in
50 characteristic metabolite markers that best discriminate between both treatment outcome
groups. The Tb-treatment-failure group was characterized by the upregulation of metabo-
lites associated with an imbalance in the gut microbiome. This study also corroborates the
previous finding [139] as the altered amino acid metabolism was observed and confirms
its associations to the increased interferon-gamma due to the host’s immune response to
M. tuberculosis and a compromised insulin secretion mechanism. In the same year, the group
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performed a statistical analysis approach based on logistic regression in which 18 univariate
urine metabolite markers (absolute fold change > |2|; Mann–Whitney p-value ≤ 0.05; and
an effect size > 0.3) of Tb patients were considered as possible candidates to predict the
treatment outcome at the time of diagnosis, prior to the first-line Tb treatment [141]. Based
on the forward logistic regression model, two metabolites (3,5-dihydroxybenzoic acid and
3-(4-hydroxy-3-methoxyphenyl)propionic acid) were identified as the markers of treat-
ment failure with acceptable fit by a nonsignificant Hosmer–Lemeshow statistic (p = 0.444).
From the mechanistic biological perspective, both metabolite markers are associated with
a microbial-derived microbial imbalance, causing an alteration of the microbiome in Tb
patients, which then leads to the reduced efficacy of the anti-Tb drugs. However, a larger
sample cohort is required to further validate and develop the predictive treatment model
for Tb, as the possible mechanism contributing to the treatment failure remains unknown.
These studies [140,141] highlight the significant advantage of the application of GC×GC in
metabolomics, the function of which is to provide molecular insights into early diagnosis,
new drug development clinical trials, and individualized patient treatment.

The high prevalence of multidrug resistance in Tb patients emphasizes the need for the
research and development of new anti-Tb drug lines and an alternative treatment strategy.
Nonetheless, approval of a new drug will have to undergo a lengthy drug trial phase; thus,
repurposing an existing approved drug will be feasible. Following the previous findings,
Loots’ group has extended their research by examining the pharmacometabolomics of
selected drugs for the treatment of Tb. Colistin sulfate, a polymyxin antibiotic, was re-
ported to display significant antimicrobial activities against several mycobacteria (M. avium,
M. aurum, M. xenopi, and M. smegmatis), suggesting similar activities against M. tuberculosis.
Thus, the antimicrobial mechanisms of colistin sulfate on M. tuberculosis were assessed
using GC×GC–TOFMS to identify the metabolite markers of M. tuberculosis upon treatment
with colistin sulfate [142]. The multi-statistical approach revealed 21 key markers that
effectively distinguished between individually cultured M. tuberculosis in the presence
and absence of colistin sulfate, of which 15 markers account for the elevated fatty acid
biosynthesis and cell wall synthesis. These metabolite markers indicated the upregulation
of fatty acid synthesis pathways for cell wall repairing, thus verifying the antimicrobial
mechanism of colistin sulfate inducing structural disruption of M. tuberculosis cell wall.

Recently, ciprofloxacin, a fluoroquinolone antibiotic originally used to treat urinary
tract infections, was considered a candidate for anti-Tb therapy. Although ciprofloxacin is
less potent compared to other fluoroquinolones (e.g., moxifloxacin and levofloxacin), the
antibiotic demonstrated the highest drug clearance rate and minimal adverse drug reactions
(≤5%) [158,159]. Thus, the metabolite profile of ciprofloxacin-treated M. tuberculosis and the
controls were analyzed with GC×GC–TOFMS to further elucidate the mechanism of action
against M. tuberculosis [143]. A total of 26 key markers were identified to best describe
the variation between ciprofloxacin-treated and control subjects, with 61.5% (16 out of
26 markers) elevated, which are predominantly fatty acids. Ciprofloxacin treatment on
M. tuberculosis observed prominent alterations in several pathways associated with the
cell wall and DNA repair mechanisms. This study provides a better understanding of
ciprofloxacin’s mode of action and demonstrates the M. tuberculosis-induced shift to the
non-replicative phase, which is a key mechanism in determining its persistence and toler-
ance to various anti-Tb drugs. Within the same year, Knoll et al. applied a GC×GC–TOFMS
approach to evaluate the metabolic alterations of M. tuberculosis treated with decoquinate
derivative RMB041 in comparison to non-treated M. tuberculosis controls [144]. Decoquinate
is an anticoccidial quinolone, generally used as a broad-spectrum antibiotic that has recently
exhibited promising antimicrobial activity against M. tuberculosis (MIC90 = 1.61 µM), with
low cytotoxicity and excellent pharmacokinetic characteristics [160]. Based on compliance
with the following criteria: (PLS-DA variable importance in projection (VIP) value > 1;
p-value < 0.05; effect size > 0.8), 36 metabolites were selected as markers discriminating
between the decoquinate-treated M. tuberculosis and controls. Alterations in the metabolite
profiles were observed concerning the drastic increase of fatty acids and glycerolipid precur-
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sors, amino acids, and urea cycle intermediates levels in decoquinate-treated M. tuberculosis
culture. The authors suggested that decoquinate treatment led to the inhibition of protein
synthesis and induced the state of dormancy in M. tuberculosis, whereby cell growth and
division were ultimately inhibited. The implementation of a GC×GC metabolomic-based
approach in these studies [142–144] facilitated the identification and elucidation of M. tuber-
culosis response mechanisms on the selected drug candidates, with the aim of repurposing
existing approved drugs as potential anti-Tb therapy options.

4.2. Cancer

Dysfunctional metabolism is acknowledged as the hallmark of cancer, and multiple
studies regarding the altered metabolism in cancer cells have been demonstrated [145].
In this respect, metabolomics plays a substantial role in the understanding of cancer
metabolism and the identification of chemotherapeutic targets or lead. Recently, cancer
stem cells have been considered a potential target for cancer treatment owing to their
tumorigenicity and their critical roles in tumor metastasis, relapse, and chemo/radio-
resistance [161]. Styczynski’s group studied the metabolite response of OVCAR-3 ovarian
cancer cell lines (OCC) and isogenic ovarian cancer stem cell (OCSC) line toward therapeu-
tic perturbation with docetaxel and three environmental perturbations (glucose deprived,
hypoxia, and ischemia) using GC×GC–TOFMS [145]. Docetaxel is a potent chemothera-
peutic agent in the taxane drug group that blocks tubulin depolymerization, leading to
the inhibition of microtubule dynamics and cell cycle arrest [162]. Metabolite profiling of
both cell lines putatively identified 44 metabolites from 177 analytes in OCC and 46 unique
metabolites from 167 analytes in OCSC. Significant metabolic changes were observed due
to docetaxel treatment in OCC, specifically in the amino acids and carbohydrates metabolic
pathways, causing a drastic decline in the OCC growth rate within 48 h. In contrast, uni-
variate analysis revealed no significant differences in the metabolites of the control and
docetaxel-treated OCSCs. However, OCSC metabolism was slightly altered by docetaxel
after 48 h, suggesting higher resistance of OCSC to docetaxel treatment compared to OCC.
In the following year, GC×GC–TOFMS was utilized to profile the intracellular and extra-
cellular metabolomes of both OVCAR-3 OCC and isogenic OCSC cell lines [146]. A total
of 211 intracellular and 203 extracellular reproducibly measurable analytes were detected;
of them, 40 and 46 unique potential biomarkers were identified in the intracellular and
extracellular metabolites, respectively. Unsupervised dimensional reduction using PCA for
the identified metabolites demonstrated a complete separation for the intracellular metabo-
lites, revealing a distinct pattern of both OCC and OCSC. Amino acids and carbohydrates
were higher in the OCC than in OCSC, while the presence of aliphatic compounds was
observed to be lower in OCC. The notable differences in the metabolomic profile of these
two cell lines were associated with several metabolic pathways, particularly arginine and
proline metabolic pathways. These metabolic changes may contribute to the functional
differences between OCSC and their more differentiated cells that represent the majority
of bulk tumor tissue. Nevertheless, the information on the inherent differences in the
metabolomics and drug response of cancer cells and cancer stem cells obtained from these
studies could potentially be useful in the development of targeted treatments for cancer
stem cells or cancer metabolism.

Metabolites and their derivatives have significant potential to serve as indicative ther-
apeutic agents due to their crucial role in the signaling, regulation, and biosynthetic roles
in cells, besides having low toxicity effects compared to drugs. Dhakshinamoorthy et al.
applied a GC×GC–TOFMS metabolomic-based approach to elucidate the potential mecha-
nism of menaquinone (vitamin K2), a putative anti-leukemic metabolite [147]. This study
analyzed the metabolite profiles of a leukemia model cell line (Jurkat) and non-cancerous
lymphoblast cells in response to menaquinone and two common chemotherapeutics: do-
cetaxel and doxorubicin. The findings showed that 27 out of 33 metabolites were able
to discriminate between menaquinone-treated and chemotherapeutic-treated Jurkat cells,
while no significant changes were observed in the non-cancerous lymphoblast cells. PCA re-
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vealed that the metabolites in menaquinone-treated samples were not correlated with those
in chemotherapeutic-treated Jurkat cells, implying the unique anti-proliferative activities of
menaquinone. Notably, the levels of phosphoethanolamine were found to be significantly
increased in menaquinone-treated Jurkat cells, suggesting a connection between these
two metabolites in displaying antileukemic activity. The application of GC×GC expands
the future prospects of metabolite-based therapeutics by identifying and characterizing
metabolites with potential anticancer activities, which could eventually pave the way for
the discovery of novel chemotherapeutic drugs.

Urological cancer, or urinary bladder cancer, is reported as the ninth most prevalent
malignant disease and the thirteenth leading cause of cancer-related death globally [163].
An elevated risk of bladder cancer among smokers has been reported due to the presence
of a potent class of carcinogen known as aromatic amines in tobacco smoke [164]. Aromatic
amines are well-absorbed across and into the biological membranes through the skin, gas-
trointestinal and respiratory tracts, which could lead to transitional-cell carcinoma, which
is known as one of the most common types of bladder cancer [165]. In-situ derivatization
solid-phase microextraction (SPME) coupled with GC×GC–TOFMS was applied to de-
termine the presence of aromatic amines in the urine of smokers and non-smokers [148].
Derivatization of aromatic amines to their corresponding aromatic iodine derivatives with
enrichment on a polydimethylsiloxane/divinylbenzene fiber gave an extraction efficiency
of 65–85%. Separation of 16 aromatic amines was optimized with DB-5 as the 1D column
while the 2D column was selected among BPX50 and five ionic liquid columns with dif-
ferent polarity: SLB IL-59 (polar), SLB IL-61 (polar), SLB IL-76 (highly polar), SLB IL-82
(highly polar), and SLB IL-100 (extremely polar). The selectivity of ionic liquid columns for
the iodinated analytes was comparable with the mid-polar BPX50 column; hence the BPX50
column was selected for subsequent studies as it also provides the best separation of the
analytes. A lower intensity of aromatic amines was observed in the urine of non-smokers
compared to that of smokers, indicating higher exposure to the carcinogenic substance
among the latter group with more than 150 aromatic amine derivatives (dominated by
alkylated anilines) identified (Figure 3a–c). This study also highlighted the advantages of
GC×GC–MS for the separation of compounds with the same nominal mass in complex
matrixes: aminoacetophenone (m/z 246) and C3-anilines (m/z 246) (Figure 3d). However,
due to the high number of compounds and larger data files in GC×GC compared to the
conventional GC, data handling and analysis still pose a great challenge, particularly for
quantitative analysis.

4.3. Coronavirus Disease (COVID-19)

At the end of 2019, the outbreak of coronavirus disease (COVID-19) caused massive
disruption, and a large proportion of the population worldwide was impacted. Known as
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the coronavirus mainly
affects the respiratory system with extremely heterogeneous symptoms, ranging from those
with minimal impact to significant hypoxia with acute respiratory distress syndrome [166].
COVID-19 was declared a global pandemic by WHO in 2020 following a high transmission
rate of SARS-CoV-2 and a lack of pre-existing immunity that resulted in the rapid spread of
the life-threatening disease from its origin to other countries around the world [167,168].
Few studies have reported the use of GC×GC in the search for disease biomarkers and
understanding its pathophysiological process.
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Figure 3. Representative GC×GC chromatograms displaying the presence of aromatic amine deriva-
tives in: (a) non-smoker’s urine; (b) smoker’s urine; (c) smoker’s urine with isomeric homologs
of aromatic amines labeled as C1- to C4-anilines and aminoacetophenone (d) mass spectra of iodi-
nated derivatives of aminoacetophenone and C3-aniline. Adapted with permission from Ref. [148].
Copyright © 2023 by the authors; Springer Nature Group, Berlin, Germany.

Barberis et al. performed untargeted metabolomic and lipidomic profiling of 161 plasma
samples from patients with pneumonia and/or respiratory failure [149]. Based on the
metabolomic approach using GC×GC–TOFMS, several identified biomarkers were able to
distinguish between COVID-19 and non-COVID-19 patients, critical and non-COVID-19
patients, as well as critical and non-critical COVID-19 patients. Additionally, the biomark-
ers were further evaluated for their diagnostic performance by examining the non-infected
patients with symptoms mimicking the viral infection. The authors consequently observed
a relationship between the host response to the virus and several metabolisms, inflamma-
tion, and the immune system. In another study, Berna et al. evaluated the volatile breath
metabolites of 26 children (11 tested positive; 15 were negative) using thermal desorption
(TD) coupled with GC×GC–TOFMS [150]. In order to ensure the quality of the breath
volatiles, the level of isoprene in collected samples was evaluated as the compound is ex-
pected to present in human breath at a high concentration in comparison to that in ambient
air. The authors initially selected 84 metabolites to be investigated based on previous litera-
ture. Upon analysis through volcano plot, heatmap, and contour plot, six biomarkers were
found to be elevated in COVID-19-infected breath groups, discriminating them from the
uninfected ones (Figure 4). It is worth mentioning that three aldehydes (octanal, nonanal,
and heptanal) drew special attention as the class of compound was previously reported
to be upregulated in adult breath [44]. However, the biomarkers of children’s breath are
still markedly different from the adult’s breath [44] due to the stronger immune system of
the younger group. From these studies [149,150], slight differences observed in the host
response to infection may be attributable to factors such as age group, geographic origin
of patient, and level of infection. Nevertheless, GC×GC techniques have shown to be
ideally suited to improving the current understanding of important metabolic pathways
and metabolisms to unearth novel therapies and upgraded control measures.
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Figure 4. Biomarker compounds of pediatric SARS-CoV-2 infection. (a) Volcano plot of breath
metabolites. (b) Heatmap visualizing the abundance of biomarkers. (c) GC×GC–TOFMS surface plots
of representative pediatric breath samples (top, SARS-CoV-2 infected; bottom, SARS-CoV-2 uninfected;
†, heptanal; ‡, octanal; *, nonanal). Adapted with permission from Ref. [150]. Copyright © 2023 by the
authors; American Chemical Society, Washington, DC, United States.

A recent study by Barberis et al. analyzed the exhaled breath condensate of COVID-19
patients and healthy controls using GC×GC–TOFMS [151]. The use of PLS-DA revealed sig-
nificant differences between both groups, supported by VIP scores that presented the most
prominent molecules influencing the phenotypic variances in COVID-19 exhaled breath
condensate. Upon subjecting the data to further statistical analyses, 26 molecules were
found to be significantly different between the infected and healthy patients; eight of them
were monoglycerides of fatty acids. In the same year, Barberis et al. investigated the
exposure of 51 healthcare workers to an environment with a similar probability of con-
tracting COVID-19 via untargeted GC×GC–TOFMS metabolomic profiling of serum [152].
Initially, the workers tested negative during the initial blood collection, and 24 of them
developed the disease within the next 21 days. The study revealed significant modulation
of monolaurin (monoglyceride of lauric acid), oleic acid, and cholesterol between protected
and predisposed subjects, suggesting their potential as COVID-19 prediction biomarkers.
Notably, a two-fold increase in the level of monolaurin (monoglyceride of lauric acid) was
found in subjects protected from SARS-CoV-2; meanwhile, a higher level of cholesterol was
observed in subjects infected by the disease. Both studies [151,152] underscore the inherent
capability of GC×GC in discovering prospective molecules for the prediction of protection
against SARS-CoV-2, as well as diagnosis and monitoring of COVID-19. While fatty acids
have been associated with protective roles against SARS-CoV-2 infection, cholesterol poten-
tially carries the risk of developing the disease by promoting viral replication and entry
into host cells. Future studies involving the randomized controlled trial of fatty acids and a
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larger cohort of subjects to confirm these findings would contribute to the development of
personalized medicine and the implementation of public healthcare strategies.

4.4. Psychiatric Disorder

Schizophrenia, bipolar disorder, and major depressive disorder are highly complex
mental conditions characterized by a diverse array of symptoms, including dysfunctions
in thoughts, perceptions, emotions, and behavior [169]. Consistent with behavioral and
genetic studies, the noticeable phenotypic overlap suggests the presence of potential ge-
netic factors involved in these mental disorders. Despite ongoing research, the underlying
mechanisms behind these diseases are still poorly understood. Ramaker et al. conducted
a comprehensive study of the post-mortem transcriptome and metabolite profile of these
psychiatric disorders to uncover the underlying disease mechanism [153]. Brain tissues
across three regions (anterior cingulate cortex, dorsolateral prefrontal cortex, and nu-
cleus accumbens) were sampled from 24 healthy controls and subjects diagnosed with
schizophrenia (24 subjects), bipolar disorder (24 subjects), and major depressive disorder
(24 subjects). The untargeted metabolite profiling of the anterior cingulate cortex tissue per-
formed using GC×GC–TOFMS, followed by multi-statistical analysis, identified 141 unique
metabolites that best discriminate between the schizophrenia and bipolar disorder patients
from the control group. Significant downregulation in γ-aminobutyric acid (GABA) levels
were observed in individuals with schizophrenia and bipolar disorder, suggesting that
altered gene expression in both diseases was responsible for such biochemical changes.
Nonetheless, the metabolite profile of the major depressive disorder patients displayed
no significant differences from the control group. The combination of transcriptomic and
metabolomic analysis demonstrated in this study provides a clearer understanding of the
metabolite–gene relationship within these three multigenic psychiatric disorders.

Olanzapine has been administered as an antipsychotic drug, specifically to manage
symptoms of schizophrenia and bipolar disorder, and was lauded as the most effective
drug option due to its less severe side effects [170]. However, the administration of olan-
zapine has been reported to cause weight gain and metabolic disturbance. The systemic
effects of olanzapine have been associated with hepatic metabolism; thus, metabolomic
analysis using GC×GC–TOFMS was applied to simultaneously characterize several effects
of olanzapine on liver tissues and plasma in the mouse model [154]. A significant increase
in the peripheral concentrations of glutamate and its metabolites was observed due to
the administration of olanzapine. Based on the hepatic metabolites profile, Schmidt et al.
concluded that olanzapine altered the hepatic metabolism via the simultaneous activation
of both catabolic AMP-activated protein kinase (AMPK) and anabolic (mammalian target
of rapamycin) pathways, inducing disturbance in the glucose and lipid metabolism. The
utilization of the GC×GC–TOFMS approach in this study has shown great potential in en-
hancing the understanding of olanzapine dysmetabolism as well as mechanisms mediating
desirable therapeutic effects of the drug, which have been incomprehensible previously.
These findings will definitely be useful for the future development of new approaches to
improve the long-term safety and utility of the drug.

Recently, Eshima et al. applied headspace solid-phase microextraction (HS-SPME) cou-
pled with the GC×GC–TOFMS method to uncover the underlying mechanism of metabolic
alterations due to stress in human urinary volatilome through the diurnal cortisol cycle [155].
Cortisol is a glucocorticoid released by the adrenal glands’ cortex in response to stress. De-
spite numerous studies reporting the association of cortisol dysregulation with mental health
and mood disorders such as depression, bipolar disorder, and schizophrenia, the underly-
ing mechanism remains unclear. The urinary volatile metabolomic profiles of 60 healthy
individuals were extracted with divinylbenzene/carboxen/polydimethylsiloxane SPME
fiber, revealing 14 key metabolites associated with the measured total urinary cortisol. The
predictive model developed in this study has the potential to estimate the total free urinary
cortisol excretion in humans by using 14 volatilomes and seven interaction terms responsible
for the metabolite variability according to the criteria identified by the two-way ANOVA
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(i.e., gender and sample collection time). This study highlighted the future application of
the GC×GC metabolomic method for psychiatric diagnostics and long-term mental health
monitoring. However, targeted studies using a larger sample cohort must be considered to
further validate the identity of the compounds and to assess the prediction capability and
accuracy of the developed model.

5. Challenges of GC×GC in Moving toward Personalized Medicine

The development of high-throughput GC×GC–MS, as one of the major platforms in
the emerging field of pharmacometabolomics, demonstrates great potential in providing
a more comprehensive metabolic profile, replacing the current medical practices that
suffer limited chemical differentiation or metabolite coverages. Pharmacometabolomics
can be termed as the prediction of the outcome of a drug or xenobiotic intervention in an
individual based on a mathematical model of preintervention of metabolite signatures [171].
Since the human metabolome varies between individuals (depending on the genetics,
environment, and gut microbiota), personalized medicine is tailored toward particular
metabolic characteristics of an individual for effective treatments. Nevertheless, there is an
obstacle in translating discovered pharmacometabolomic biomarkers into clinical practice
primarily due to the scarcity of large-scale validation and characterization strategies for the
technique. These steps are indeed substantial in ensuring the correct characterization and
selection of high-quality biomarkers. It is worth noting that these resources can be well
generated by collaborative efforts between researchers, clinicians, and bioinformaticians.
Recently, detailed guidelines on best reporting practices and analytical quality management
for MS-based analyses have been published [110,172,173], supporting the former reporting
guidelines outlined by Metabolomics Standards Initiative [174]. The standard is designed to
provide confidence to the scientific community in reproducing or incorporating meaningful
data into other analyses, either directly or indirectly, for the discovery of new relationships
between metabolomes and biological states [67,173,175]. Additionally, the identification of
unknown chemical entities (or dark matter) presents a current bottleneck in the untargeted
analysis workplan [176–178]. Several open-access and commercial databases that comprise
numerous spectral information of compounds (based on both real metabolite entries and
in silico predicted spectra) have been developed [179]. In reality, however, a human
metabolomic profile is much more complex where at least 500,000 compounds are (or may
be) present, and each class of compound contains immense combinatorial capacity (e.g.,
over 40,000 different lipids can be generated from 20 types of fatty acids that are formed
from six common triacylglycerides) [180]. Samples containing polar functional groups
require derivatization steps to increase their volatility which further complicates the process
of elucidating compound structure without any database match. These issues lead to
potential information in typical metabolomics studies being lost and limit its interpretation
and understanding of biological mechanisms. A commentary reported by Silva et al. in
2015 stated that a single untargeted metabolomics study could only annotate 1.8% of
spectra, which signified that the majority of metabolites present in a sample are yet to be
identified [176]. Therefore, there is a critical need for an improved data analysis strategy
or workflow that ideally provides optimal coverage for compound identification. For the
reader’s interest, a few excellent reviews have been published recently on the potential of
computational approaches to facilitate metabolite identification [181–183]. Even though the
quest for ideal biomarkers is still underway, the widespread implementation of best practice
and quality management recommendations, as well as the development of cheminformatic
tools for compound characterization, is envisaged to be a key component in pushing
GC×GC–MS toward clinical translation and personalized medicine.

6. Concluding Remarks

Recent years have seen remarkable advances in GC×GC technology as a powerful
tool to unravel compositions of various intricate biological and pharmaceutical samples,
underpinned by substantial improvements in modulator technologies and detection sys-
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tems. The most noteworthy has been the technological advances in GC×GC–HRMS where
elemental formula assignment of resolved molecules (that may be comprised of ‘known
unknowns’ or ‘unknown unknowns’) made possible with accurate mass measurement
displaying mass uncertainties ≤5 ppm. Despite the great potential of GC×GC–HRMS in
bioanalytical studies, it has yet to be fully exploited. Apart from low-resolution TOFMS,
the use of the full complement of HRMS tools (e.g., accTOFMS, FTICRMS, Orbitrap, and
accQTOFMS) for GC×GC studies on disease-related biomarkers and host response to drug
treatments have not been explored. Perhaps this reflects the preference for GC–HRMS due
to the perceived complexity and difficulties in implementing a successful GC×GC–HRMS
method and the need for specialized instrumentations, software, and technical expertise. In
regards to the last 10 years of progress, the application of GC×GC in drug discovery and
analysis has resulted in very interesting findings that focused on the understanding of the
perturbation of metabolites in response to disease progression and drug treatment. Despite
the many advantages of GC×GC, critical aspects still require additional improvement
and attention, as indicated by the slow uptake of this technique by bioanalysts. Many of
the reviewed studies still use relative concentrations to report/compare drug concentra-
tions and/or clinical biomarkers. Greater efforts are needed to demonstrate the reliability
and reproducibility of GC×GC for absolute quantitative measurement of metabolites in
complex biological samples. In particular, the entire workflow covering sample collection,
derivatization, preparation, and GC×GC–MS should be validated according to the criteria
and guidelines defined for bioanalytical methods. Additionally, the assessment of its ro-
bustness for analysis of large biological sample sets over a long period of time has yet to
be determined. To further drive the utility of GC×GC–HRMS for pharmacometabolomics
studies, complete automation of chromatographic pre-processing and statistical analysis
tools are suggested, which can benefit inexperienced users in extracting useful biological
information from the high-dimensional raw data. The integration of fully automated artifi-
cial intelligence-driven GC×GC–HRMS approaches for untargeted metabolomics are still
in its infancy, but notable efforts are being made, and if this is successful, GC×GC–HRMS
might become the next workhorse in bioanalytical-related studies offering unprecedented
resolving power, translated to enhanced identification. Nevertheless, it is anticipated that
the implementation of GC×GC in drug discovery and analysis will continue to grow and
become a realistic option for the future development of personalized disease diagnosis,
patient monitoring, and treatment response evaluation.
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