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Abstract: Graphene has been studied thoroughly for its use in biomedical applications over the
last decades. A crucial factor for a material to be used in such applications is its biocompatibility.
Various factors affect the biocompatibility and toxicity of graphene structures, including lateral size,
number of layers, surface functionalization, and way of production. In this work, we tested that
the green production of few-layer bio-graphene (bG) enhances its biocompatibility compared to
chemical-graphene (cG). When tested against three different cell lines in terms of MTT assays, both
materials proved to be well-tolerated at a wide range of doses. However, high doses of cG induce
long-term toxicity and have a tendency for apoptosis. Neither bG nor cG induced ROS generation or
cell cycle modifications. Finally, both materials affect the expression of inflammatory proteins such as
Nrf2, NF-kB and HO-1 but further research is required for a safe result. In conclusion, although there
is little to choose between bG and cG, bG’s sustainable way of production makes it a much more
attractive and promising candidate for biomedical applications.

Keywords: nanomaterials; bio-graphene; chemical-graphene; biocompatibility; cytotoxicity; biomedical
applications

1. Introduction

Carbon-based nanomaterials, which include graphene and its derivatives, as well as
carbon nanotubes (CNTs) and fullerenes [1], have attracted extremely high interest over
the last few decades both in the scientific and the industrial world due to their unique
physicochemical properties [2]. Of the above, pristine graphene and its derivatives (i.e.,
graphene oxide (GO), reduced graphene oxide (rGO), graphene quantum dots (GQDs),
graphene nanoribbons (GNRs), graphene nanoplatelets (GNPs), etc.) [3], have been studied
thoroughly as they appear to be promising candidates for biomedical applications such
as drug delivery [4], biosensing [5–7], cancer therapy [8,9], tissue engineering [10] and
bioimaging [11].

Graphene was isolated first in 2004 via the mechanical exfoliation of graphite by Geim
and Novoselov [12]. Since then, the synthesis of graphene has been achieved at a large-
scale via different methods [13], such as liquid-phase exfoliation (LPE) [14], chemical vapor
deposition (CVD) [14], and epitaxial growth [15]. Although all these methods effectively
produce high-quality graphene, they are expensive and require chemical compounds,
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which are usually hazardous and harm the environment and human health. Thus, efforts
have been made into the development of more eco-friendly methods for the exfoliation
of graphene that employ the use of green solvents and stabilizers instead of chemical
compounds [16,17].

Apart from physicochemical properties, a crucial factor for a nanomaterial to be used
in biomedical applications is its biosafety and biocompatibility. Biocompatibility refers
to the ability of a foreign material to interact appropriately with its host in a specific ap-
plication. It has challenged the scientific community since the first use of materials in
medicine [18]. Nowadays, with graphene-family materials having conquered the biomedi-
cal world, biocompatibility must be of high priority for scientists. Unfortunately, this is
not the case, as the existing bibliography regarding the biocompatibility and toxicity of
promising graphene-based materials is scarce. Additionally, despite evidence regarding
the in vitro toxicity of graphene, only limited data exist about cellular alterations induced
by these compounds [19]. Moreover, for graphene-based nanomaterials, biocompatibility
and cytotoxicity can be affected by various features such as lateral size, purity, number
of layers, surface energy (hydrophobicity/hydrophilicity), surface functionalization and
dosage [20]. For this reason, every newly synthesized graphene-compound must be treated
differently concerning its unique properties and tested thoroughly in various in vitro and
in vivo models before use.

Graphene-based materials have been applied to produce many innovative biosensors
in the past years [21]. A step towards sustainable electronics is the application of method-
ologies that produce greener materials. Chemical exfoliated graphene and graphene-based
materials have been successfully used in glucose monitoring systems [22] as substrates for
enzyme immobilization in enzymatic glucose detectors and, due to their electrocatalytic
properties for direct glucose oxidation, in non-enzymatic sensors [6]. However, sustain-
ability requires the substitution of critical materials with more environmentally friendly
alternatives. To that cause, we report for the first time data on the biocompatibility of
bio-graphene (bG) that could potentially be used as a core material for glucose sensors.
A skin-adhered biosensor is in continuous contact with the epidermis (outer layer of the
skin) and, for this reason, assessments were performed against three different cell lines
derived from the skin, epithelium, and the immune system, to get the toxicity’s bigger
picture. We examined two different graphene compounds, synthesized either with chemi-
cal (chemical-graphene (cG)) or green procedures (bio-graphene (bG)) in cytotoxicity and
in vitro biocompatibility assays. bG was produced with an environmentally friendly tech-
nique for the exfoliation of graphene with ultrasonication in water, using only bovine
serum albumin (BSA) as an exfoliating, stabilizing, and modifying agent [23]. As the green
exfoliation of graphite is a novel, economical and more sustainable way of production, an
evaluation of the biosafety of the product is not only necessary but also could lead to new
possibilities and applications.

2. Materials and Methods
2.1. Chemicals and Reagents

Dulbecco’s Modified Eagle’s Medium High glucose, RPMI-1640 Medium, Phosphate
Buffer Saline (PBS), Thiazolyl blue tetrazolium bromide (MTT), 2′, 7′-Dichlorofluorescin
diacetate, ≥97% (DCFDA), Crystal Violet, Glycine, Trizma base, Deoxycholic acid, Sodium
dodecyl sulfate, phenylmethylsulfonyl fluoride (PMSF), Ammonium persulfate, Protease,
and phosphatase inhibitor cocktail, Laemmli-Lysis buffer, bovine serum albumin (BSA,
98% Fraction V) and N,N-Dimethylformamide (DMF) were purchased from Sigma-Aldrich
Chemical Co. (St. Louis, MO, USA). Fetal bovine serum (FBS) was obtained from PAN
BIOTECH (Aidenbach, Germany). Trypsin-EDTA, Penicillin–Streptomycin and L- Glu-
tamine were purchased from Biowest (Riverside, CA, USA). Hanks’ Balanced Salt Solution
(HBSS) was obtained from Biosera (Nuaille, France). FITC Annexin V, Annexin V Binding
buffer and Propidium Iodide (PI) were purchased from BioLegend Inc. (San Diego, CA,
USA). Triton X, Tween 20 and Glycerol were purchased from Thermo Fisher Scientific
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Inc. (Waltham, MA, USA). Precision Plus Protein Dual Color Marker and Clarity Western
ECL Substrate were purchased from Bio-Rad Laboratories, Inc. (Hercules, CA, USA). Pri-
mary rabbit monoclonal antibodies to HO-1 (1:750) to NF-κB (1:1000) and NRF2 (1:750),
as well as secondary rabbit-specific horseradish peroxidase-conjugated antibody (1:1000),
were all purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA). Primary
mouse monoclonal antibody to β- tubulin (1:500) and secondary mouse-specific horseradish
peroxidase-conjugated antibodies (1:1000) were obtained from Santa Cruz Biotechnology
(Santa Cruz, CA, USA).

2.2. Synthesis of Bio-Graphene (bG)

For the synthesis of bio-graphene (bG), a suspension of 100 mg of graphite in 20 mL of
double distilled water was subjected to ultra-sonication for one hour (200 W, 10 kHz and
pulser 50%). Next, 100 mg BSA (dissolved in 5 mL of double distilled water) was transferred
to the partially exfoliated graphitic sheets, and the graphite–BSA solution was incubated at
room temperature under stirring for 1 h. These steps result in the production of few-layered
bG, where BSA is used as both the exfoliation agent and the stabilizer of the graphitic
sheets, as recently published [23]. Herein, the next step was slightly modified, involving
the centrifugation of the mixture at 2500 rpm for 10 min to separate the non-exfoliated
graphite. The supernatant was carefully separated from the non-exfoliated graphite sheets.
The supernatant acquired after the centrifugation was freeze-dried, and the powder was
gathered and weighed. The concentration of bG was calculated using the equation:

Concentration (mg/mL) = mg of freeze-dried powder/mL of supernatant

2.3. Synthesis of Chemical-Graphene (cG)

The chemical production of graphene sheets entails the utilization of graphite as a
starting material. There are various methods for the chemical exfoliation of graphite into
graphene [24]. The oxidation of graphite [25,26] happens via the help of concentrated
acids (such as sulfuric, nitric, etc.) and a strong oxidizing agent (e.g., potassium chlorate
or potassium permanganate [26]) leading to high-quality GO by the simple mixing of
acids. The resulting GO possesses a large variety of oxygenated functional groups such as
carboxyl, epoxide, hydroxyl, etc. depending on the oxidation method followed while the
synthesis does not require thermal treatment. GO is transformed into graphene through
a reduction treatment [27] to obtain high-quality graphene. The reduction takes place by
the dispersion of GO in water and the subsequent addition of NaHB4 while the mixture
is stirred in a steam bath for 3 h. The second path describes the delamination of graphite
into graphene without the need for any oxidation or functionalization method by liquid
phase exfoliation. This method lies in the fact that the solvent–graphene interaction is
the same or similar to the interactions of stacked graphene layers in graphite. Among
a high number of suitable solvents that can exfoliate graphite (N-methylpyrrolidone, N,
N-dimethylacetamide, g-butyrolactone and perfluorinated aromatic molecules), DMF is
one of the most common solvents used for this method with very good performance [28].

2.4. Cell Lines

An immortal keratinocyte cell line derived from adult human skin (HaCaT cell line,
CLS GmbH, 300493), a fibroblast cell line isolated from a mouse NIH/Swiss embryo (NIH/3
T3 cell line, ATCC, CRL-1658) and a human monocyte cell line from a patient with acute
monocytic leukemia (THP-1 cell line, DSMZ, ACC16) were used in this study. HaCaT and
NIH/3T3 cells were cultured with high glucose Dulbecco’s modified eagle medium and
THP-1 with RPMI-1640 medium. Both mediums were supplemented with 10% (v/v) fetal
bovine serum (FBS), 1% (v/v) L-glutamine and 1% (v/v) penicillin–streptomycin solution.
All cell lines were grown in a humidified incubator (5% CO2, 95% air) at 37 ◦C. Prior to
all experiments, the THP-1 monocytes were differentiated into mature macrophages with
phorbol 12-myristate 13-acetate (PMA) at a concentration of 100 ng/mL for 24 h [29].
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2.5. Cell Viability Assay

An amount of 5 × 103 cells/well of HaCaT and NIH/3T3 cells, and 4 × 104 cells/well
of differentiated THP-1 cells, were seeded in a microtiter plate with 96 wells and incubated
for 24 h at 37 ◦C, 5% CO2. Cells were then treated with increasing concentrations of either
DMF (0.15–1.5% v/v, equal to treatment with 10–100 µg/mL cG), bG (0.5–200 µg/mL) or
cG (0.01–20 µg/mL) for 24 and 48 h. The cell viability of the treated cells was measured
after the addition of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide solution
(MTT) for 3 h. The formazan that formed was then diluted in dimethyl sulfoxide (DMSO)
and the optical density of the living cells was measured at 570 nm (with a background
measurement at 690 nm) with a microplate spectrophotometer (Infinite 200 Pro, Tecan,
Switzerland). All experiments were performed in triplicate for each condition. Percentages
of cell viability above 80% were considered as non-toxic [30].

2.6. Clonogenic Assay

NIH/3T3 and HaCaT cells were seeded in 6-well plates at a density of 1 × 103 cells/well
and incubated for 24 h in a humidified incubator (5% CO2, 95% air, 37 ◦C). Selected
concentrations of the two compounds (bG and cG) were added to the cells for 48 h. After
the treatment’s incubation period, the medium was renewed. A week after that, the cells
were washed once with PBS and stained with a dye mixture containing 0.5% w/v crystal
violet, 6% v/v glutaraldehyde and ddH2O. The number of visible colonies was measured
using the OpenCFU open-source software (version 3.9.0) [31] and the surviving fraction
(SF%) of the treated cells was calculated [32]. All experiments were performed in triplicate.

2.7. Measurement of Reactive Oxygen Species (ROS) Production

An amount of 15 × 104 cells/well of HaCaT and NIH/3T3 cells and 3 × 105 cells/well
of PMA-treated THP-1 cells were seeded in 6-well plates. As soon as the cells became
attached to the plates, three doses of bG (20, 50 and 100 µg/mL) and two doses of cG
(20 and 50 µg/mL) were added to the culture media, for 24 h. After treatment, cells were
detached with trypsin, washed once with PBS and centrifuged at 3000 rpm for 5 min. The
cells’ pellets were then resuspended in 2 mL cold Hanks’s Balanced Salt Solution (HBSS)
containing 2.5 µM of 2′, 7′–dichlorofluorescein diacetate (DCF-DA). The samples were
incubated for 30 min at 37 ◦C in the dark. After incubation, the samples were stained with
PI and placed on ice. ROS production of the treated and untreated cells was measured
directly by flow cytometry (Partec ML, Partec GmbH, Leipzig, Germany).

2.8. Detection of Apoptosis

NIH/3T3 and HaCaT cells were seeded in 48-well plates at a density of 5 × 104 cells/well
and PMA-treated THP-1 cells were seeded at a density of 24 × 104 cells/well and placed
in a humidified incubator to grow for 24 h. The medium of the cells was then discarded,
and cells were treated with fresh medium containing either DMF, bG or cG for 24 h. On
the day of the processing, cells were dissociated from the plates with trypsin and the
number of cells on each well was calculated with a Neubauer hemocytometer. An amount
of 1 × 105 cells of each well were then transferred into a clean Eppendorf tube and were
centrifuged. The pellet of the cells was then resuspended in 100 µL Annexin V Binding
buffer and stained with FITC Annexin V and PI. The samples were incubated at room
temperature for 15 min in the dark. Immediately after incubation, 400 µL of Annexin V
binding buffer was added to the samples and they were analyzed on a flow cytometer. All
experiments were conducted in triplicates.

2.9. Cell Cycle Analysis

An amount of 5 × 105 cells/well of differentiated THP-1 macrophages were seeded in
a 6-well plate. For NIH/3T3 and HaCaT cells, the density of seeding was 1× 105 cells/well.
All cell lines were then placed in a humidified incubator (37 ◦C, 5% CO2) for 24 h. The
next day, the medium was discarded and fresh medium with treatment (20 µg/mL of bG
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or cG) was added to the cells for another 24 h. After treatment, the cells were trypsinized
and centrifuged, and the pellets were washed once with ice-cold PBS. The pellet was
resuspended in 0.5 mL ice-cold PBS, and then 0.5 mL of absolute ethanol was added to the
solution dropwise. At this point, the samples were kept frozen at −20 ◦C for 7 days. On
the day of the processing, samples were centrifuged to remove the absolute ethanol. Pellets
were then resuspended in 1 mL fresh ice-cold PBS. PI and RNAseA were added, and the
samples were incubated at 37 ◦C for 30 min in the dark. The samples were placed on ice
and immediately analyzed by flow cytometry.

2.10. Western Blotting Analysis

NIH/3T3, HaCaT and differentiated THP-1 cells were cultured in 10 cm petri dishes
and were treated for 24 h with either bG (20, 50, and 100 µg/mL) or cG (20 and 50 µg/mL).
The cells were washed twice with ice-cold PBS, harvested mechanically on ice by scraper
with 7 mL ice-cold-PBS and centrifuged at 11.000 rpm for 8 sec. Pellets were then re-
suspended in 1 mL ice-cold radioimmunoprecipitation (RIPA) buffer supplemented with
protease and phosphatase inhibitors and were left on ice for 20 min. During these 20 min,
the samples were resuspended with a 21 G × 1 1

2 needle-syringe and vortex, every 5 min.
The samples were then sonicated on ice for 20 sec and were centrifuged at 14.800 rpm for
20 min at 4 ◦C. Supernatants (i.e., the total cell protein lysate) were collected in clean Eppen-
dorf tubes and the protein content was determined with Pierce™ BCA Protein Assay Kit
(Thermo Fisher Scientific Inc., Rockford, IL, USA). Equal amounts of protein in each sample
were loaded in 12% sodium dodecyl sulfate-polyacrylamide gel and electrophorized. After
electrophoresis, proteins of the gel were transferred to nitrocellulose membranes. The
membranes were blocked with 5% non-fat milk in Tris-buffered saline (TBS) containing 1%
Tween 20 (TBST) overnight at 4 ◦C and incubated for 1 h at 25 ◦C with a primary antibody
diluted in 5% non-fat milk in TBST. After quick washes with TBST (3 × 5 min), the mem-
branes were incubated for 1 h at 25 ◦C, with a secondary antibody diluted in 5% non-fat
milk in TBST. Then, the membranes were washed again three times with TBST (5 min)
and treated with an enhanced chemiluminescence (ECL) substrate (Clarity Western ECL
Substrate, #1705061, Bio-Rad Laboratories, CA, USA) for 5 min. The blots were depicted
using the ChemiDoc™ MP Imaging System (Bio-Rad Laboratories, CA, USA) and analyzed
with ImageLab (Bio-Rad Laboratories, CA, USA).

2.11. Statistical Analysis

All data were expressed as mean values +/− standard deviation. Student t-test was used
to determine the statistically significant difference between the mean values. A p-value < 0.05
was considered statistically significant.

3. Results and Discussion
3.1. DMF Toxicity

DMF is reported to exhibit a dose- and time-dependent toxicity to living organisms [33].
As DMF is the solvent used in cG’s exfoliation, we examined its toxicity by means of an
MTT and apoptotic evaluation assay, against NIH/3T3, HaCaT and THP-1 cells. DMF’s
toxicity was tested at a range of 0.15% v/v to 1.5% v/v which is equal to treatment of
10 µg/mL to 100 µg/mL of cG.

In the MTT assay, the treatment of cells with DMF showed a dose- and time-dependent
toxicity. Treatment with all concentrations of DMF up to 1.05% v/v (equal to treatment
with 75 µg/mL cG) for 24 h did not significantly affect cells’ viability (Figure 1a). At 48 h, a
significant decline in all cell populations was observed. DMF doses higher than 0.75% v/v
(equal to treatment with 50 µg/mL cG) reduced viability to less than 80% (Figure 1b).
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Figure 1. Cell viability of NIH/ 3T3, HaCaT and THP-1 cells after treatment with DMF for 24 (a) and
48 h (b). The corresponding concentrations (% v/v) of the solvent DMF with cG’s doses are being
depicted in the table on the left.

The treatment with DMF (0.15–0.75% v/v, equal to treatment with 10–50 µg/mL cG)
for 24 h did not induce apoptosis in NIH/3T3 cells (Figure 2a). In HaCaT cells, the apoptotic
cell population increased from 11.91 ± 0.18% to 15.88 ± 0.16% and to 18.59 ± 0.59% after
exposure to 0. 60% v/v and 0.75% v/v DMF, respectively (Figure 2b). In THP-1 derived
macrophages, the apoptotic cell population increased from 4.28 ± 1.02% to 13.02 ± 1.44%
at 0.60% v/v and to 16.65 ± 0.50% at 0.75% v/v (Figure 2c).

Pharmaceutics 2023, 15, x FOR PEER REVIEW 6 of 16 
 

 

In the MTT assay, the treatment of cells with DMF showed a dose- and time-depend-

ent toxicity. Treatment with all concentrations of DMF up to 1.05% v/v (equal to treatment 

with 75 μg/mL cG) for 24 h did not significantly affect cells’ viability (Figure 1a). At 48 h, 

a significant decline in all cell populations was observed. DMF doses higher than 0.75% 

v/v (equal to treatment with 50 μg/mL cG) reduced viability to less than 80% (Figure 1b). 

 

Figure 1. Cell viability of NIH/ 3T3, HaCaT and THP-1 cells after treatment with DMF for 24 (a) and 

48 h (b). The corresponding concentrations (% v/v) of the solvent DMF with cG’s doses are being 

depicted in the table on the left. 

The treatment with DMF (0.15–0.75% v/v, equal to treatment with 10–50 μg/mL cG) 

for 24 h did not induce apoptosis in NIH/3T3 cells (Figure 2a). In HaCaT cells, the apop-

totic cell population increased from 11.91 ± 0.18% to 15.88 ± 0.16% and to 18.59 ± 0.59% 

after exposure to 0. 60% v/v and 0.75% v/v DMF, respectively (Figure 2b). In THP-1 derived 

macrophages, the apoptotic cell population increased from 4.28 ± 1.02% to 13.02 ± 1.44% 

at 0.60% v/v and to 16.65 ± 0.50% at 0.75% v/v (Figure 2c). 

 

Figure 2. Percentage of apoptotic cell population after treatment with increasing doses of DMF for 

24 h in NIH/3T3 (a), HaCaT (b) and THP-1 cells (c). DMF’s toxicity was tested at a range of 0.15% 

v/v to 0.75% v/v which is equal to treatment of 10 μg/mL to 50 μg/mL of cG. * Statistically significant 

difference from control (p < 0.05). 

Our results in total suggest that DMF higher than 0.30% v/v (equal to treatment with 

20 μg/mL cG) in the long term may induce cell death (Figure 1b), probably through the 

induction of apoptotic pathways, at least for HaCaT and THP-1 cells. In NIH/3T3 cells, 

DMF probably activates a different death pathway. Nonetheless, the selected three cell 

lines represent a cellular model for the skin, so we decided to limit the toxicity assessment 

of cG to 20 μg/mL. Representative flow cytometry images are available in Supplementary 

Figure S1 (NIH/3T3 cells), S2 (HaCaT cells) and S3 (THP-1 cells). 

3.2. In Vitro Toxicity against NIH/3T3, HaCaT and THP-1 Cells 

As previously described, due to the toxic solvent DMF, comparing the cytotoxicity of 

cG and bG at the same doses utilizing MTT was not possible. The bG was synthesized 

Figure 2. Percentage of apoptotic cell population after treatment with increasing doses of DMF for
24 h in NIH/3T3 (a), HaCaT (b) and THP-1 cells (c). DMF’s toxicity was tested at a range of 0.15% v/v
to 0.75% v/v which is equal to treatment of 10 µg/mL to 50 µg/mL of cG. * Statistically significant
difference from control (p < 0.05).

Our results in total suggest that DMF higher than 0.30% v/v (equal to treatment with
20 µg/mL cG) in the long term may induce cell death (Figure 1b), probably through the
induction of apoptotic pathways, at least for HaCaT and THP-1 cells. In NIH/3T3 cells,
DMF probably activates a different death pathway. Nonetheless, the selected three cell
lines represent a cellular model for the skin, so we decided to limit the toxicity assessment
of cG to 20 µg/mL. Representative flow cytometry images are available in Supplementary
Figure S1 (NIH/3T3 cells), S2 (HaCaT cells) and S3 (THP-1 cells).

3.2. In Vitro Toxicity against NIH/3T3, HaCaT and THP-1 Cells

As previously described, due to the toxic solvent DMF, comparing the cytotoxicity
of cG and bG at the same doses utilizing MTT was not possible. The bG was synthesized
using BSA for the exfoliation and stabilization of graphitic sheets at a mass ratio of 1:1 (BSA:
graphite) [23]. At this percentage (4 mg/mL), BSA is not toxic to living organisms [34] and
thus we proceeded with BG’s assessment at a high range of doses (0.5–200 µg/mL) while
cG’s assessment was limited to lower doses (0.01–20 µg/mL).

In NIH/3T3 cells, bG induced mild dose-dependent toxicity at 24 h, with cell vi-
ability starting from 80% at low doses and declining at about 60–65% at higher doses
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(50–200 µg/mL) (Figure 3a). At 48 h, toxicity was not dose-dependent as it started at 65%
at the lower dose (0.5 µg/mL) and remained at 60–65% at all tested doses (Figure 3b).
cG had a dose-dependent and a mild time-dependent toxicity. After 24 h of treatment,
cell viability was 100% at low doses (0.01–0.1 µg/mL) and dropped to 60% at higher
doses (10 and 20 µg/mL) (Figure 3a). At 48 h, cell viability was at 70% at doses from 0.01 to
1 µg/mL, and then a 20% drop was recorded at higher doses (10 and 20 µg/mL) (Figure 3b).
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Figure 3. Cell viability of NIH/3T3 (a,b), HaCaT (c,d) and THP-1 cells (e,f) after treatment with bG
and cG for 24 (a,c,e) and 48 h (b,d,f).

bG also had a similar effect in HaCaT cells. Treatment with low doses (0.5 and 1 µg/mL)
induced a cell viability of 75–80% at both 24 and 48 h and the viability dropped and
remained stable at about 60% for 24 h (Figure 3c) and 50% for 48 h (Figure 3d) at all
tested doses. Regarding cG, after 24 h, cell viability was excellent even at the highest dose
(20 µg/mL) (Figure 3c), and at 48 h, only a mild drop to 66% was reported, at the highest
dose of 20 µg/mL (Figure 3d).

Both compounds seem to be non-toxic at all tested doses in THP-1-derived macrophages,
as neither dose-dependent nor time-dependent toxicity was reported. Treatment with bG
resulted in cell viability of about 85% at all doses (0.5–200 µg/mL). Interestingly, after
48 h, cell viability was even higher than that of 24 h, starting from 100% at low doses and
resulting to 90% at higher doses (Figure 3f). Treatment with all different doses of cG for
both 24 and 48 h also did not affect cells’ viability. Even at higher doses, viability remained
high, at 90% for both 24 h and 48 h (Figure 3e,f). Optical images of NIH/3T3, HaCaT and
THP-1 cells (untreated and treated with 20 µg/mL of either bG or cG for 24 h) stained with
crystal violet can be found in Supplementary Figure S4.

Overall, apart from THP-1 macrophages, where no toxicity was reported, both bG and
cG acted similarly in NIH/3T3 and HaCaT cells, resulting in a 50% decline in viability at
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their maximum doses at 48 h. Nevertheless, it is important to note again that the maximum
tested dose of bG (200 µg/mL) was 10 times higher than that of cG (20 µg/mL).

Green approaches to producing graphene seem to result in more biocompatible end
products. This finding is verified even when different environmentally friendly method-
ologies are applied. Gurunathan et al. [35] produced microbially rGO (M-rGO) utilizing
the biomass of Pseudomonas aeruginosa and Dasgupta et al. [36] produced GO nanosheets
using poly-saccharides (PR-GO nanosheets). Both authors verified that green graphene
was less toxic than GO to doses up to 100 µg/mL against primary mouse embryonic fibrob-
lasts (PMEFs) cells and human peripheral blood mononuclear cells (PBMCs), respectively.
Moreover, functionalization of rGO nanosheets with biomolecules such as polydopamine
(PDA), heparin and BSA has a more limited impact on the survival of human umbilical
vein endothelial cells (HUVECs) than their chemical analogues (GO or hydrazine-GO) [37].

3.3. Ability of NIH/3T3 and HaCat Cells to Form Colonies

The clonogenic assay has been used widely in cytotoxic studies of nanomaterials, as
it allows the estimation of the long-term toxicity of the compounds. The assay can be
performed only against adherent cell lines that proliferate [38] and thus, THP-1-derived
macrophages were excluded from this study.

In NIH/3T3 cells, the treatments with low doses (1 and 10 µg/mL) of bG for 48 h
did not affect the cells’ ability to form colonies. Treatments with higher doses (20, 50 and
100 µg/mL) induced a mild reduction of about 20% in colony formation. Low doses of
cG also did not affect NIH/3T3 cells, but at the highest dose of 50 µg/mL, a significant
reduction of 50% was observed (p < 0.05) (Figure 4a).
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of bG and cG for 48 h.

Only the highest dose of 100 µg/mL of bG affected HaCaT cells’ ability to form
colonies as the surviving fraction was stable at 0.9–1 for the doses of 1 to 50 µg/mL
and then dropped at 0.7 at the dose of 100 µg/mL. Doses of 1–20 µg/mL of cG also did
not lead to a reduced formation of colonies compared to the control, but at the dose of
50 µg/mL, there was a significant drop in the surviving fraction, from 0.9 to 0.5. (Figure 4b).
Representative images of NIH/3T3 and HaCaT colony forming efficiency after treatment
with 20 µg/mL of either bG or cG for 48 h are available in Supplementary Figure S5.

In summary, in both cell lines, a high dose of cG (50 µg/mL) affected the reproductive
integrity of cells compared to bG. Due to the toxicity of DMF, cG could not be tested at
doses higher than 50 µg/mL. Although bG at 100 µg/mL reduced the long-term survival of
cells (~30% reduction), the magnitude of this effect was lower than that exerted cG (~50%)
with a half-dose (50 µg/mL).
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3.4. Intracellular ROS Production in NIH/3T3, HaCaT and THP-1 Cells

Many nanomaterials are known to induce excessive ROS generation in vitro, resulting in
an oxidative stress response [39]. Evaluating ROS generation is an important addition to the
cytotoxic assessment of an unknown compound intended to be used in biomedical applications.

Both bG and cG did not trigger intracellular ROS formation in NIH/3T3 cells at
all tested doses as mean fluorescence values (MFI) remained unchangeable compared to
untreated cells (Figure 5a). The same result was reported in THP-1-derived macrophages
(Figure 5c). HaCaT cells seem to be more sensitive, as both bG and cG induced a mild
increase (10%) in ROS production compared to the control (Figure 5b).
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two doses of cG (20 and 50 µg/mL) for 24 h in NIH/3T3 (a), HaCaT (b) and THP-1 cells (c). MFI,
mean fluorescence intensity. RFU, relative fluorescence units.

According to the literature, biologically synthesized GO induces a dose-dependent
formation of ROS. The production of ROS is almost doubled in PBMCs after treatment with
250 µg/mL graphene (bio-reduced by crude polysaccharide) for 3 h [36] and significantly
higher in MCF-7 cells after treatment with 100 µg/mL bacterially rGO than with an equal
dose of chemically produced GO [40]. In our study, ROS production in HaCaT cells was
not that high when the cells were treated with bG and cG for longer periods (24 h) but with
lower doses (50 µg/mL).

3.5. Evaluation of Apoptosis in NIH/3T3, HaCaT and THP-1 Cells

In NIH/3T3 cells, treatments with 20 µg/mL of either bG or cG for 24 h did not
increase the apoptotic population (Figure 6a). In HaCaT cells, bG induced a 7% increase
and cG a 12% increase in the apoptotic population (Figure 6b). A similar elevation (8%) in
apoptosis was seen in THP-1-derived macrophages (Figure 6c). None of the nanomaterials
induced necrosis (Figure 6).
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There is not enough available data related to apoptosis induced by pristine graphene.
Li et al. reported that pristine graphene induces apoptosis in RAW264.7 macrophages.
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At the dose of 20 µg/mL, their results are similar to those obtained from our study in
THP-1-derived macrophages, as no significant elevation in apoptosis was observed. The
authors also tested a higher dose of 50 µg/mL where apoptosis was significantly elevated
compared to the control. However, no details were provided regarding the solvent used for
graphene production and its potential cytotoxicity. Pristine graphene-related apoptosis in
RAW264.7 cells was attributed to the activation of the mitochondrial pathways of mitogen-
activated protein kinases (MAPKs) and TGFβ [41]. To the best of our knowledge there is
a lack of available data on the cellular apoptosis induced by graphene synthesized with
green processes.

3.6. Cell Cycle Arrest

In NIH/3T3 cells, the treatment with 20 µg/mL of bG induced a non-significant in-
crease in the G0/G1 phase compared to the control (control: 49 ± 2.1%, bG: 54 ± 3%),
combined with a small drop in the G2/M phase (control: 18 ± 2%, bG: 14 ± 1.5%). The
treatment with 20 µg/mL of cG induces a 3% increase in the G2/M phase (Figure 7a). In
untreated HaCaT cells, 17 ± 2% of the population was in the G2/M phase and treatment
with either of the nanomaterials induced a slight arrest in the G2/M phase, with percent-
ages of 23 ± 3% and 22 ± 4% for bG and cG, respectively (Figure 7b). Finally, 20 µg/mL
of bG in THP-1-derived macrophages elicited a minor decrease in the G2/M phase (con-
trol: 35 ± 2.9%, bG: 29 ± 3.5%) and an increase in the S phase (control: 21 ± 3.1%, bG:
23 ± 2.60%). cG had the same effect in the cell population as 29 ± 4.30% of cells were in
the G2/M phase and 24 ± 3.2% in the S phase (Figure 7c).
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Nanoparticles could cause DNA damage which may result in cell cycle arrest at the
G0/G1, S or G2/M phase. Cell cycle arrest at any of these phases leads to a suppression
of cell proliferation and depends on cell type and physicochemical characteristics of the
nanomaterial [42]. In our study, however, neither bG nor cG caused cell cycle arrest in any
of the three cell lines, at the dose of 20 µg/mL. Moreover, data regarding alterations in the
cell cycle induced by graphene or green-synthesized graphene are lacking.

3.7. Nrf2/HO-1 Signaling Pathway in NIH/3T3, HaCaT and THP-1 Cells

The Nrf2/ARE/keap1/HO-1 signaling pathway plays a pivotal protective role in
inflammation and oxidative stress responses in tissues and cells. It is assumed that under
stress, Nrf2 negatively controls the NF-kB (p65) pathway, which participates in inflamma-
tory responses and cellular injury, through different mechanisms. One of them includes
Nrf2 inhibiting NF-kB’s activation, by decreasing the intracellular ROS generation. Ad-
ditionally, when activated, Nrf2 can upregulate HO-1’s cellular expression which blocks
IkB-a’s proteasomal degradation and eventually results in the inhibition of the nuclear
translocation of NF-kB [43]. Nanomaterials could induce inflammatory responses in cells
and thus activate the Nrf2 and NF-kB pathways [44]. To enhance our toxicity assessment of
bG and cG, we tested whether different doses of these compounds influence the expression
of the proteins Nrf2, NF-kB and HO-1.
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In NIH/3T3 cells, an increase in Nrf2 levels was observed at both bG- and cG-treated
cells, with the relative amount of protein being significantly higher in cG- (about 2.5-fold
change compared to control) than bG-treated (about 1-fold change) (Figure 8a). A slight
increase was also observed in HO-1’s relative amount in cG-treated cells (Figure 8c). The
expression of the p65 protein was not affected by the two nanomaterials (Figure 8b).
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In HaCaT cells, treatments with 50 and 100 µg/mL of bG doubled the expression of
Nrf2 protein (about 1-fold change). The treatment with 50 µg/mL of cG had the same
effect (Figure 9a). This increase was not combined with an increase in HO-1’s expression
(Figure 9c). The relative amount of p65 remained unchanged in treated cells (Figure 9b).

The treatment with both nanomaterials in THP-1 derived macrophages had a different
effect compared to other cell lines. Both bG and cG did not activate Nrf2 in any dose tested
(Figure 10a) but there was a mild dose-dependent activation of HO-1 in bG-treated cells
compared to the control (Figure 10c). Moreover, cG induced a significant increase in the
p65 amount which was also dose-dependent (about 1-fold change and 2-fold change, for
20 and 50 µg/mL, respectively) (Figure 10b).

Our Western blot analysis correlates with our previous results and confirms that
both nano-compounds act differently in each cell line. According to the literature, the
activation and interaction of Nrf2 and NF-kB pathways are cell-type specific [45]. In
NIH/3T3 cells, cG induced a higher increase in Nrf2 and HO-1 levels compared to bG-
treated cells, indicating a possible stronger influence in the immune system which triggers
Nrf2’s activation. In HaCaT cells, high doses of bG and cG activated Nrf2, but this increase
was not combined with an increase in HO-1. Finally, in THP-1 cells, bG seems to activate
HO-1 but through mechanisms that involve transcription factors other than Nrf2 and NF-kB,
such as, activator protein-1 (AP-1) and hypoxia inducible factor (HIF) [46]. Moreover, the
significant increase of p65 in cG-treated THP-1-derived macrophages indicates a possible
toxicity and inflammatory response induced by high doses of cG [47,48].
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4. Conclusions

In our study, we tested two graphene structures in terms of cytotoxicity to assess
whether the green exfoliation of graphene produces more biocompatible products. In
cell viability assays, both materials seemed to have a mild dose-dependent effect in the
cells’ population but overall were well-tolerated by all cell lines at low doses. bG was
tested at 10× higher doses than cG as it lacked a toxic solvent, and no significant dose-
dependent toxicity was reported. The clonogenic assay revealed that, contrary to bG, high
doses of cG significantly affect cells’ ability to form colonies indicating long-term toxicity.
Additionally, a slightly non-significant elevation in apoptosis was observed in cG-treated
cells. However, neither of the nanomaterials induced oxidative responses nor alterations
in the cell cycle. The Western blot analysis showed that high doses of both compounds
act differently in each cell line and seem to activate either the Nrf2/ARE or the NF-kB
pathways. Thus, complementary research regarding possible endocytosis mechanisms
and signaling pathways’ activation is necessary to confirm the responses occurring at the
cellular level. In total, the need for toxic solvents for cG’s exfoliation limits its usefulness
as it compromises biocompatibility. Thus, although both nanomaterials seem to be safe
at a wide range of low doses (<50 µg/mL), bG’s safety at higher concentrations places it
in a more advantageous position for innovative biomedical applications. Moreover, bG’s
environmentally friendly, economic and sustainable way of production makes it much
more appealing for the development of greener electronics (biosensors).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics15030993/s1, Figure S1: Apoptosis assay using flow
cytometry after staining with annexin V-FITC/propidium iodide (PI) in NIH/3T3 cells. Forward
versus side scatter (FSC vs. SSC) gating was used to identify the cell size and granularity of the
untreated (A) and treated with 0.75% v/v DMF for 24 h (equal to treatment with 50 µg/mL cG) (B)
cells. Representative scatter plots of PI (y-axis) vs. annexin V (x-axis) of the untreated (C) and treated
with 0.75% v/v DMF for 24 h (equal to treatment with 50 µg/mL cG) (D) cells; Figure S2: Apoptosis
assay using flow cytometry after staining with annexin V-FITC/propidium iodide (PI) in HaCaT cells.
Forward versus side scatter (FSC vs. SSC) gating was used to identify the cell size and granularity
of the untreated (A) and treated with 0.75% v/v DMF for 24 h (equal to treatment with 50 µg/mL
cG) (B) cells. Representative scatter plots of PI (y-axis) vs. annexin V (x-axis) of the untreated (C)
and treated with 0.75% v/v DMF for 24 h (equal to treatment with 50 µg/mL cG) (D) cells; Figure S3:
Apoptosis assay using flow cytometry after staining with annexin V-FITC/propidium iodide (PI) in
THP-1 derived macrophages. Forward versus side scatter (FSC vs. SSC) gating was used to identify
the cell size and granularity of the untreated (A) and treated with 0.75% v/v DMF for 24 h (equal
to treatment with 50 µg/mL cG) (B) cells. Representative scatter plots of PI (y-axis) vs. annexin V
(x-axis) of the untreated (C) and treated with 0.75% v/v DMF for 24 h (equal to treatment with 50
µg/mL cG) (D) cells; Figure S4: Optical cell images of NIH/3T3, HaCaT cells and THP-1-derived
macrophages, after staining with 0.5% crystal violet. Cells were treated with 20 µg/mL of either bG
or cG for 24 h; Figure S5: Clonogenic assay in NIH/3T3 (a–c) and HaCaT cells (d–f). Untreated cells
(a,d). Cells treated with 20 µg/mL bG (b,e) or cG (c,f) for 48 h.
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