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Abstract: Biochanin A (BCA), an isoflavone derived from various plants such as chickpea, red
clover and soybean, is attracting increasing attention and is considered to have applications in
the development of pharmaceuticals and nutraceuticals due to its anti-inflammatory, anti-oxidant,
anti-cancer and neuroprotective properties. To design optimised and targeted BCA formulations,
on one hand there is a need for more in-depth studies on the biological functions of BCA. On the
other hand, further studies on the chemical conformation, metabolic composition and bioavailability
of BCA need to be conducted. This review highlights the various biological functions, extraction
methods, metabolism, bioavailability, and application prospects of BCA. It is hoped that this review
will provide a basis for understanding the mechanism, safety and toxicity of BCA and implementing
the development of BCA formulations.

Keywords: biochanin A; metabolism; extraction; bioavailability; isoflavone; chickpeas; food
application

1. Introduction

Chickpeas, also known as peach beans, belong to the legume family [1]. Chickpeas
have been consumed since the time of the “Fertile Crescent”, thousands of years ago [2].
They originated mainly from Southwest Asia and the Mediterranean, and are now widely
distributed in 33 countries, including Australia, India and Iran [3]. Although chickpeas
have now been commercialised and are popular with the public, there is still a lack of
research on their breeding and processing conditions. Chickpeas have great potential for
applications in food development and health promotion.

Nutritionally speaking, chickpeas are an essential source of Biochanin A (BCA) and a
significant source of BCA intake for the general public. BCA is an O-methylated isoflavone
and is also considered a phytoestrogen. It is present in edible plants such as chickpeas,
red clover, peanuts, soybean, alfalfa, and astragalus. Among these, the highest levels of
BCA are found in red clover leaves, while lower levels are found in peanut, alfalfa, and
astragalus [4–11]. In recent years, with the increasing demand for high-quality diets and
healthy living, BCA has become a hot research topic. Most current studies on BCA have
focused on its biological functions, with a lack of research on the chemical features of BCA
and the relationship of those features to biological functions. Therefore, this review fills
this gap by providing a systematic description of the relationship between the chemical
properties of BCA and its biological function, as well as exploring the limitations of the
currently available biological studies of BCA.

2. Chemical Properties and Extraction of BCA

The chemical name of BCA is 5,7-dihydroxy-4′-methoxy-isoflavone. Its diverse bio-
logical functions are closely related to its chemical structure (Figure 1). An earlier study
has shown that the anti-oxidant capacity of BCA depends on its chemical structure, and
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that the ketone group, as well as the position and number of attached hydroxyl groups in
ring A and ring B, determine its anti-oxidant capacity [12]. The presence of an hydroxyl
group at C7 in ring A, as well as the 2,3-double bond in ring C, also significantly enhance
oxidative properties [12]. In addition, the methoxy group present in BCA, which exhibits
electron-absorbing properties when attached to the benzene ring, can significantly increase
the anti-oxidant properties of BCA [12]. It is worth noting that prunetin (Figure 1) is often
overlooked as an isomer of BCA, but it also has potent biological activities. By using liquid
chromatography-electrospray ionization tandem mass spectrometry (LC/ESI-MS) to iden-
tify BCA and prunetin, prunetin has been shown to improve intestinal barrier function and
inflammatory response [13]. Despite the reported biological function of prunetin, in-depth
studies on the mechanism of prunetin are important for the exploration of its potential
applications and clinical translation.
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Figure 1. Chemical structure of BCA (R1 = OH, R2 = OCH3) and purnetin (R1 = OCH3, R2 = OH).

A good material basis is essential for more in-depth studies on the biological functions
and chemical properties of BCA. Unlike other scholars who used liquid–liquid extrac-
tion [14], ion exchange [15] or column chromatography [16] to extract the active com-
pounds from plants, Ma and coworkers developed a simple, efficient, and low-cost method
to extract BCA by using macroporous resins (Figure 2) [17]. Although 87.13% BCA yield
and 95% purity were obtained using the above method, more convenient and economical
extraction methods with higher yields and purity are still in dire need. This can be achieved,
for example, by optimizing the selection of the mobile phase solvent and ratio, switching to
a more suitable column, or using high-performance liquid chromatography (HPLC).

Apart from pristine BCA, different derivatives of BCA have potent bioactivity. Some
efforts have also been devoted to modifying the chemical structure of BCA and studing
its biological activity. For example, an earlier study chemically modified the structure of
BCA [18]. A glycosyl group was attached to the 8-position of ring A, while a hydroxyl group
(-OH) was attached to the 5-position. The modified compounds exhibited higher transferrin
binding affinity [18]. By lipidating the 7 position in the BCA ring, the generated compound
also significantly inhibited the proliferation of MCF-7 cells [19], suggesting that the anti-
cancer biological activity of BCA could be related to the 7-position. Recently, methylation
of the hydroxyl group of ring B has been found to affect the binding ability of BCA to
the estrogen receptor [20]. This would affect various biological activities in vivo, such as
anti-oxidant and anti-cancer properties. The in vivo form of BCA affects its bioavailability.
BCA is often bound to sugars in the body to become glycosides. In the body, only glycosides
are absorbed by the small intestine, bound to the oestrogen receptor, and perform further
biological functions [3].
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Reprinted with permission from Ref. [17]. 
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Figure 2. Separation and purification of BCA by flash chromatography. (A) A photo and (B) a
schematic representation of the flash chromatography system: (a) mobile phase; (b) chromatography
pump; (c) chromatographic column; (d) UV detector; (e) liquid reservoir; and (f) logger. (C) A flow
chart depicting the procedures used to purify BCA. Abbreviations: HEX, hexane; EA, ethyl acetate.
Reprinted with permission from Ref. [17].

3. Physiological Functions of BCA

Over the years, BCA has been found to demonstrate a large variety of physiological
functions. For instance, BCA has a hypoglycaemic effect for the treatment of type 2 dia-
betes [21]. By analysing the pancreatic tissue from BCA-treated/non-BCA-treated strep-
tozotocin diabetic rats, it was found that the BCA-treated rats had reduced fat in normal
pancreatic islet cells, indicating that BCA could act as a preventative measure against
weight loss in diabetic animals (Figure 3) [22]. As a fatty acid amide hydrolase inhibitor,
BCA can slow down the progression of nonalcoholic fatty liver disease (NAFLD) by reg-
ulating cholesterol metabolism [23,24]. BCA as a β-Site App-Cleaving Enzyme 1 (Bace1)
inhibitor also has the potential to be developed into preventive and therapeutic agents for
Alzheimer’s disease [25].
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In addition, BCA is known to show anti-microbial effects. In an earlier study, BCA
was found to inhibit the expression of human herpesvirus 6 antigen by inhibiting protein
tyrosine kinase phosphorylation [26]. Bifidobacterium and Clostridium are part of the natural
intestinal flora, and Clostridium may cause severe intestinal infections. In contrast, Bifidobac-
terium is a probiotic among the most critical potential bacteria in the intestine. Previously,
the antibacterial activity of BCA was tested against six species of Bifidobacterium and eight
species of Clostridium by in vitro assays [27]. The results showed that within the minimum
inhibitory concentration (MIC) range, starting at 64 µg/mL, BCA inhibited all Clostridium
perfringens but not Bifidobacterium, suggesting that BCA has a selective growth inhibitory
effect in terms of antibacterial activity. However, the underlying mechanism is unclear.
Many clinical isolates of S. aureus are resistant to a variety of antimicrobials including
fluoroquinolones. By using S. aureus ATCC 25923 and 11 strains of fluoroquinolone (FQ)-
resistant methicillin-resistant S. aureus (MRSA) to investigate the synergistic effect of the
antimicrobial drug BCA and ciprofloxacin (CPFX) when used in combination [28], BCA
and CPFX were found to have a synergistic effect against S. aureus, suggesting that BCA is a
potential antimicrobial agent. The relationship between BCA and chlamydia has also been
reported [29]. BCA was demonstrated to be an effective inhibitor of chlamydia [29]. In vitro
solubility results also support that the use of BCA oral formulations could potentially
improve its bioavailability in anti-chlamydial or other drug applications [29]. BCA has
been shown to exhibit various health-promoting effects (Table 1), which have been linked
to its anti-cancer function, anti-oxidant activity, and inflammatory function. These effects
will be discussed in further detail in the following parts of this section.
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Table 1. The properties of BCA and their mechanisms of action.

Property Mechanism Ref.

Anti-cancer effect

• Inhibit tumour progression by suppressing the ZEB1/PD-L1 axis [30]

• Activate the Bcl-2 and caspase-3 pathways. [31]

• Inhibit the expression of invasive enzymes and modulate multiple signal-ling
pathways in the Her-2-positive breast cell line SK-BR-3.

[32]

• Inhibit the growth of osteosarcoma cells by activating caspase 9 and caspase 3
and by increasing the ratio of Bax:Bcl-2/Bcl-XL.

[7]

Anti-oxidant effect

• Protect HepG2 cells from tert-butyl hydroperoxide (t-BHP)-induced downstream
cytoprotective enzymes, including NQO1 and HO-1.

[33]

• Activate the Nrf2/ARE pathway, leading to a decrease in the levels of SOD and
CAT, and an increase in MDA, Nrf2, HO-1 and NQO1 levels.

[34]

• Reduce lipopolysaccharide (LPS)-induced dopamine and inhibit LPS-induced
microglia-activated production of necrotizing factor, nitric oxide and superoxide.

[35]

Anti-inflammatory effect
• Inhibit TNF-α, IL-1β, ROS and elevate OCN a and Nrf2 levels. [36]

• Inhibit TLR4-MARK/NF-κB signaling and NLRP3 inflammasome activation. [37]

Hypoglycemic effect • Increase SIRT1 expression in the pancreatic tissue. [21]

3.1. Anti-Cancer Function

Cancer is the leading cause of death in people under the age 70 in 112 out of 183 coun-
tries worldwide [38]. According to the latest global cancer burden data published by
the World Health Organization’s International Agency for Research on Cancer (IARC),
there were nearly 19.3 million cancer cases and 10 million cancer deaths worldwide in
2020 [39]. BCA has been suggested to be an effective agent in treating colorectal and lung
cancers. In the colon, BCA was demonstrated in in vitro experiments to be able to enhance
the radiotoxicity of colon tumour cells [40]. It can also play a role in inhibiting tumour
progression and immune escape by suppressing the ZEB1/PD-L1 axis [30]. In lung cancer,
not only can BCA inhibit epithelial-mesenchymal transition, but it can also suppress the
rate of proliferation of lung cancer cells by activating the Bcl-2 and caspase-3 pathways and
by regulating the expression of cell cycle-related proteins [31,41].

Apart from the cancers mentioned above, BCA has been shown to exhibit different
degrees of anti-cancer properties in other types of cancers. For instance, in head and neck
cancers, BCA can inhibit FaDu cell migration and proliferation by downregulating cellular
signalling pathways such as p38, mitogen-activated protein kinase (MAPK), NF-κB and
Akt. It can serve as a potential chemotherapeutic compound for the treatment of head and
neck cancers [42]. In breast cancer, BCA is considered to be a unique natural anti-cancer
agent that selectively targets cancer cells and inhibits cell viability, signalling pathways,
invasive enzymes and multiple signalling pathways [32]. In myeloma, BCA binds to the
CD38 protein and exerts antagonistic effect [43]. In osteosarcoma, BCA inhibited the growth
of osteosarcoma cells by activating caspase 9 and caspase 3 and by increasing the ratio of
Bax:Bcl-2/Bcl-XL (Figure 4) [7]. In addition, as the dose of BCA increased, osteosarcoma
cells were found to grow more slowly, and normal cells became less toxic [7]. This suggests
that BCA has the potential to prevent and treat osteosarcoma. In glioblastoma, BCA has
been shown to have sensitizing effect by modulating the AMPK/ULK1 pathway to inhibit
autophagy. BCA acts as a potent sensitizer in combination with temozolomide (TMZ) to
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overcome the weak cellular sensitivity of TMZ alone [44]. All of these findings corroborate
the potential use of BCA as an anti-cancer agent.
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3.2. Anti-Oxidant Effects

Oxidative stress is an imbalance between the formation of oxidative free radicals
in the body and the antioxidant defences of the cells. BCA displays antioxidant biolog-
ical activity. It has been found to protect HepG2 cells from oxidative damage induced
by tert-butyl hydroperoxide (t-BHP) [33]. In addition, in the liver of arsenic-exposed
rats, an increase in lipid peroxidation responses, accompanied by depletion of catalase
(CAT) and superoxide dismutase (SOD) activities, has been reported [45]; however, ad-
ministration of BCA (20 mg/kg-bw/day), along with selenium (3 mg/kg-bw/day), has
been shown to reverse liver and oxidative stress markers in those rats. Although low
doses of BCA (10 mg/kg-bw/day) did not show any preventive effect, high doses of BCA
(40 mg/kg-bw/day) played a role in preventing hepatotoxic events [45]. All these demon-
strate the potential use of BCA in combating oxidative stress-mediated pathological events.

Moreover, exogenous toxins such as bisphenol A (BPA) can easily trigger oxidative
damage leading to neurological problems [46]. It has been shown that BPA reduces glu-
tathione levels, while the addition of BCA increases the metabolism of glutathione and
facilitates the scavenging of oxygen free radicals, thus reducing oxidative damage [46]. In
addition, prolonged exposure to BPA triggered neuroinflammation and thus recruitment
of immune cells; however, co-treatment with BCA resulted in a reduction in macrophage
recruitment [46]. Along with the fact that, in SH-SY5Y cells, BCA has been found to ac-
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tivate the Nrf2/ARE pathway to inhibit isoflurane-induced oxidative stress and prevent
neurotoxicity [34]. This makes BCA a promising candidate for further exploitation to tackle
neurodegenerative diseases caused by oxidative stress in the future.

3.3. Anti-Inflammatory Function

Inflammation is considered a defensive response of body tissues to stimuli from
different damage factors, and is an essential self-regulatory process for maintaining the
homeostasis of the body’s internal environment. In rat midbrain neuron-glia cultures, BCA
has been reported to be effective not only in reducing lipopolysaccharide (LPS)-induced
reductions in dopamine uptake and the number of dopaminergic neurons, but also in
inhibiting lipopolysaccharide-induced microglial activation of tumour necrosis factor, nitric
oxide and superoxide production by microglia [35]. It can also effectively alleviate gingival
inflammation, a common oral disease, in rats by inhibiting TNF-α, IL-1β, ROS and elevating
OCN a and Nrf2 levels [36].

With a rapid increase in the incidence of idiopathic pulmonary fibrosis (IPF), there
is an urgent need for new drugs to replace pirfenidone, which has many adverse side
effects [47]. BCA has been found to significantly reduce the expression of TGF-β-regulated
fibrotic genes and to reduce the expression of inflammatory markers [48]. By comparing
the therapeutic efficacy of BCA with that of pirfenidone, BCA was more effective in
ameliorating pulmonary fibrosis [48]. This provides a new direction for the treatment of
IPF. Finally, the incidence of acute pancreatitis (AP) is on the rise, and the huge cost to
the healthcare system has attracted our attention [49]. Patients with AP have high serum
pancreatic enzymes that can lead to multi-organ dysfunction, and many AP patients require
repeated visits to the clinic, severely affecting their quality of life [49]. In a mouse model,
BCA has been reported to reduce the migration of pathogenic Escherichia coli (E. coli) to
the pancreas and to inhibit TLR4-MARK/NF-κB signalling and activation of the NLRP3
inflammasome [37], thereby preventing AP and intestinal damage (Figure 5). BCA could
be a potential drug for the treatment and prevention of AP.
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4. Metabolism and Strategies to Enhance the Bioavailability of BCA

The elucidation of processes involved in the metabolism of BCA can help us to better
understand the biological functions and mechanisms of action of BCA. Metabolism can be
divided into phase I and phase II. Phase I metabolism, also known as biotransformation,
is a process in which either a new functional group is introduced to a molecule, or a
small existing group is removed. Common types of phase I metabolism reactions include
oxidation, reduction and hydrolysis. Phase II metabolism involves the binding of some
endogenous components to an agent or phase I metabolite to form a conjugate that can be
effectively excreted from the body. Representative types of phase II metabolism include
glucuronidation and acetylation. The metabolism of BCA has previously been studied
using gas chromatography–mass spectrometry (GC-MS) [50]. Seven BCA metabolites have
been identified from red clover in human urine [50]. Two BCA metabolites have also been
found in human liver microsomes [51]. Recently, by using ultrahigh-performance liquid
chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-
TOF-MS/MS) [52], a total of 43 metabolites in rats, 22 metabolites in liver microsomes, and
18 metabolites in intestinal flora were elucidated [52]. Glucuronidation, sulphonation and
methylation were found to be the primary forms of reaction for BCA phase II metabolism.
By examining the levels of BCA in several samples in vivo, BCA was found to be the least
abundant in blood (0.96%), followed by bile (1.38%) and urine (45.10%), further suggesting
that BCA undergoes a wide range of metabolic patterns in different organs in vivo [52].
In addition, the levels of BCA metabolites in different organs were also assessed, and the
lowest levels of BCA metabolites were found in the intestinal flora.

Formononetin, genistein, daidzein, sophoricoside and genistin are thought to be
five biologically important BCA metabolites (Figure 6) [52]. They are all isoflavones.
Genistein can be detected directly in the blood and undergo various further metabolic
reactions. Genistein is well known for its anti-tumour, anti-inflammatory and anti-oxidant
activities [29]. Formononetin has been reported to be a neuroprotective agent not only for
the treatment of Parkinson’s disease but also for its hypolipidemic, anti-osteoporotic and
anti-cancer effects [53]. Daidzein has been reported to inhibit the invasion of MDA-MB-231
breast cancer cells by reducing matrix metalloproteinase (MMP)-2 activity [54]. It has also
been reported to have antithrombotic, antiallergic, anti-oxidant and antidiabetic effects [54].
Sophoricoside has been found to be able to regulate adipogenesis and glucose consumption,
whereas genistin has been shown to have anti-lipidemic effects [55]. Given the diversity
and complexity of BCA metabolites, elucidation of BCA metabolism would be one of
the research directions that are worth paying attention to. A good understanding of the
metabolism of BCA can provide the basis for future clinical applications of BCA.

In fact, BCA is characterised by poor oral absorption and low bioavailability. This limits
the development and use of BCA in food and pharmaceutical applications [56–58]. Since
the turn of the last century, the possibility of manipulating properties of bioactive agents
have been aided by biotechnological [59–63] and materials innovations [64–69]. This sheds
light on strategies to enhance the bioavailability of BCA. For example, solid dispersions
of BCA were prepared using Solutol HS15 and HPMC 2910 [70]. The dissolution rate and
drug release of BCA were significantly improved, and its bioavailability was increased by
8–60 times. By encapsulating BCA in micelles containing Pluronic F127 and Plasdone S360,
the oral bioavailability of BCA was increased by 2.16 times [71], revealing that nanomicelles
can be used as a delivery system for BCA. In addition, ionic gelation was used to micronise
BCA [72]. Upon being coated with ethylcellulose, BCA can be delivered directly to the
intestine by bypassing gastric degradation and first-pass effects, resulting in an increase
in oral bioavailability [72]. Recently, electrospun polylactide (PLA) fibres were used to
deliver BCA in a sustained-release manner [73]. Cyclodextrins have also been adopted to
form inclusion complexes with BCA, so as to improve the solubility and bioavailability
of BCA [74]. Apart from the above-mentioned systems and formulations, studies have
shown that co-administration of various isoflavones such as BCA, genistein, daidzein,
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coumestrol and zearalenone can increase bioavailability by up to 28% [75]. This provides
an opportunity to conduct studies on improving the bioavailability of BCA in the body.
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5. Opportunities and Challenges for Applications of BCA and Its Sources

Over the years, various studies have been conducted evaluating the safety profile of
BCA. For example, in a previous study, three different dosages of BCA (3 mg/kg body
weight; 10 mg/kg body weight; 30 mg/kg body weight) were orally administered to
rats for 28 days [76]. After that, general toxicity parameters were studied by examining
clinical signs, body weight, and organ weight [76]. Comparison between the experimental
and control groups showed no clinical toxicity at day 28 and no changes in body weight
or organ weights (liver, kidney, heart, lung) [76]. Recently, a novel BCA-chromium (III)
complex was generated to treat diabetes [77]. The complex was found to show no effect
on serum parameters, organs or anti-oxidant capacity in mice [77]. All this suggests
that BCA is potentially safe for biomedical use. Despite this, all of the above studies
were limited to mouse models. To date, the activity of BCA has yet to be thoroughly
evaluated in humans [57]. This means that although BCA can have some benefits as a food
supplement, the potential risks of BCA in humans need to be further investigated. In fact, it
is important to know the toxicity of BCA before applying it clinically for disease prevention
and treatment. A more in-depth assessment of BCA toxicity and a better understanding of
the toxicological mechanisms of BCA in human models are direly needed for the future
development of BCA-based pharmaceutical products.

Apart from its possible pharmaceutical applications, BCA has been widely exploited
as a functional ingredient in nutritional supplements. Companies have commercialised
BCA for use in nutritional supplements specifically to alleviate the symptoms that occur in
women after menopause [57]. It is worth noting that no BCA-only products are currently
available on the market. Instead, BCA is only used as one of the ingredients in products.
Furthermore, nutritional supplements are generally not subject to rigorous standardized
and quality control measures. For this, the quality of dietary supplements on the market
that contain BCA varies, and they may be adulterated [78]. Manufacturers may also not be
able to properly guide consumers on the intake of nutritional supplements due to the lack
of standardised rules on the amount to be added. Regulating the market for nutraceuticals
containing BCA will, therefore, be the future trend and the way forward.
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Apart from taking BCA per se, oral administration of the botanical sources of BCA (par-
ticularly chickpeas which serve as an important dietary source of BCA among the general
public) may lead to health benefits owing to the effects of the BCA inside. Besides the most
common method of consuming chickpeas, i.e., ground into a bean puree and packaged in a
can, chickpeas can be added as functional ingredients to foods [79]. For instance, chickpeas
can be ground into flour for making biscuits, bread, and pasta. A study showed that,
compared to those produced using conventional wheat flour, bread and biscuits produced
using chickpea-containing flour demonstrated lower amounts of acrylamide during the
baking process [80]. By blending extruded chickpea flour with nixtamalized maize flour
from protein maize, infant foods with good protein digestibility have been successfully
generated [81]. Despite this application potential, difficulties in cultivating chickpeas have
hindered wide applications of chickpeas in functional food development. Over the last
20 years, chickpea yields have remained at 700–800 kg/ha, with a very slow growth rate
of 1.3% per year partly due to the infestation of chickpeas [82]. In addition, when too
much chickpea flour is used in bread, degradation of starch granules and increased enzyme
activity result, making the food products less appetising to consumers [83]. In the future,
generating a good variety of genetically modified chickpeas through the collaboration
of multiple stakeholders may be a possible direction to improve chickpea yields and to
streamline the development of chickpea-based functional food products [82]. Meanwhile,
effective improvement of chickpea stability and extensibility will not only provide the
maximum nutritional value of chickpeas but also improve the texture, taste and colour of
chickpea-based food products.

6. Concluding Remarks and Outlooks

Over the years, studies have shown that BCA has anti-inflammatory [36], anti-oxidant [45],
and anti-cancer [32] properties, and serve various biological functions (including inhibition
of pathogenic microorganisms [26], neuroprotection [34], and treatment of arthritis [84]).
However, there are still areas to be further investigated. Firstly, in terms of inhibition of
pathogenic microorganisms, BCA alone has shown many negative results in antimicrobial
therapy [28]. The reason may be that BCA relies mainly on synergistic effects with other
drugs to work. At the same time, this illustrates the complexity of the role of BCA in the
organism. The specific anti-disease mechanism of BCA must, therefore, be elucidated.
Secondly, in terms of its anti-cancer properties, considering that cancer is a heterogeneous
oncological disease, we believe that there is variability in the molecular mechanisms of
BCA in different cancers and their subtypes [30,31,43]. The efficiency of BCA in combating
different cancers should be examined empirically. Thirdly, in terms of its anti-inflammation
properties, existing studies are limited to cellular and animal models [35,36]. No studies
on the anti-inflammatory effects of BCA on humans have been conducted. In addition,
considering the complexity of the inflammatory response in a body, studies on whether
BCA has any pro-inflammatory effects in humans and the relationship between BCA
and different types of inflammation are needed. Apart from this, few studies have been
conducted to extensively elucidate processes involved in BCA metabolism and there
are discrepancies between reports on BCA metabolites [50–52,85]. Given the diversity
and complexity of BCA metabolites, further studies on BCA metabolism are necessary.
Moreover, biological function is closely related to the chemical structure. However, few
studies have examined the biological activity of BCA after chemical modification [18–20].

To design and optimize BCA-based formulations, more in-depth studies on the
structure–activity relationship of BCA are direly needed. In terms of bioavailability, the
low bioavailability of BCA has limited its development and application in the food and
pharmaceutical sectors. Developing strategies to effectively enhance the bioavailability of
BCA is an important area in future research. Meanwhile, the effectiveness of BCA has not
been adequately evaluated in humans. Further research is needed on the SPL and potential
risks of BCA to humans. Last but not least, chickpeas are an important source of BCA.
However, partly due to the limitations in chickpea cultivation and processing [83], they
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are not fully exploited for food and pharmaceutical applications. Developing a variety of
genetically modified chickpeas to improve the yield and in-depth research into processing
techniques could help streamline chickpea product development. We believe that making
the most of the BCA and its natural sources will be a significant commercial opportunity.
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