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Abstract: Research and development (R&D) of nanodrugs is a long, complex and uncertain process.
Since the 1960s, computing has been used as an auxiliary tool in the field of drug discovery. Many
cases have proven the practicability and efficiency of computing in drug discovery. Over the past
decade, computing, especially model prediction and molecular simulation, has been gradually ap-
plied to nanodrug R&D, providing substantive solutions to many problems. Computing has made
important contributions to promoting data-driven decision-making and reducing failure rates and
time costs in discovery and development of nanodrugs. However, there are still a few articles to ex-
amine, and it is necessary to summarize the development of the research direction. In the review, we
summarize application of computing in various stages of nanodrug R&D, including physicochemical
properties and biological activities prediction, pharmacokinetics analysis, toxicological assessment
and other related applications. Moreover, current challenges and future perspectives of the com-
puting methods are also discussed, with a view to help computing become a high-practicability
and -efficiency auxiliary tool in nanodrugs discovery and development.
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1. Introduction

It is estimated that the price of developing a therapeutic drug is USD 2.6 billion, and it
will take about 10 years, with a clinical success rate of less than 10% [1]. It can be said that
R&D of new drugs is a time-consuming, costly and high-risk process. Generally, the R&D
process of a new drug includes the following stages: drug discovery and pre-study, preclini-
cal research, IND application, clinical research, NDA application and marketing monitoring
(Figure 1). As a new therapeutic agent, a nanodrug is a kind of pharmaceutical preparation
with nanometer-scale and obvious nanoscale effects developed by nanotechnology. Accord-
ing to the different characteristics of various nanodrugs, they can be roughly divided into
three categories, including drugs with direct nanolization, nano-carrier drugs and other
nanodrugs (e.g., protein nanodrugs and nanobody drugs). Compared with traditional
small-molecule drugs, nanodrugs have many characteristics, such as small particles, large
specific surface area, high surface reactivity, many active centers and strong adsorption
capacity [2]. Using nanomaterials as drug carriers can improve absorption and utilization
of drugs, achieve efficient target delivery, prolong half-life of drug consumption, enhance
immune response and reduce harmful side effects on normal tissues [2–7], which makes
it possible to create more efficient, less toxic and more intelligent therapies for medical
diseases. Although many new nanodrugs and drug delivery systems have been reported
continuously, few of them can be truly transformed into clinical applications. Due to special
physical, chemical and biological characteristics, nanodrugs have attracted much attention,
which leads to a relatively high threshold for their R&D and production to be approved.
Since 1989, only 78 nanodrugs have been approved and entered the global market, and
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lipids and polymers are still the main delivery carriers of nanodrugs. At present, nanodrugs
still have problems, such as poor stability in vivo and rapid circulation and metabolism,
which largely limits efficacy of nanodrugs. In addition, R&D of nanodrugs also faces many
difficulties, such as high costs, insufficient understanding of biological mechanisms and
poor experimental repeatability. Therefore, R&D of nanodrugs urgently needs efficient and
low-cost auxiliary tools to speed up its process.
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Figure 1. A brief introduction to research and development process of nanodrugs and applications
in computing.

With rapid development of computer technology, as a powerful tool, it has been
successfully applied in artificial intelligence, life science, materials science and many other
fields and has achieved remarkable results. Taking the pharmaceutical field as an exam-
ple, researchers from Insilico Medicine developed an artificial intelligence model (named
GENTRL) and used it to design the potential molecular structure of DDR1 kinase inhibitor
within 21 days and completed a preliminary biological validation within 43 days [8]. In
addition, researchers at the University of Southern California’s Dornseff College of Arts and
Sciences have developed a new drug virtual-screening method (called V-SYNTHES), which
can screen billions of compounds in a faster and cheaper way to find new and targeted
drug therapies [9]. These methods can complete the work that traditional methods need to
take months to years to complete in a relatively short time, which greatly saves the time
required for drug R&D and reduces the high cost.

According to PubMed statistics, from 2010 to 2022, the number and proportion of pub-
lished articles related to computing in the nano-field showed an upward trend (Figure 2).
Similarly, computing has also been widely used in nanodrug R&D. For example, according
to quantitative structure–activity relationship models for nanomaterials (Nano-QSAR),
Puzyn et al. [10] built a model by using the multiple regression method combined with a ge-
netic algorithm (GA-MLR) to accurately predict the cytotoxicity (EC50) of 17 different types
of metal oxide nanoparticles to bacteria Escherichia coli. Walkey et al. [11] constructed a
multivariable machine learning model based on the information obtained from experiments
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on protein crowns adsorbed on nanomaterials to predict in vitro cell uptake of nanoma-
terials. Fourches et al. [12] used the descriptors calculated by small-molecular ligands
modified on the surface of carbon nanotubes (CNTs) to build a quantitative structure–
activity relationship (QSAR) model to predict protein adsorption and cytotoxicity in CNTs.
Nagpal et al. [13] developed a pharmacokinetic model of polymer nano-biopharmaceutical
preparations based on the physiological mechanism. A smart differential evolution algo-
rithm was applied to optimize the existing clinical data of polymer nano-biopharmaceutical
preparations for the model. In addition to simulating the key parameters of the phar-
macokinetic behaviors of nano-biopharmaceutical preparations with different polymer
formulations in the human body, the model can also be used to calculate release rate of
polymer nano-biopharmaceutical preparations in vivo. Chew et al. [14] used molecular
dynamics to simulate nanoparticles to obtain simulation-derived descriptors and then
constructed a quantitative nanostructure–activity relationship (QNAR) model to predict
the physicochemical and biological properties of nanoparticles. It can be seen from these
cases that computing has been applied in most stages of the nanodrug R&D process, and
the computational methods involved can be divided into two categories, including model
prediction and molecular simulation (Figure 3).
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Compared with the experimental method, the model prediction can make qualitative
and quantitative prediction on the materials that have not been used or even synthesized
based on the existing data, provide reasonable prediction results for the unknown NM
and significantly reduce costs and use of animals (Figure 3a). At present, in the research of
prediction and evaluation of nanodrug properties, the widely used computational models
mainly include the machine learning model, quantitative structure–activity relationship
(QSAR) model and PBPK model. In addition, due to the multi-component and complex
microstructure of drug carriers and the limitations of experimental conditions, it is usually
difficult to observe the microscopic morphology and distribution of nanoparticles, which
is not conducive to further research. The molecular simulation method can effectively
overcome this shortcoming, which can be used to simulate the molecular structure and
behavior with the molecular model at the atomic level and then simulate the various
physicochemical properties of the molecular system, providing a more reliable direction for
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further research of the nanodrug delivery system (Figure 3b). The main steps of molecular
simulation include selecting the real system, establishing the model, running the simulation
and analyzing the data. According to different simulation scales, there are four main
methods of molecular simulation, including quantum mechanics, molecular mechanics,
molecular dynamics and Monte Carlo methods.
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Figure 3. Timeline of relevant developments to predict and simulate the physicochemical properties
and biological effects of nanomaterials. (a) Schematic of model prediction workflow. (b) Categories of
molecular simulation methods. AdaBoost: adaptive boosting, ANN: artificial neural network, CGMD:
coarse-grained molecular dynamics, CNN: convolutional neural network, CoMFA: comparative
molecular field analysis, DFT: density functional theory, DPD: dissipative particle dynamics, GA:
genetic algorithm, kNN: k-nearest neighbor, LASSO: least absolute shrinkage and selection operator,
LightGBM: light gradient boosting machine, MC: Monte Carlo, MD: molecular dynamic, MM:
molecular mechanic, PBPK: physiologically based pharmacokinetic, PCA: principal components
analysis, QM: quantum mechanics, QSAR: quantitative structure–activity relationship, RF: random
forest, SVM: support vector machine, XGBoost: eXtreme gradient boosting.

With this background, the high-speed processing and distributed computing capa-
bilities of computer technology can be used to simulate the information processing and
learning capabilities of the human brain so that computer technology can analyze and
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solve the problems faced in the process of nanodrug research and development, which may
provide new opportunities for design and development of nanodrugs, accelerate the R&D
process and reduce the failure rate. Therefore, this review will systematically introduce
application of computing in regulation and design of nanodrugs from the perspective of
algorithm prediction and molecular simulation and briefly summarize the challenges faced
in the application process.

2. Computing in Prediction of Physicochemical Properties

The physicochemical properties (size, shape, surface chemistry, elasticity, etc.) of drugs
will be significantly changed after nanometerization (including direct nanosizing of drugs
and nano-carrier-based drug delivery systems). Studies have shown that physicochemical
properties are the key factors for the fate of nanodrugs in vivo. These properties have
important effects on cell uptake, endocytosis mechanism, distribution of living tissue,
pharmacokinetics in vivo, immune response and biological safety [15–18]. Therefore, better
understanding and accurate prediction of physicochemical properties are more conducive
to design of nano-pharmaceutical systems with required pharmacokinetic and pharma-
codynamic characteristics so as to achieve efficient delivery of nanodrugs and improve
drug utilization.

2.1. Computing in Prediction of Hydrophilic–Hydrophobic Property

The hydrophilic and hydrophobic properties of nanodrugs reflect their hydrophilic or
lipophilic properties. Studies have shown that the physicochemical properties of nanodrugs
are highly related to many biological effects, such as cell uptake, in vivo distribution,
protein adsorption, pharmacokinetics, etc. In general, hydrophobic nanoparticles are more
conducive to cell uptake and can absorb more plasma proteins [17,19]. It can be said
that hydrophilic–hydrophobic property is an important prerequisite and indicator for
evaluating the biological effects of nanodrugs. Therefore, how to quickly and accurately
obtain hydrophilic–hydrophobic property of nanodrugs is of great significance to guide
rational design of nanodrugs. Hydrophilic–hydrophobic property of nanodrugs can be
quantitatively characterized by oil–water partition coefficient (measured by shaking flask
method, chromatography or production column method), hydrophobic probe molecular
method and surface tension method. At present, most researchers use logP to express
hydrophilic–hydrophobic property of nanodrugs. The traditional computing methods for
predicting hydrophilic–hydrophobic include atomic group method and group contribution
method [20,21], but the models based on these methods are often too complex and have
poor generalization.

The classic quantitative structure–activity relationship (QSAR), as a quantitative de-
scription and study of the relationship between the structure and activity of compounds,
can be used to build a prediction model by using mathematical statistical methods and
then predict various properties of compounds [22]. As a statistical simulation method, the
quantitative structure–activity relationship (QSAR) method has the advantages of small
computation and good prediction ability and has been used to evaluate the properties of
nanomaterials. Puzyn et al. [23] called it the “Nano-QSAR” model.

At present, some methods based on quantitative structure–activity relationship (QSAR)
have been used to predict hydrophilic–hydrophobic property of nanomaterials. For exam-
ple, Wang et al. [24] established a quantitative nanostructure–activity relationship (QNAR)
model to predict hydrophilic–hydrophobic property of gold nanoparticles using the virtual
gold nanoparticles (vGNP) library based on experimental results and a large number of
accurately calculated nanodescriptors.

However, selection and determination of molecular descriptors is a very important link
in QSAR modeling research [25]. Due to the lack of appropriate nano-descriptors for nano-
materials, applicability and predictability of the QSAR model are seriously limited [26,27].
In view of this, Chew et al. [14] used molecular dynamics to simulate nanoparticles to obtain
simulation-derived descriptors and then constructed a quantitative nanostructure–activity
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relationship (QNAR) model to predict hydrophilic–hydrophobic property of nanoparticles
(Figure 4).
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Figure 4. Application of computing in predicting physicochemical properties and biological activities
of nanomaterials. (a) The second column represents the specific properties and the third column
represents the algorithms and models [14,24,28–36]. Each rectangle represents an item, and the size
of the rectangle is directly proportional to the connection degree of each item. (b,c) Schematic of the
computational workflow and LeNet convolutional neural network modeling results. Adapted with
permission from [28], American Chemical Society, 2020. (d,e) Workflow diagram of prediction model
and prediction accuracy of QNAR models. Adapted with permission from [14], American Chemical
Society, 2022. LogP: adaptive boosting, PDI: polymer dispersity index, ANN: artificial neural network,
CNN: convolutional neural network, DNN: deep neural network, DT: decision table, kNN: k-nearest
neighbor, LASSO: least absolute shrinkage and selection operator, LightGBM: light gradient boosting
machine, MLR: multiple linear regression, MLP-NN: multilayered perceptron neural network, QSAR:
quantitative structure–activity relationship, NN: neural network, PLS: partial least square, QNAR:
quantitative nano-structure activity relationships, RF: random forest, SVM: support vector machine.
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In addition, more and more machine learning algorithms have also been used to
build models to predict hydrophilic–hydrophobic property. For example, inspired by face
recognition technology, Yan et al. [28] developed a novel nanostructure labeling method
that automatically converts nanostructures into images for convolution neural network
modeling and successfully predicts hydrophilic–hydrophobic property of nanoparticles
(Figure 4b,c).

2.2. Computing in Prediction of Surface Charge

Due to the nanoscale size of nanodrugs, their surface charge will significantly affect
their aggregation performance and stability. Generally, the more charges on the surface
of nanodrugs, the more repulsive their particles will be, thus achieving stability of the
whole system. In addition, surface charge of nanodrugs also plays an important role in
determining the fate of the body [37,38]. Surface charge of nanodrugs is generally evaluated
based on Zeta potential. Surface potential is closely related to particle size, composition
and dispersion medium of nanodrugs. The measured value depends on the measurement
conditions, such as dispersion medium, ion concentration, pH and instrument parameters,
and it is necessary to select appropriate methods and media for research, such as phase
analysis light scattering (PALS), electrophoretic light scattering (ELS) or tunable resistance
pulse sensing (TRPS). For the large and complex nanomaterial system, it is obviously time-
consuming and labor-intensive to evaluate surface charge through experimental methods.
However, using computational methods to predict Zeta potential of nanomaterials can
greatly accelerate evaluation and screening of nanomaterials.

Except for the previously mentioned surface charge prediction method for nanomate-
rials [14,28], Mikolajczyk et al. [34] reported a machine learning model for predicting Zeta
potential of 15 metal oxide nanoparticles using 11 image-based descriptors and 17 com-
putational descriptors. They used the linear regression method to predict Zeta potential
of nanomaterials. The RMSE of the test set reached 1.25 mV, and the Q2EXT was 0.87.
Sizochenko et al. [35] constructed the measurement dataset containing the Zeta potential
of metal oxide nanoparticles under different environmental conditions and developed the
nanomaterial structure–property prediction model (nano-SPR), which can quantitatively
describe the relationship between the structural characteristics of 208 metal oxide nanopar-
ticles in different biological media and their Zeta potential using neural network algorithm.
The authors also optimized the model by changing the super parameters of the neural
network (such as number of hidden layers, activation function and iteration number), and
the prediction accuracy of the final model can reach 76.25%.

2.3. Computing in Prediction of Other Physicochemical Properties

In addition to the above two important physical and chemical factors, other properties,
including particle size, shape, elasticity and porosity, also affect uptake and release of
nanodrugs and are closely related to ADMET events in vivo [39,40]. For example, Sonavane
et al. [41] compared the blood circulation and biological distribution of gold nanoparticles
with different sizes (15, 50, 100 and 200 nm). They found that smaller nanoparticles
(15 and 50 nm) showed longer cycle times and higher accumulation in all organs. In
particular, they can even pass the blood–brain barrier. However, larger nanoparticles
(100 and 200 nm) showed shorter cycle time and more accumulation in liver and spleen.
Therefore, predicting these properties is very important to evaluate efficacy, safety and
metabolism of nanodrugs. Recently, He et al. [31] used LightGBM method to predict the
particle size and polydispersity coefficient of nanocrystals under different preparation
methods. The research results confirmed that the prediction model has good prediction
accuracy for nanocrystals prepared by ”top-down” method.

Overall, prediction of physicochemical properties of nanomaterials by means of com-
putational tools is relatively extensive. Application of AI has also accelerated development
of high-throughput screening of nanomaterials, which is critical to find suitable carrier
materials for developing nanodrug delivery systems. In addition, the physical and chemical
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properties of nanodrugs, such as particle size, shape, hydrophobicity and surface charge,
have a crucial impact on ADMET properties and cytological effects. Precise prediction
and regulation of physical and chemical properties can greatly optimize biological char-
acteristics of nanodrugs in vivo and tap their greater potential. For example, adjusting
the different physical and chemical properties of nanomaterials can regulate the immune
system of the body and contribute to immunotherapy [18]. Currently, how to obtain an
efficient and safe optimal combination, so that the physical and chemical properties are
not simply added but give full play to the synergy to achieve the effect of “1 + 1 > 2”, is
still a challenge. At the same time, most AI algorithms applied for prediction of physico-
chemical properties are relatively simple and their ability to learn the data characteristics
of nanomaterials is still lacking, which leads to poor applicability of constructed models,
and predicted properties mainly focus on particle size, shape, hydrophilic–hydrophobic
property and surface charge. Prediction of other properties (such as porosity, hardness
and mechanical properties) is still less studied, and there is a lack of universal model
that can predict multiple properties at the same time. However, with the emergence of
new algorithms, increase in publicly available data and deepening of nanodrug research,
many of the above problems will be smoothly solved. It will also be possible to carry out
reasonable control and design on the physicochemical properties of nanodrugs through
computing so as to realize personalized nanodrug delivery system.

3. Computing in Prediction of Biological Activities
3.1. Computing in Prediction of Cellular Uptake

Cellular uptake of drugs is one of the important factors that determine efficacy of
drugs. Nanoparticles enter the cell mainly through endocytosis [42]. More and more
evidence shows that cell uptake is an important basis for biological effects of nanodrugs
and plays a decisive role in bioavailability and efficacy of drugs targeted in cells. However,
uptake of nanoparticles is a complex process, which is usually affected by many factors,
such as particle concentration, particle size, particle morphology, particle surface modifica-
tion, cell type and time [43]. At present, the quantitative analysis methods for uptake of
nanodrugs by cells studied in vitro mainly include flow cytometry (FCM), laser confocal
microscopy (CLSM), scanning transmission electron microscopy (STEM) and inductively
coupled plasma mass spectrometry (ICP-MS). However, these determination methods are
complex and cumbersome, which is not conducive to rapid evaluation of nanodrugs. In
order to alleviate the above problems, it can be regarded as an efficient way to dynam-
ically and accurately evaluate uptake of nanodrugs through the calculation method of
model prediction.

Apart from some of the above QSAR models and deep learning methods used to
predict cell uptake [14,24,28], as early as 2012, Ghorbanzadeh et al. [36] predicted the
uptake behavior of 109 magnetic fluorescent nanomaterials by pancreatic cancer cells
(PaCa2) based on multiple linear regression (MLR) and multi-layer perceptual neural
network (MLP-NN). The R of the prediction results of the two models are 0.769 and 0.934,
and the RMSE is 0.364 and 0.150, respectively. The prediction performance of the neural
network is significantly improved compared with the traditional MLR. The sensitivity
analysis of MLP-NN model showed that the number of hydrogen donors in the organic
coating of nanomaterials was the main factor affecting cell uptake. In addition, Luan
et al. [29] developed a quantitative nanostructure activity relationship (QNAR) model
through linear multiple linear regression (MLR) and nonlinear artificial neural network
(ANN) technology, which can accurately predict the cell uptake value of pancreatic cancer
cells to nanoparticles. At the same time, the model also has good predictability to external
datasets. Ali et al. [30] constructed five different convolutional neural network models to
predict uptake of TNBC cells to nanoparticles loaded with anticancer drugs. The model
showed high accuracy and had potential for cell uptake assessment at the early stage of
drug development.
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3.2. Computing in Prediction of Protein Adsorption

After a nanodrug enters the biological environment, the endogenous proteins will
rapidly bind to the surface of the nanoparticles to form a protein coronal structure [44,45].
Protein corona can reshape the physical and chemical properties (such as size, hydrophilic–
hydrophobic, surface charge and stability) of the nanodrugs connected to it and may
adversely affect the affinity, structure and function of proteins, thus masking recognition of
nanoparticles [43,46–48]. Therefore, the study of the protein adsorbed in the corona phase
will be able to better predict the biological characteristics of nanodrugs. At present, the
largest technical difficulty in protein crown research is proteome analysis, which usually
requires highly sensitive protein mass spectrometry. The protein crown composition refers
to the relative protein abundance (RPA) of the total protein in the crown, which is an
important parameter to describe the protein crown. However, the experimental method
is not only time-consuming but also expensive. Therefore, predicting the composition
of protein crowns by computation rather than laboratory measurement can greatly save
resources and even predict the unknown interactions between biological entities and
various nanodrugs. However, due to the complex properties of nanomaterials and the
complex composition of protein crowns, it is still challenging to predict the protein crowns
and their mediated nanobiological effects.

In addition to the above methods used to predict protein adsorption [28], Ban et al. [32]
built a small protein crown database of nanomaterial. Through optimizing machine learn-
ing using random forest algorithm combined with the internal data of the database and
the double verification of cell experiments, they achieved accurate prediction of single
protein and key functional proteins (such as immune protein, complement protein and
apolipoprotein) in the complex protein crown of nanomaterial, as well as cell recognition
mediated by functional protein crown (such as cell uptake and cytokine release). Compared
with the fitting results of quantitative factors and target values obtained by traditional
linear regression model (most R2 < 0.4), the R2 of this model can reach more than 0.75, and
its robustness, universality and accuracy are improved after optimization. Analysis of the
formation mechanism of protein crown will help to design ideal and safe nanomaterials in
the fields of nanomedicine, biosensors and organ targeting. In addition, Ouassil et al. [33]
developed a random forest classifier using mass spectrometry data to predict protein
adsorption on single-wall carbon nanotubes (SWCNTs) functionalized by ssDNA, with
accuracy of 78%, AUC of 76%, precision of 70% and recall of 65%. The machine learning
model allows people to quickly analyze the protein attributes in the public database to
determine the protein characteristics and interested proteins of the crown of SWCNTs.

Overall, biological activities of nanodrug will affect release, transport and metabolism
of drugs in vivo. It is of great significance to fully understand the biological activities of
drugs for assessment of their non-clinical safety and effectiveness. At present, the biological
activity prediction research of nanodrug carriers is still less, including cell uptake, protein
adsorption and oxidative stress (mainly causing toxic effects; see Section 5), which is largely
due to the more complex biological activities, insufficient research on the mechanism of
action and immature characterization methods compared with physicochemical properties.
In addition, traditional ML algorithms are often difficult to meet the needs of biological
activity prediction, and there is still upside potential in algorithm improvement. In addition
to model prediction, molecular simulation is also a promising means. The combination
of model prediction and molecular simulation is expected to realize prediction of the
dynamic changes of nanodrugs in the biological environment, which will greatly promote
the research of biological activities of nanodrugs and is a direction worthy of exploration in
the future.

4. Computing in Prediction of ADME

As a new drug, nanodrugs have the characteristics of slow controlled release and
targeting compared with ordinary drugs and can improve drug bioavailability. However,
potential toxicity and unclear mechanism of action have been the important reasons for
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the high failure rate of nanodrugs in clinical development [49]. Obviously, understand-
ing the fate (absorption, distribution, metabolism and excretion) of nanomedicine in vivo
is of great significance for evaluating the overall safety and promoting development of
nanomedicine (Figure 5a,b) [50]. As a simulation tool, the physiology-based pharmacoki-
netic (PBPK) model can be used to quantitatively describe and predict concentration, time
distribution and exposure of drugs in blood and individual organs, which is crucial for
efficacy/toxicity prediction and risk assessment and is helpful to guide design of nan-
odrugs and optimize their PK. Since the first semi-PBPK model of liposome doxorubicin
was published in 1999 [51], PBPK models have been studied for many types of nanopar-
ticles. However, applications to nanoparticles are still very limited and challenging due
to the complex in vivo transport mechanisms of nanoparticles, such as opsonization and
mononuclear phagocyte system (MPS) uptake, enhanced permeability and retention (EPR)
effect, lymphatic transport, cellular recognition and internalization, enzymatic degradation
and physical property changes [52]. At present, PBPK models developed for nanoparticles
are basically based on blood circulation, which connects organs or tissues into a system.
Different from the PBPK model structure of small-molecular drugs and biological products,
the unique interaction between nanoparticles and physiological system should also be
considered when constructing the PBPK model for nanoparticles.
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4.1. Computing in Prediction of Absorption

Nanodrugs can enter the body through many ways, such as vein, oral, subcutaneous
or muscle [55,56]. The route of administration is an important factor that determines the
absorption of nanodrugs. After intravenous administration, nanodrugs directly enter the
systemic circulation. After oral administration, drug-loaded particles can be absorbed in the
gastrointestinal tract through paracellular transport, cell ingestion and M cell uptake [57],
and a small amount may be absorbed into the systemic circulation through the lymphatic
system. After subcutaneous and muscular administration, the drug-loaded particles are
absorbed mainly through macrophages and lymph uptake [58] and then distributed into
the systemic circulation. Compared with the in vivo absorption of ordinary drugs, which
is mainly reflected by the determination of the concentration of active drugs in the sys-
temic circulation, evaluation of the in vivo absorption of carrier nanodrugs is relatively
complex. Therefore, PBPK models for conventional molecules are generally not suitable for
simulating absorption of nanodrugs [59].

In fact, nanoparticles enter cells mainly through endocytosis [42,43,60]. However,
endocytosis of nanoparticles is a very complex process and simulation of endocytosis
of nanoparticles increases the complexity and uncertainty of the PBPK model. To avoid
this complexity, PBPK model can use linear equations to simulate the size independent
endocytosis of nanoparticles. For example, Bachler et al. [61] have based uptake rates
on organ-specific characteristics, including capillary wall type, phagocytosis efficiency as
well as the amount of Ag NPs that passes through the capillary walls of each organ as
determined from organ blood flow normalized to the total blood volume. However, the
uptake rate of nanoparticles in vivo is not linear. It has been observed that the uptake
rate will slow down as saturation approaches [62]. In order to predict endocytosis of
nanomaterials more accurately, Lin et al. [63] used the Hill function (a time-dependent
uptake rate function) to predict the endocytosis of nanomaterials.

Furthermore, Rajoli et al. [64] applied PBPK modeling to address the feasibility of
developing monthly intramuscular injectable nanodrugs for antiretrovirals. Based on the
clinical data of each antiretroviral oral preparation, researchers expanded the PBPK model
with an intramuscular depot compartment to simulate drug release and absorption. Subse-
quently, the full PBPK model was verified against the existing antiretroviral nanodrugs.
Through simulation, the authors were able to optimize the combination of dose and release
rate of eight antiretroviral drugs to maintain therapeutic plasma concentration during the
entire administration interval. The prediction results show that, when the optimized dose
is within the dose range of intramuscular injection, the feasibility of each antiretroviral
drug nanodrug per month is confirmed.

4.2. Computing in Prediction of Distribution

After absorption, the nanodrug will be distributed throughout the body and in the
tissue [65–68]. The specific distribution still depends on the physical and chemical prop-
erties and surface properties of the drug-loaded particles and is also affected by many
factors, such as blood protein binding, tissue and organ hemodynamics and vascular tissue
morphology (such as the size of the gap). Because nanoparticles are often used to change
the biological distribution of encapsulated drugs, the method of accurately predicting the
distribution of nanoparticles in vivo will greatly guide the design and optimization of nan-
odrugs. Traditionally, two distribution models have been proposed to describe the tissue
distribution dynamics of small molecules: blood perfusion limited model and diffusion
limited model [14]. However, these two distribution models are not sufficient to accurately
describe the complex tissue distribution process of biological products and nanoparticles.
Therefore, it is very important to develop a PBPK model suitable for evaluation of nanodrug
distribution in vivo.

For example, Li et al. [69] applied a general PBPK model with limited permeability to
fit the biological distribution data of five poly(lactic-co-glycolic) acid (PLGA) nanoparticle
formulations prepared with varied content of monomethoxypoly (ethyleneglycol) (mPEG).
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Then, multiple linear regression was performed to establish the relationship between
the properties of nanoparticles (size, Zeta potential and number of PEG molecules per
unit surface area) and biological distribution parameters. For all five initial formulations,
the developed model fully simulated the experimental data. The predicted biological
distribution curve based on the physical and chemical properties of PLGA-mPEG495
nanoparticles (a sixth formulation) is close to the experimental data, reflecting properly
developed property–biodistribution relationships, which indicates that the model is suitable
for describing the biological distribution of PLGA-mPEG nanoparticles.

In addition, Bachler et al. [61] used PBPK model to estimate the absorption and sys-
temic distribution of silver nanoparticles and ionic silver after skin, intestinal or lung
exposure. This model can describe the tissue distribution of ionic silver and silver nanopar-
ticles with the size of 15 nm to 150 nm in rats and humans for risk assessment. In particular,
the model can distinguish the mucociliary cleared from the bile particles cleared in the feces.
Similarly, Li et al. [70] established a similar PBPK model, including mucociliary clearance,
phagocytosis and entry into the systemic circulation by alveolar wall penetration, to study
the biological distribution dynamics of combustion-generated CeO2 nanoparticles inhaled
by rats. The model successfully predicted the biological distribution of CeO2 nanoparticles
in various organs and showed that most nanoparticles were captured by phagocytes.

Unlike the conventional methods, Bachler et al. [54] proposed a new two-step method
to evaluate the biodynamics of inhaled NPs. In a first step, alveolar epithelial cellular
monolayers (CMLs) at the air–liquid interface (ALI) were exposed to aerosolized NPs
to determine their translocation kinetics across the epithelial tissue barrier. In a second
step, the distribution to secondary organs was predicted with a physiologically based
pharmacokinetic (PBPK) model (Figure 5c). The experimental results show that the com-
bination of in vitro experiments and computational methods can accurately predict the
pharmacokinetics of NPs in vivo (Figure 5d) and has the potential to replace short-term
animal studies aimed at evaluating the lung absorption and biological distribution of NPs.

4.3. Computing in Prediction of Metabolism

The active drugs and depolymerized carrier materials in the nano-carrier drugs are
mainly metabolized by metabolic enzymes in liver and other tissues in vivo. In addition,
drug-loaded particles are easy to be swallowed by MPS and then degraded or metabolized
by lysosomes, which may affect the type and quantity of metabolites of drugs and carrier
materials. Therefore, it is important to determine the main metabolic pathways of active
drugs and carrier materials and analyze their metabolites. However, in the published PBPK
model, due to the lack of knowledge of chemical and metabolic degradation processes,
first-order degradation kinetics are usually assumed for most nanoparticles. For example,
Lin et al. [71] assumed that all Quantum Dot 705 (QD705) disposition was associated with
the first-order rate of metabolism, kf, in the liver, and the time-dependent nature of this
rate constant was described by a Hill function.

Due to the unique physical and chemical properties of nanomaterials and the complex-
ity of biological effects, it is difficult to directly measure the metabolic data of nanodrugs
in vivo using existing technologies. One solution is that, as in Lin et al. [71], the degradation
rate measured in vitro can be used as the initial value of the parameters of the metabolic
model and the initial value can be further optimized by fitting the model with the available
ADME data in vivo [59].

4.4. Computing in Prediction of Excretion

Generally, nanodrugs are excreted mainly through glomerular filtration into urine
or excreted with feces in the form of bile secretion through the liver [52,72–74]. Due to
the influence of different physicochemical properties, the drug excretion pathway and
excretion rate will vary after the administration of nanodrugs. It has been proven that the
renal clearance depends on the size of nanomaterials, where nanomaterials less than 5.5 nm
can be effectively and completely eliminated by the renal clearance [72], while the renal
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clearance of larger nanomaterials is very slow [75]. Aborig et al. [76] assumed that the
renal excretion of gold nanoparticles with diameter larger than 10 nm was negligible. In
addition, hepatocytes are conducive to uptake of positively charged nanoparticles and intact
nanoparticles or their degradation products can be excreted in bile, but the hepatobiliary
excretion of nanoparticles is usually very slow (from hours to months) [74]. As excretion is
an important process to reduce the potential toxicity of nanodrugs, it is extremely necessary
to develop an appropriate PBPK model to evaluate it for nanodrug R&D.

At present, the PBPK model of nanomaterials mainly focuses on kidney and hepatobil-
iary clearance, and bile and urine excretion rates are highly influential parameters in many
nanomaterial PBPK models [77]. Generally, these excretion parameters of nanomaterials
can be mined from the literature. For example, according to the observation results in
literature [78], in the PBPK model constructed by Carlander et al., the urine excretion of
TiO2 NP was set to zero and the biokinetic distribution of TiO2 nanoparticles was accurately
simulated [79]. Similarly, Lin et al. [77] used rates in their PBPK model for Au NPs, which
were obtained from the study on tissue kinetics of PEG-coated Au NPs by Cho et al. [80].

Overall, the PBPK model is still the main application of computing in the study of
nanodrug pharmacokinetics. Studying the pharmacokinetics of nanodrugs in vivo through
calculation is conducive to evaluating safety and efficacy of drugs, guiding drug design,
screening new drugs, optimizing drug delivery plan and significantly reducing time and
costs in the research process. However, due to the lack of research on the metabolism
process of nanomaterials in vivo, the PBPK model currently constructed mainly focuses
on absorption, distribution and excretion of nanomaterials. In addition, due to the limited
actual physiological data and lack of professionals, some parameters in many PBPK models
still need to be further optimized and the prediction performance needs to be improved.

5. Computing in Prediction of Toxicological Assessment

Due to their special physicochemical characteristics, such as nanoscale effect and
nanostructure effect, nanodrugs have relatively special biological characteristics. While
providing benefits to clinical application, the safety risks they carry may also increase
correspondingly [81]. In addition to intravenous injection, nanodrugs enter the human
body mainly through skin penetration, the digestive system and respiratory system. In the
blood, nanodrugs will interact with blood proteins to form protein crowns, which will affect
the physicochemical properties of blood and cells [82]. In addition, nanodrugs can also
reach various tissues of the human body through the blood circulation system, and some
nanodrugs are absorbed by organs, which will cause damage to organs and tissues [83,84].
Toxicity has always been the focus of attention regarding safety of nanodrugs. At the same
time, toxicity is also a major reason for failure of drug R&D. Therefore, only by accurately
predicting toxicity of nanodrugs can we ensure safety of drugs, better protect patients and
improve the efficiency of drug development.

At present, there are many kinds of nano-carrier materials with different toxicity
mechanisms. In view of various mechanisms, although there have been a wide range of
toxicological evaluation experiments and means of nanodrugs in the world [85,86], there
has not yet been a unified framework to comprehensively and effectively evaluate toxicity of
nanodrugs. Currently, to evaluate the toxicity of a nanodrug in detail, researchers usually
need to evaluate it from many aspects, such as lung toxicity, kidney toxicity, immune
toxicity, genetic toxicity, carcinogenicity and so on [87–91]. However, most of the traditional
toxicological research methods are based on experimental tests, which have the problems
of long time, high cost and cumbersome operation. Therefore, it is necessary to use non-test
assessment methods in hazard assessment of nanodrugs. As an auxiliary tool for simulation
and prediction, computing can make up for the above deficiencies to a large extent, identify
and evaluate potential risks, reduce use of biochemical reagents and experimental animals,
guide and optimize design of nanodrug structures and even explore new mechanisms of
nanodrug toxicity.
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In the past decade, many computational methods have been developed to predict
toxicological effects in nano form (Table 1). Huang et al. [92] built a comprehensive dataset
of 30 metal oxide nanoparticles (MeONPs) and generated descriptors of MeONPs through
quantum chemical calculations. Based on the constructed database and quantum chemical
calculation, the authors established a QSAR model using machine learning to predict the
pulmonary inflammatory effect induced by MeONPs. The prediction accuracy of the model
is more than 90%. Through verification of the experiment, it is proven that the external
prediction ability of the model is good, and the accuracy rate is up to 86%. Machine learning
model analysis shows that electronegativity, ζ-potential and cationic charge are the key
parameters that affect the inflammatory effect induced by MeONPs. DFT calculation and
experimental results further reveal the potential toxicity mechanism: metal oxides with low
metal electronegativity and positive ζ-potential are more likely to cause lysosomal damage
and inflammation. This work provides a tool for toxicity screening and safety design of
nanomaterials and also provides the possibility of replacing large-scale animal experiments
with computational simulation in the future. In addition to prediction of lung toxicity, Ban
et al. [93] collected data from published literature to build a database containing 250 pieces
of reproductive toxicity data of nanomaterials and used random forest algorithm to model
and predict impact of nanomaterials on reproductive toxicity in mice. The results show that
the RF model has good prediction performance in all subsets, with R2 values greater than
0.6. In addition, importance analysis of the characteristics of the random forest showed that
type of nanomaterials (e.g., Ag, MWCNT and TiO2) and category of toxicity indicators (e.g.,
sperm parameters, testosterone level and testis index) were the most important factors to
be considered when evaluating reproductive toxicity of nanomaterials.

Furthermore, Yu et al. [94] proposed a tree-based random forest feature importance and
feature interaction network analysis framework (TBRFA) to predict and analyze pulmonary
immune responses and lung burden of nanoparticles. The prediction accuracy of the model
meets that the R2 value of all training sets is >0.9, and the R2 value of half of the test sets is
>0.75. In addition, TBRFA uses multiway importance analysis to overcome the deviation
caused by the structural imbalance of small sample datasets and identifies that exposure
recovery time, dose, specific surface area of materials and material size are important
factors that affect the biological effects induced by nanomaterials. TBRFA also builds
feature interaction networks. By calculating the interaction coefficient between the two
features, it revealed that the specific surface area and surface charge, specific surface area
and length, length and diameter of materials play a role of mutual restriction and influence
in the process of inducing biological effects and improved the interpretability of the model.
This study provides an important idea for design and application of ideal nanoparticles.

Overall, toxicity determination is one of the most important and challenging steps
in the drug discovery and development cycle. Similar to prediction of physicochemical
properties, toxicity of nanodrugs and nanomaterials is mostly predicted by using ML
algorithms and QSAR model. Use of predictive toxicology models provides a fast, cheap
and reliable alternative for large-scale in vivo and in vitro bioassay, which helps to solve
the ethical, economic and efficiency limitations of traditional toxicology experiments and
also promotes understanding of toxicity mechanisms. However, the following challenges
still exist in the prediction model of nanotoxicity. On the one hand, the amount of toxicity
effect data of nanomaterials is limited, and most of them are in vitro data, lacking relevant
data of toxicity in vivo. On the other hand, proper descriptors play a crucial role in the
prediction performance of the models. At present, there is still a lack of descriptors that can
accurately characterize the overall structure of nanomaterials.
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Table 1. Computational case for predicting nanotoxicity.

Types of Nanomaterials Descriptors Computing Methods End Point of Toxic
Effect Reference

Metal and metal oxide
nanoparticles

Physicochemical and
2D-topological
descriptors

QSAR, ANN CC50, LC50, EC50 [95]

Metal oxide nanoparticles
Periodic-table-based
and physicochemical
descriptors

ANN log(1/EC50) [96]

Metal oxide nanoparticles Structural descriptors QSAR, GA-MLR log(1/EC50) [10]

carbon nanotubes Molecular descriptors QSAR, RF, kNN, SVM acute cytotoxicity [12]

Inorganic nanomaterials Atom-based
quantitative descriptors LightGBM Cytotoxicity [97]

TiO2 hybridized with
multi-metallic (Ag, Au, Pt) alloy
nanoparticles

Empirical descriptors QSTR, MLR, KRR, SVR,
GPR, RFR EC50 [98]

Metal oxide nanoparticles

Structural,
periodic-table-based
and physicochemical
descriptors

C4.5, LGR, RF, kNN,
DT, LWL, Bayesnet,
SVM

Immunotoxicity [99]

Two-dimensional nanomaterials

Free energy analysis,
MD, computational
indicator of
nanotoxicity (CIN2D)

Cytotoxicity [100]

Silver nanoparticles
Physicochemical and
experimental
descriptors

DT, RF Cytotoxicity [101]

Metal oxide nanoparticles
Periodic-table-based
and physicochemical
descriptors

LR, RF, SVM, NN Cytotoxicity [102]

Multi-walled carbon nanotubes
Physicochemical and
experimental
descriptors

QSAR, PCA, LR, RF,
SVM, NB Genotoxicity [103]

Metal oxide nanoparticles
Periodic-table-based
and experimental
descriptors

LDA, NB, MLogitR,
SMO, AdaBoost, J48,
RF

EC50 [104]

Cadmium-containing quantum
dots and metal oxide nanoparticles LightGBM IC50 [105]

Engineered nanomaterials Physicochemical
descriptors RF Developmental toxicity [106]

TiO2 and ZnO nanoparticles Physicochemical
descriptors MLR, LDA LDH release [107]

Metal oxide nanoparticles Molecular descriptors QSAR, MLR log(LC50) [108]

Metal oxide nanoparticles SMILES-based optimal
descriptors QSAR pEC50 [109]

Metal oxide nanoparticles SMILES-based optimal
descriptors QSAR, MC-PLS LC50 [110]

Metal oxide nanoparticles Physicochemical
descriptors QSAR, MLR log(1/EC50) [111]

AdaBoost: adaptive boosting, ANN: artificial neural network, C4.5: C4.5 decision tree, DT: decision table, GA-
MLR: multiple regression method combined with genetic algorithm, GPR: Gaussian process regression, J48: C4.5
decision tree, kNN: k-nearest neighbor, KRR: kernel ridge regression, LDA: linear discriminant analysis, LGR:
logistic regression, LightGBM: light gradient boosting machine, LR: logistic regression, LWL: locally weighted
learning, MC-PLS: Monte Carlo partial least square, MD: molecular dynamic, MLogitR: multinomial logistic
regression, MLR: multiple linear regression, NB: naive Bayes, NN: neural network, PCA: principal components
analysis, QSAR: quantitative structure–activity relationship, QSTR: quantitative structure–toxicity relationship,
RF: random forest, RFR: random forest regression, SMO: sequential minimal optimization, SVM: support vector
machine, SVR: support vector regression.
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6. Computing in Other Aspects of Nanodrug R&D Process
6.1. Computing in Prediction of Nanomodeling

Traditionally, the properties of nanomaterials are often measured and evaluated
through experiments, but this is not only time-consuming and laborious but also may
face ethical problems in animal experiments. In addition, changes in physicochemical
properties of nanomaterials will also greatly affect their biological effects in vivo. For
the same type of nanomaterials, it is often necessary to evaluate properties of different
sizes and shapes. This has brought great challenges to the workload of the experiment
and preparation process. Therefore, it is an economically feasible alternative to model for
nanomaterials through computing method and then predict their properties.

For instance, Wang et al. [24] first synthesized a large library of gold nanoparticles
and obtained comprehensive data on their characteristics and biological activities. At the
same time, each nanoparticle in the library was simulated by calculating the nanostructure
characteristics of each nanoparticle, and a virtual gold nanoparticle library was established
using the in-house GNPrep program. In addition, a quantitative nanostructure–activity
relationship (QNAR) model was built using the kNN algorithm to predict and design
nanoparticles with required biological activities. The experimental results of the designed
nanoparticles are consistent with the model predictions (Figure 6a). These findings show
that it is completely feasible to predict the properties of nanomaterials through virtual mod-
eling and can significantly reduce the efforts and costs of nanomaterial discovery. Further,
Yan et al. [27] used the above GNPrep program to model for the real gold nanoparticles
dataset and built a virtual gold nanoparticles library. Based on these vGNPs, the authors
calculated new nano-descriptors and developed a quantitative nano-structure activity rela-
tionship (QNAR) model to predict the physicochemical properties and biological activities
of gold nanoparticles. The prediction results show that the model has high predictability
for physicochemical properties (log P and Zeta potential) and simple activities (two cellular
uptakes) but moderate accuracy for more complex bioactivities (GNP-enzyme bindings
and ROS induction). Similarly, Liu et al. [112] applied the above modeling strategy to build
a virtual carbon nanoparticle library based on experimental data. They developed the
QNAR model by calculating the nano-descriptors of the virtual carbon nanoparticles and
successfully predicted the cytotoxicity and four different inflammatory reactions induced
by the PM2.5 model.

6.2. Computing in High-Throughput Screening of Nanodrugs

With the increasing demand for nanodrugs, finding suitable new nanodrugs has
become a major task in nanodrug research. However, the traditional drug screening mode
is mainly based on the common cell model or animal model, which has limitations, such
as high cost and long cycle, and high requirements on the operating skills of technical
personnel [84]. It is difficult to carry out effective and economic screening of a certain
number of samples in a short time, which greatly limits the development process of
new nanodrugs. At present, computer-aided technologies (such as machine learning and
molecular simulation) have been widely used in virtual screening of small-molecular drugs
and have achieved impressive results. As an efficient and accurate means, computer-aided
technology has also been used for high-throughput screening of nanodrugs to replace
traditional methods.
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Figure 6. Computational applications in other aspects of nanodrug development. (a) Schematic
workflow of predictive modeling and QNAR model performance. Adapted with permission from [24],
American Chemical Society, 2017. (b) A drug screening system utilizing convolutional neural network
based on flow cytometry single-cell images provides accurate and rapid approach for screening drug
and nano-carrier drug system. Adapted with permission from [113], Wiley Online Library, 2021.
(c) Dissipative particle dynamics simulations of TDN-20 interacting with the cell membrane and result
of the TDNs attacking the membrane. Adapted with permission from [114], American Chemical
Society, 2018.
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Recently, some studies have shown that some anticancer drugs can form stable
nanoparticles with ultra-high drug-loading volumes when combined with specific small-
molecular excipients. In view of this, Reker et al. [115] combined molecular dynamics (MD)
simulation and machine learning with a high-throughput experimental co-aggregation
platform to quickly identify effective drug–excipient combinations. In this work, they ex-
tracted drugs and excipients from DrugBank and FDA libraries, respectively, and produced
about 2.1 million drug–excipient combinations. Machine learning analysis of the dataset is
completed using a random forest classifier. In addition, high-throughput dynamic light
scattering (DLS) is also used to train and validate the platform. Although the relevant
characteristics of MD contribute a great deal to accurate prediction of co-aggregation and
help to understand stability of nanoparticles, considering the cost of calculation, it is obvi-
ously unrealistic to carry out MD for 2.1 million potential drug–excipient pairs. Therefore,
researchers have applied machine learning models specifically for training of physicochem-
ical properties. The improved model has slightly lower retrospective performance but
higher computational ability and predicts formation of copolymer with a precision of 0.94.
After that, several predicted condensates were verified in the test set through experiments,
proving the reliable prediction ability of the screening platform.

Further, Zhu et al. [113] developed a drug screening system (called DeepScreen)
utilizing convolutional neural network based on flow cytometry single-cell images. The
model can efficiently extract, identify and locate tiny variation from cell apoptosis and
slight changes in cellular period caused by drugs. Even under interference of nanomaterials
and spontaneous fluorescence of drugs, the effect of drugs can be accurately judged by
DeepScreen (Figure 6b). Compared with common experimental methods, using this model
to screen nanodrugs can greatly shorten detection time from a few days to 2–6 h and
significantly improve detection efficiency. Further, the experimental results show that the
detection accuracy of the model is as high as 0.966. All these superior performances show
that DeepScreen is a nanodrug screening system with broad application prospects.

6.3. Study on Mechanism of Action

When nanodrugs enter the body, they will interact with various components (such
as cell membrane and protein) in the biological environment. Understanding how nan-
odrugs interact with biological components is crucial to grasp the absorption, distribution,
metabolism and excretion process of nanodrugs in the body and clarify related risks to
human health. Relatively speaking, due to the complexity of the behavior of nanodrugs
in vivo, the existing in vitro experiments cannot completely simulate the internal environ-
ment. As a computational simulation tool, molecular simulation can simulate experiments
that are difficult to carry out under normal conditions, reduce costs of experiments and
also provide high security. Therefore, molecular simulation is a good alternative.

For example, Ding et al. [114] reported that virus-mimicking designer DNA nanostruc-
tures act like charge attraction on the interface of cell membrane. The results showed that
cellular internalization of tetrahedral DNA nanostructures (TDNs) mainly depended on
lipid mediation, where caveolin plays a key role in providing short-range attraction at the
membrane interface. After that, the authors studied the interaction between a tetrahedral
DNA nanostructure with edge length of 20 bp (TDN-20) and the simulated cell membrane
by conducting dissipative particle dynamics (DPD) simulation (Figure 6c). Both simulation
and experimental data show that TDN approaches the membrane mainly through its cor-
ners to minimize electrostatic repulsion, and they cause uneven charge redistribution in
the membrane under the short-distance limit of caveolin. This work provides new insights
into the mechanism of charge attraction at the nanoscale.

In addition, the method based on machine learning can also be used to predict the
interaction sites of nanomaterials and proteins. Cha et al. [116] extended the machine
learning algorithm for protein–protein interaction training to interaction between inorganic
nanoparticles and proteins. The results showed that the predicted protein interaction sites
of nanoparticles almost matched the experimental results. These findings can be extended
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to other organic and inorganic nanoparticles to predict their interactions with biomolecules
and other chemical structures.

6.4. Guidance on Rational Design of Nanodrugs

Several studies have shown that the physicochemical properties of nanodrugs and
nanomaterials will greatly affect their behavior and activities in vivo, such as cycle time,
biological distribution, targeting and immunogenicity, and the physicochemical properties
are relatively easy to be controlled and adjusted. Therefore, it is an excellent choice to design
nanodrugs reasonably by adjusting physicochemical properties to build personalized
functional nanodrugs.

For example, Shamay et al. [117] described a targeted drug delivery system that is
accurately and quantitatively predicted to self-assemble into nanoparticles based on the
molecular structures of drugs themselves. These drugs can be assembled with the help of
sulfated indocyanines to form particles with up to 90% ultra-high drug loading. At the
same time, the authors designed a quantitative structure–nanoparticle assembly prediction
(QSNAP) model based on the decision tree algorithm, which can accurately predict nano-
assembly and nanoparticle size. Based on the above model, the authors found targeted
drug carrier nanoparticles (nanoparticles combined with kinase inhibitors sorafenib and
trametinib) formed by self-assembly of small molecules. The nanoparticles can selectively
target human colon cancer and liver cancer in in situ models expressing CAV1 to yield
significant therapeutic effects while preventing inhibition of healthy tissues. This study
provides guidance for computational design of nanodrugs based on the quantitative model
of drug payload selection.

Furthermore, from bottom to top, it is also a good choice to develop nanodrugs with
required functions based on the mechanism of action. However, there is still a lack of re-
search on the in vivo behavior mechanism of nanodrugs and nanomaterials, which greatly
increases blindness and uncertainty of nanodrug R&D. In view of this, Zhu et al. [118]
combined protein-based nanoprobes and image-segmentation-based machine learning to
establish a new technology for high-throughput quantifying single-vessel permeability
in tumor, named Nano-ISML. Through quantitative analysis of >67,000 individual blood
vessels from 32 tumor models, it is systematically revealed that there is great heterogeneity
in tumor vascular infiltration. It was found that the percentage of high-permeability vessels
in different tumors was more than 13 times and the penetration ability in vessels with the
highest permeability is >100 times more than vessels with the lowest permeability, which
mainly depended on tumor type and vessel type. The research data show that passive
extravasation and transendothelial transport were the dominant mechanisms for high- and
low-permeability tumor vessels, respectively. The authors proposed a new strategy for
classification of hypertonic and hypotonic tumors based on this mechanism. Based on the
research results of tumor vascular permeability mechanism of nanomaterials, the authors
developed genetically tailored protein nanoparticles with improved transendothelial trans-
port in low-permeability tumors with the help of nano-ISML-assisted nanodrug design,
which improved the therapeutic effect of drug delivery system on tumor models.

In addition to the above two cases that guide design of nanomedicine, it is also a new
perspective to build a virtual biological environment (such as tumor environment) to simu-
late the biological behavior of nanodrugs or nanomaterials and then realize optimization
of nanodrugs or nanomaterials [119]. However, the effectiveness of practical application
of this method should remain for further discussion. On the one hand, the research on
the mechanism of nanomaterials is still insufficient, which directly affects the rationality
of the constructed virtual environment. On the other hand, it is difficult to guarantee the
reliability of physiological parameters of the model.

6.5. Simulation Study of Nanodrug Delivery

As a computing method for simulation, application of molecular simulation can intu-
itively reflect structure and behavior of nanodrugs and obtain dynamic information under
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different conditions. Although there are still some limitations, simulation of nanodrug
delivery can provide sufficient reference information for implementation of an experiment
and help to improve design of a nanodrug delivery system. At present, application of
molecular simulation in nanodrug delivery mainly focuses on self-assembly, drug release,
stability and interaction with cell membrane of nanodrugs. For example, Kordzadeh
et al. [120] used molecular dynamics (MD) simulation and density functional theory (DFT)
methods to study the delivery, loading and release of doxorubicin using functionalized
carbon nanotubes (f-CNT) (functionalized by carboxyl and folic acid, respectively, named
CNT-COO and CNT-COO-FA) as carriers. The simulation results showed that, at pH = 7,
CNT-COO-FA had stronger binding with drug molecules and could carry more drug. The
drug release simulation around the cancer cell model (pH = 5.5, containing folate receptor
on cell surface) shows that CNT-COO-FA, with a pH- and ligand-sensitive mechanism,
has strong interaction with cancer cells, resulting in higher drug release, which is con-
sistent with the experimental results. Based on the results obtained, it can be found that
the pH and ligand sensitivity mechanisms are the reasons for the higher drug delivery
efficiency of CNT-COO-FA. These results have certain guiding significance for design of
high-performance drug delivery systems.

Moreover, Katiyar et al. [121] studied the effect of media–drug and carrier–drug
interactions on pH-responsive drug carriers (using poly(acrylic acid)(PAA) oligomers)
through two sets of simulations with molecular dynamics simulation. The first set of
simulation results showed that PAA was relatively less ionized in the gastric juice model
and formed aggregates because the pH value of gastric fluid was significantly lower than
the pH value of intestinal fluid. The second group of simulation results showed that,
with an increase in pH, although PAA aggregation decreased, the diffusion coefficient
of DOX would decrease due to an increase in the ionic complexation of PAA with DOX.
The research results of these two groups show that carrier aggregation and carrier drug
interaction are competitive influences that jointly determine drug release of pH-responsive
polymers. The method in this paper can also be applied to other new polymers and drugs,
which is helpful to design and develop potential drug delivery systems. In short, as an
auxiliary tool, molecular simulation can accelerate development of drug delivery systems
to a certain extent, but it cannot completely rely on molecular simulation. The limitations
of simulation methods make the results inevitably different from the actual situation. More
work needs to be completed to explore these problems.

Overall, application space of computing in R&D of nanodrugs is very broad. For com-
plex applications, model prediction and molecular simulation are often used in combination
at the same time, which greatly promotes the development process of nanodrug discovery.
As an efficient and practical tool, computing has been widely used in development of
common drugs. Therefore, its application prospect in nanodrugs can learn from common
drugs. However, application of computing in these areas also has problems faced by the
above several computing topics, such as insufficient learning ability of algorithms and lack
of appropriate descriptors.

7. Conclusions

With progress in science and technology, development of computer technology has
entered a fast and new era. Significant improvement in computer performance and the
availability of big data have greatly promoted development of various algorithms and
simulations and further accelerated application of computer technology in artificial intelli-
gence, life science, materials science and other fields. Although drug R&D is a relatively
traditional and conservative field, the proportion of computing in drug development has
risen rapidly in the past decade. At present, computer technology has been successfully
applied in most aspects of the early stage of drug discovery, which has greatly promoted
development of drug R&D.

As innovative drugs developed by using nanotechnology, the research and develop-
ment process of nanodrugs also widely uses computing methods, such as model prediction
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and molecular simulation, including high-throughput screening, structural characteriza-
tion, physicochemical and biological properties prediction, pharmacokinetic analysis and
toxicity prediction. In the computing tools, application of ML algorithms in AI is dominant
and has achieved good research results, which is encouraging.

Although computational research can never replace laboratory experiments, applica-
tion of computational tools can reduce blindness and contingency in nanodrug develop-
ment, accelerate development progress and save time and costs. As a technology-intensive
and fast-updating discipline, computer technology is bound to be deeply integrated with
nanodrug R&D and become the engine to promote high-quality development of nanodrugs.

Despite having achieved many successes in regulation and design of nanodrug appli-
cations, computing still faces many challenges. In particular, obtaining a large amount of
reliable data remains the main challenge in the process of nanodrug R&D. Compared with
small molecular databases (such as PubChem database, containing 111 million compounds),
protein databases (such as uniport database, containing more than 200 million protein data)
and gene databases (such as KEGG database, containing more than 38 million biological
gene data), the amount of data in the nano-field is small and the quality of data is not ideal.
On the one hand, credibility of data is highly dependent on the experimental conditions
and technical level of the testers. At the same time, the biological system of nanodrugs is
extremely complex, which also has a great impact on the instability of the experimental re-
sults. On the other hand, the experimental methods related to nanomaterials are expensive,
time-consuming and laborious. It is difficult to determine the properties of nanomaterials
with a wide variety and large number by experimental methods. One way to solve this
dilemma is to build open databases to share data. In addition, nanomaterial data should
also be obtained through experimental methods or data mining, and these large amounts
of nanomaterial data should be unified into a standard database to facilitate data sharing
between different research groups. However, there are still some difficulties in this process
and there is a long way to go.

Lack of appropriate descriptors is also a problem we have to face. Construction of
nanodrug prediction models often requires participation of nano-descriptors. Appropri-
ate nano-descriptors can greatly improve prediction accuracy. Nano-descriptors used
in previous studies are mainly divided into experimental descriptors, ligand descriptors
and quantitative calculation descriptors [122]. However, experimental descriptors are
time-consuming and laborious and the repeatability is poor. Ligand description is only cal-
culated from the surface ligand and cannot fully include information of nanomaterials, such
as type, particle size, ligand distribution and density. Quantitative computing descriptors
consume a great deal of computing resources, and it is difficult to calculate nanomate-
rials with large particle size. Therefore, the lack of descriptors that can characterize the
overall structure of nanomaterials is an important obstacle to use of models to predict the
biological effects of nanodrugs. One way of thinking is to solve the descriptor problem
by using images directly converted from nanostructures. For example, inspired by face
recognition technology, researchers have developed a new nanostructure labeling method
that automatically converts nanostructures into images and performs convolutional neural
network modeling [122]. Compared with the traditional ML method, this kind of method
does not need complex nano-descriptors calculation and directly learns nanostructure
features from NM images. However, there are still defects in the current nanostructure
image and convolution neural network modeling. For example, a nanostructure image
shows diversity and difference in nanostructures, but, because of the complexity of nanos-
tructures, it still cannot fully reflect the experimental value. In the future, more advanced
3D or higher-dimensional nanostructure imaging methods are needed [122]. In addition,
through molecular dynamics simulation of nanostructures, simulation-derived descriptors
from computational simulation can also be regarded as a solution.

Another major challenge is the limitation of molecular simulation for complex systems.
Although molecular simulation based on force field is increasingly widely used in chemistry,
materials and life systems, it plays an important role in obtaining the structure and dynamic
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properties of complex molecular systems. However, in application of complex systems, such
as nanodrugs, molecular simulation still has bottlenecks, such as limited simulation scale,
low accuracy, slow calculation and unstable convergence, that need to be solved. In recent
years, development of deep learning methods and software and hardware architectures
has provided new technical support and ideas for progress in molecular simulation. The
precision of molecular dynamics simulation based on neural network can be comparable
with that based on quantum mechanics, but its operation speed is tens of thousands of
times faster than that of the latter. In general, achieving higher efficiency, simulating larger
systems, achieving longer evolution time and obtaining more accurate simulation results
are the future development trends of molecular simulation in application of nanomedicine.

8. Future Perspectives

With the rapid development of computer technology and nanotechnology, many of
the above challenges are likely to be solved in the near future. Application of computing
in the process of nanodrug research and development is bound to be more extensive and
deeper, which will also ameliorate the situation of high cost and high risk of failure in R&D
of nanodrugs. Similarly, nanodrugs will also have better ADMET characteristics, targeting
activity and safety under precise regulation and design. With the help of computer technol-
ogy, we will also have a deeper understanding of the biological effects and mechanism of
action of nanodrugs and provide more accurate treatment plans for more clinical treatment
groups. In addition, calculation will not only be limited to the development stage of nan-
odrugs but also applied to recruitment of patients in clinical trials. For a long time, it has
been time-consuming and laborious to recruit enough suitable patients for clinical trials.
Building models and forecasting disease data may help pharmaceutical companies identify
and recruit target patients more accurately and quickly.

On the other hand, popular AI technology can also further strengthen cooperation
with nanodrug R&D. For example, computer vision technology of AI can be used to
analyze the distribution imaging and tissue imaging of nanodrugs or nanomaterials in vivo,
and it is more likely to find information that is ignored by human beings. In addition,
with increasing research on nanodrugs, several related research papers have also been
published. How to retrieve high-quality nanodrug literature that meets requirements in a
short time and quickly find more hidden information from the intricate literature is still a
major problem for researchers. Further, text mining based on natural language processing
technology of AI is an effective way to solve the above problems.

In short, computing has shown potential in all stages of nanodrug R&D. In addition to
the content discussed above, there is more room for computing to be explored. However,
development of nanodrugs is still a slow business and application of computing in it
is just beginning. We are unlikely to see earth-shaking changes overnight. However,
there is no doubt that computing will change some processes in nanodrugs R&D and
accelerate progress.
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