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Abstract: Photothermal therapy is a new chemotherapy technique using photothermal effects, a
phenomenon in which light energy is converted into thermal energy. Since the treatment technique is
performed without surgical incision, it does not cause bleeding and patients are expected to make
rapid recoveries, which are significant advantages. In this study, photothermal therapy with direct
injection of gold nanoparticles into tumor tissue was simulated through numerical modeling. The
treatment effect resulting from changing the intensity of the irradiated laser, volume fraction of the
injected gold nanoparticles, and number of gold nanoparticle injections was quantitatively evaluated.
The discrete dipole approximation method was applied to calculate the optical properties of the
entire medium, and the Monte Carlo method was applied to identify the absorption and scattering
behavior of lasers in tissue. In addition, by confirming the temperature distribution of the entire
medium through the calculated light absorption distribution, the treatment effect of photothermal
therapy was evaluated, and the optimal treatment conditions were suggested. This is expected to
accelerate the popularization of photothermal therapy in the future.
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1. Introduction

Photothermal therapy is a new chemotherapy technique that uses the photothermal
effect [1], a phenomenon in which light energy is converted into thermal energy, to increase
the temperature of tumor tissues, killing them [2,3]. Since the treatment is performed
without incising the affected area, it has the advantages of no bleeding and rapid recovery
compared to conventional treatment techniques through incision [4–6]. Light energy, in
the form of a laser, is irradiated onto the surface of the skin. Since the energy of the laser
cannot be transmitted to great depths, this method has mainly been restricted to research
on skin cancer [7,8].

Photothermal therapy primarily utilizes lasers in the near-infrared (NIR) portion
of the electromagnetic spectrum. This is because the depth of energy penetration in
this range is greater than that of lasers in other wavelength bands. Furthermore, the
light absorption coefficient of the medium itself is low in this region, which can reduce
unnecessary thermal damage to surrounding tissues [9–11]; however, this also means that
NIR irradiation cannot raise the temperature of the medium to the point that induces tumor
tissue death. To compensate for this, treatment is performed by administering a light
absorption enhancer to tumor tissue to increase the medium’s light absorption coefficient at
a specific wavelength [12–14]. To achieve this, the light absorption enhancer uses localized
surface plasmon resonance (LSPR), a phenomenon that induces collective oscillation of
electrons at a specific wavelength [15,16]. Accordingly, it is possible to raise the temperature
of the light-absorption enhanced tissue to the range required for biological tissue death,
even if a laser in the NIR region is used. Light absorption enhancers are classified according
to their constituent materials; among them, gold nanoparticles (GNPs), with excellent
biocompatibility, are most common [17–19].
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As described above, photothermal therapy aims to kill tumor tissue through temper-
ature increase. To this end, it is first necessary to verify the temperature ranges at which
the forms of death of various types of biological tissue occur. In general, the death of
biological tissue according to temperature is divided into apoptosis and necrosis [20–22].
Apoptosis is also called cell suicide, and refers to a form of self-destruction which occurs
without damaging surrounding tissues. Necrosis, however, involves the destruction of the
intracellular contents in the form of leakage and has the possibility of cancer metastasis.
Apoptosis is known to be expressed mainly at 43–50 ◦C, while necrosis is known to occur
at higher temperatures. For this reason, it is an important issue in photothermal therapy
to maintain the temperature range of apoptosis expression by controlling the appropriate
laser conditions.

Photothermal therapy is currently being studied from various perspectives. Muzzi et al. [23]
proposed the use of particles with an Fe3O4 shell structure on a star-shaped Au core to increase
the light conversion efficiency of the light absorption enhancer. Magnetometry and magneto-
optical spectroscopy reportedly revealed a pure magnetite shell with excellent saturation
magnetization. Furthermore, the plasmonic resistance in the Au@Fe3O4 system could be
converted to 640 nm, showing applicability for photothermal therapy and visible optical
imaging. A preliminary experiment was conducted to irradiate a laser on a cancer cell culture
suspension into which Au@Fe3O4 was injected, and its suitability for optical response and
photothermal therapy was confirmed. Bi et al. [24] proposed Ag2O2 nanoparticles, which
can control the release of reactive oxygen species, to reduce the toxic side effects of metal
peroxide nanoparticles designed to increase oxidative stress. In vitro and in vivo experiments
confirmed that Ag2O2 nanoparticles had a mortality efficiency of 99.9999% or more within
10 min, provided improved antibacterial and antibiotic membrane functions, and acceler-
ated wound suture against Staphylococcus aureus infection with excellent cell and blood
compatibility. Through this, a high-efficiency, non-invasive, and safe treatment method for
combating bacterial infectious diseases was presented. Wang et al. [25] analyzed the effect of
photothermal therapy on tumors containing gold nanoparticles through numerical analysis.
The temperature distribution of tumors generated from the skin surface and the surrounding
normal tissues was confirmed using the Monte Carlo method, and analysis was performed by
varying the treatment conditions for photothermal therapy, such as the tumor size, irradiating
laser intensity, and volume fraction of GNPs in the tumor. In addition, the thermal damage
to the tissue was confirmed through the Arrhenius thermal damage integral. Yin et al. [26]
studied photothermal therapy inside the tissue through numerical analysis. The effects of
laser intensity, volume fraction of GNPs, anisotropic scattering characteristics of nanoparticles,
and laser incident angle were investigated. Based on this, various treatment strategies, such
as single heat source and multiple heat sources, were also identified. In the case of single-dose
treatment, it was confirmed that there was almost no difference for the various laser incident
angles; in the case of the split treatment, better treatment effects were observed when the
laser was irradiated at a constant angle than in the vertical direction. In addition, it was
confirmed that multiple heat sources had better therapeutic effects than a single heat source.
Guglielmelli et al. [27] developed keratin-coated gold nanoparticles (Ker-AuNPs) as a highly
efficient photosensitizing therapeutic agent. The physical, photothermal, chemical, and mor-
phological properties of Ker-AuNPs were investigated by various methods, including dynamic
light scattering, ζ-potential, Fourier transform infrared spectroscopy, and X-ray photoelectron
spectroscopy. In addition, in vitro experiments were conducted on human glioblastoma cell
lines to confirm the efficient cellular absorption, good biocompatibility and local photothermal
heating of Ker-AuNPs. Annesi et al. [28] studied an antimicrobial methodology based on
gold nanorods (GNRs). The anti-microbial effect of GNRs on Escherichia coli bacteria was
confirmed, and it is important to control the concentration of GNRs to exclude toxic effects
on cells and to generate the amount of heat required to raise the temperature to 50 degrees
in about 5 min in the near-infrared region. In addition, as a result of the experiment, it was
confirmed that killing efficiency suitable for reducing Escherichia coli populations to about
2 log colony-forming units was achieved. Candreva et al. [29] synthesized spherical GNPs
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with a diameter of 50 nm coated with polyethylene glycol and administered into Escherichia
coli cultures to activate plasmon in the visible light region. Experiments were performed in
the dark and under laser irradiation, with varying concentrations of GNPs. In the dark, 46%
of bacterial growth was inhibited, while laser irradiation at the same concentration resulted in
99% growth inhibition. This was attributed to the fact that the bacterial wall promotes the
formation of light-induced clusters of nanoparticles, resulting in an increase in temperature
and a bactericidal effect. Furthermore, this photothermal effect is achieved with low intensity
laser irradiation only when the pathogen is present, proving that this is an innovative response
system to bacterial infections.

Summarizing the preceding studies, research on photothermal therapy under various
conditions has been conducted through experiments and numerical analysis. However,
although photothermal therapy is a treatment technique based on the heat transfer phe-
nomenon, existing research methods have derived results based on simple phenomenologi-
cal observations through in vitro and in vivo experiments or quantitative rate of apoptosis,
which are commonly used in the biological field. In addition, in the case of thermal damage,
only the presence of damage was determined through the Arrhenius thermal damage inte-
gral, and it was assumed that GNPs were uniformly distributed in the tumor tissue. There
are two main methods of injecting GNPs into tumor tissue: direct injection and intravenous
injection [30,31]. Direct injection has the advantage that most of the injected GNPs are
located in the tumor tissue; however, the location where they can be injected is limited, and
GNPs tend to be concentrated around the injection point. Although intravenous injection
allows GNPs to be injected at all locations where blood vessels pass, GNPs are lost in
the process of being delivered to the desired location. In the case of direct injection of
GNPs into the tumor, the GNPs may have loss from the tumor environment by various
immunity mechanisms, but there seems to be less loss of GNPs than in cases of intravenous
injection [32].

In this study, numerical analysis was used to study photothermal therapy that simu-
lates the direct injection of GNPs into tumor tissue generated from the skin surface. The
target tumor was selected as squamous cell carcinoma, and the four skin layers were
implemented through numerical modeling. Analysis was conducted to determine the
effect of changing the intensity of the laser and the volume fraction of the injected GNPs,
which are some of the variable treatment conditions of photothermal therapy. In addition,
for given GNP volume fractions, the effect of varying the number of injections on the
effectiveness of photothermal therapy was quantitatively evaluated through the apoptotic
variable suggested by Kim et al. [33]. Based on these results, the conditions that produce
the optimal photothermal therapy effect were determined for the given treatment situation.

2. Material Properties and Numerical Methods
2.1. Optical Properties of Gold Nanoparticles and Biological Tissues

As mentioned above, photothermal therapy mainly utilizes lasers in the NIR region,
and GNPs are injected into the tumor tissue to compensate for the low light absorption
coefficient of the tissues in this region. GNPs increase light absorption at a specific wave-
length (in this case inside the NIR band) due to the localized surface plasmonic resistance
(LSPR) phenomenon.

The optical properties of GNPs were calculated using the discrete dipole approxima-
tion (DDA) method [34,35]. The DDA method is a technique capable of calculating the
absorption and scattering efficiency of nanoparticles of various shapes. Given a particular
shape, the optical efficiency of the particle is obtained by calculating its electromagnetic
properties, assuming that the dipoles are located at regular intervals. This technique com-
pensates for the disadvantage that Mie theory can only calculate the shape of a sphere or
an ellipse [36].

The first step of the DDA method is calculation of the polarization vector (P), deter-
mined through the interaction of the dipole and the local electric field (E)
(Equation (2)), as per Equation (1). Here, α and r represent the polarizability and po-
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sition vectors, respectively. In Equation (3), Einc,i represents the initial electric field and
k represents the wave number. Equation (4) represents the interaction matrix between
dipoles. Here, rij represents

∣∣ri − rj
∣∣, and Aij is an interaction matrix under the condition

that i 6= j. If i and j are equal, the interaction matrix can be simplified to α−1
i .

Pi = αi·Ei(ri) (1)

Ei(ri) = Einc,i −∑N
j 6=i Aij·Pj(i, j = 1, 2, 3, . . . , N) (2)

Einc,i = E0ei(k·ri) (3)

Aij·Pj =
ei(k·rij)

r3
ij

{
k2rij ×

(
rij × Pj

)
+

1− ikrij

r2
ij

×
[
k2Pj − 3rij

(
rij·Pj

)]}
(i 6= j) (4)

The optical cross section C can be calculated as shown in Equations (5)–(7), where * is
a complex conjugate symbol.

Cabs =
4πk

|E0|2
∑N

i=1

{
Im
[

Pi·
(

αi
−1
)∗

P∗i
]
− 2

3
k3PiP∗i

}
(5)

Cext =
4πk

|E0|2
∑N

i=1 Im
(
E∗inc,i·Pi

)
(6)

Csca = Cext − Cabs (7)

Finally, each optical efficiency Q can be calculated using Equation (8). Here, V and reff
and V are the volume and effective radius of the particle, respectively.

Qabs =
Cabs

πr2
e f f

, Qext =
Cext

πr2
e f f

, Qsca =
Csca

πr2
e f f

(8)

re f f =

(
3V
4π

)(1/3)
(9)

Each optical efficiency calculated in this way is used in the final optical property
calculation. The optical properties of GNPs are obtained from the volume fraction of GNPs
(fv), the effective radius of the particle (reff), and the optical efficiency Q, calculated through
the DDA method as shown in Equation (10) [37]. After the optical properties of the GNPs
are calculated, the optical properties of the entire medium with GNPs injected can be
calculated as the sum of the optical properties of the GNPs and the optical properties of the
medium, as shown in Equation (11) [38].

µabs,np = 0.75 fv
Qabs,np

re f f
, µsca,np = 0.75 fv

Qsca,np

re f f
(10)

µabs = µabs,np + µabs,m, µsca = µsca,np + µsca,m (11)

2.2. Validation of Numerical Process

In this study, an in vivo experiment using a BALB/c mouse was conducted to verify
the proposed numerical analysis modeling. BALB/c mice are an inbred group among
laboratory mice and are the most frequently used animals in research fields regarding
tumors, inflammation, and autoimmunity. The experiment was conducted in the clean area
of Ajou University’s Experimental Animal Center and was approved by the Institutional
Biosafety Committee (IBC) (No. 2021-0034) and the Institutional Animal Care and Use
Committee (IACUC) (No. 2021-0079). Female BALB/c mice with an age of 8 weeks and a
weight of 15–20 g, purchased from ORIENT BIO Inc., were used, and experiments were
performed while varying the input dose of GNPs. To develop skin cancer in BALB/c mice,
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DBMA-TPA two-stage skin carcinogenesis model was applied in this study [39]. The fur of
the experimental mouse was shaved 2 days before the onset of carcinogenesis, and 50 µg of
7,12-dimethylbenz(α)anthracene (DMBA) was applied once to the back of the experimental
mouse where light was blocked for the onset of carcinogenesis. After 2 weeks of application,
5 µg of 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to the mouse’s back twice
a week. Both DMBA and TPA were dissolved in 200 µL of acetone before being applied,
and shaving and reagent application were performed with the mouse anesthetized by a
respiratory anesthesia machine using isoflurane.

Figure 1 is a schematic of the in vivo experimental for laser irradiation. The laser
used in this study is the Cobolt 04-01 Series ‘Rumba’ model, sold by Cobolt. A 1064 nm
single-wavelength laser with an intensity of 0.4 W and a diameter of 1 mm was used, with
the beam diameter increased to 10 mm through a beam expander. In addition, an optical
mirror was used to change the path of the beam from horizontal to vertical. Since the laser
used in this study is in the infrared region, an IR viewer was used to verify the path of the
laser beam.
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Figure 1. Schematic of in vivo experiment.

Figure 2a,b shows the results on a mouse when laser was irradiated for 5 min on the
skin cancer site after injecting 25 ug (fv ≈ 3 × 10−4) and 50 ug (fv ≈ 6.5 × 10−4) of GNPs,
respectively. GNPs used in this study are a rod type shape with an effective radius of 10 nm
and an aspect ratio of 6.7. They are dispersed at a concentration of 35 ug/mL in H2O. GNPs
were purchased from Sigma Aldrich and the absorption spectrum of the nanoparticles
shows a longitudinal peak at 1064 nm and a longitudinal absorbance OD of 1. As shown in
the figure, there were blisters (red circles) on the mice’s skin due to burns in the affected
area after laser irradiation compared to none before. These were classified as blisters on
burns, known to be expressed at about 50–70 ◦C, as announced by Stoll et al. [40] and
Leach et al. [41].

Based on the results of the in vivo experiments, the numerical analysis model proposed
in this study was verified. The diameter of the laser was set to 10 mm as in the experiment,
and the intensity was set to 0.4 W. The thermal and optical properties of BALB/c mice
are summarized in Table 1. Figure 3 shows the results of numerical analysis under the
same conditions as in the vivo experiment. The numerical analysis indicated a maximum
temperature of 63.3 ◦C when 50 ug (fv ≈ 6.5 × 10−4) of GNPs were injected, with an
overall temperature increase to above 50 ◦C in the irradiated part. Through this, it can be
judged that the results derived from the in vivo experiment and the numerical analysis are
similar. In addition, verification of the numerical model was performed through in vitro



Pharmaceutics 2023, 15, 911 6 of 16

experiments using biomimetic phantoms. Comparison between the numerical analysis
modeling and the experiment yielded an RMSE of the temperature change over time as
an average of 0.1677. It was thus determined that the numerical analysis modeling was
valid [33].
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Table 1. Thermal and optical properties of BALB/c mouse [42,43].

Thermal conductivity km (W/mK) 0.34

Density ρ (kg/m3) 1000

Specific heat cv (J/kgK) 3000

Absorption coefficient µabs (1/mm) 6.1

Scattering coefficient µsca (1/mm) 40.65

Anisotropy factor g 0.8
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2.3. Numerical Investigation

In this study, the skin implemented in numerical analysis modeling was composed
of four layers, including a squamous cell carcinoma generated from the skin surface. As
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shown in Figure 4, the squamous cell carcinoma with a radius of 2 mm and a depth of 2 mm
was located inside a cylindrical skin layer with a radius of 15 mm and a depth of 20 mm. In
order to achieve an appropriate laser penetration depth for the target skin cancer [44], A
1064 nm single-wavelength Gaussian distribution laser with a radius of 2 mm was used as
the heat source with the same radius as the tumor. The thickness and thermal and optical
properties of each skin layer and tumor tissue are summarized in Table 2.
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Table 2. Properties of skin layer and tumor tissue [11,45–51].

t
(mm)

km
(W/mK)

ρ
(kg/m3)

cv
(J/kgK) g µabs

(1/mm)
µsca

(1/mm)

Epidermis 0.08 0.235 1200 3589 0.8 0.4 45
Papillary dermis 0.5 0.445 1200 3300 0.9 0.38 30
Reticular dermis 0.6 0.445 1200 3300 0.8 0.48 25
Subcutaneous fat 18.82 0.19 1000 2500 0.75 0.43 5

Tumor 2 0.495 1070 3421 0.8 0.047 0.883

In this study, it was assumed that GNPs in the tumor were not uniformly distributed
but that GNPs were divided several times and directly injected, resulting in uneven dis-
tribution of GNPs inside the tumor. However, in the actual situation, after the GNPs are
administered to the tumor tissue, the GNPs are not present only at that site due to various
mechanisms. In this study, it was assumed that the treatment was performed immediately
after the direct injection of GNPs, and GNPs were present in all the places where they
were injected. It was assumed that GNPs were distributed in a spherical shape at each
injection site, and the total volume fraction of GNPs in the tumor was assumed to be the
same regardless of the number of injections of GNPs. For example, assuming that the initial
input volume is 100, it is assumed that when the input is divided 4 times, it is divided into
25 volumetric units in each division. Therefore, the diffusion radius of individual GNPs
injection decreases as the number of injections increases, as shown in Figure 5.
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Table 3 shows the numerical analysis conditions selected in this study. The laser
irradiation time was set to 600 s, and the intensity of the laser was increased in 2 mW
intervals from 0–100 mW. The volume fraction of injected GNPs was increased from
10−1–10−8 at intervals of 10−1 in a total of eight steps. It was assumed that GNPs were
distributed in the form of spheres with a diameter of 2 mm for all volume fractions based
on one-time injection.

Table 3. Parameters of numerical analysis.

Parameter Case Number Remarks

Laser power (Pl) 0 to 100 mW 51 Intv: 2 mW
Volume fraction of GNPs (fv) 10−1 to 10−8 8 Intv: 10−1

Number of injected GNPs 1 to 6 6 Intv: 1

The GNPs used in the numerical analysis were rod-type nanoparticles with an aspect
ratio of 6.67 and an effective radius of 20 nm. The GNPs utilized in the in vivo experiments
have an effective radius of 10 nm, but the authors’ previous study confirmed that GNPs
with an effective radius of 20 nm have the highest absorption efficiency in the rod-type [52].
Therefore, GNPs with an effective radius of 20 nm were utilized in this numerical analysis.
It was assumed that the same GNPs were used in all cases, and the wavelength of the
irradiating laser was fixed at 1064 nm. Calculated by the DDA method for these particles,
the absorption efficiency at 1064 nm is 14.878 and the scattering efficiency is 3.1416. These
were applied to Equation (10) to calculate the optical coefficients for different volume
fractions. The optical properties of tissues including GNPs were calculated as the sum of
the optical properties of the GNPs and those of the medium, calculated through the DDA
method, and are summarized in Table 4.

Table 4. Absorption and scattering coefficients of tumor with GNPs.

fv 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

µabs (cm−1) 5,016,309.16 501,631.34 50,163.55 5016.78 502.10 50.63 5.48 0.97
µsca (cm−1) 1,059,239.60 105,931.91 10,601.14 1068.06 114.75 19.42 9.89 8.94

To calculate the temperature distribution inside the tissue, the absorption distribution
of the irradiated laser energy must first be calculated. In this study, a Monte Carlo tech-
nique that can consider both absorption and scattering behavior was used to calculate the
distribution of light energy absorbed in the medium [53]. The Monte Carlo method is a
technique that calculates probabilistically the degree of absorption and scattering of laser
particles inside the medium using random numbers. Once the light absorption distribu-
tion is calculated, the temperature distribution in the medium can be computed through
the explicit finite element method based on the thermal diffusion equation, as shown in
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Equation (12). Here, τ, ρ, and cv represent the time, density, and specific heat, respectively,
while F and Pl represent the fluence rate and laser intensity, respectively [54].

∆T =
∆τ

ρcv


µaFPl + (Tx− − T)

2kmkm,x−
km+km,x−

1
dx2 + (Tx+ − T)

2kmkm,x+

km+km,x+
1

dx2

+
(

Ty− − T
) 2kmkm,y−

km+km,y−
1

dy2 +
(

Ty+ − T
) 2kmkm,y+

km+km,y+
1

dy2

+(Tz− − T)
2kmkm,z−
km+km,z−

1
dz2 + (Tz+ − T)

2kmkm,z+

km+km,z+
1

dz2

 (12)

Finally, the various conditions for performing photothermal therapy were varied,
and the resulting treatment effect for squamous cell cancer was confirmed numerically.
Information on how much apoptosis in tumor tissue was maintained, and the thermal
damage of surrounding normal tissues was quantitatively confirmed to identify the optimal
treatment conditions.

3. Results and Discussion
3.1. Temperature Distribution of Biological Tissues

Figure 6 shows the temperature change over time at the center of the tumor surface
with respect to the number of injections and the volume fraction of GNPs (fv) for lasers of
40 mW intensity. Figure 6a shows the results for an fv of 10−6, while Figure 6b shows the
results when GNPs were deposited in six separate injections, according to volume fractions.
As shown in Figure 6a, the temperature of the center of the tumor surface varies according
to the number of injections. In particular, when the GNPs were injected separately, excessive
temperature rise did not occur, compared to the case in which GNPs were injected once
in the center. As shown in Figure 6b, the temperature increase at the center of the tumor
surface decreases as the fv decreases. Through this, it was confirmed that the temperature
of the entire medium increased differently according to the various number of injected
GNPs and fv. Accordingly, in the results described later, the temperatures of all points in
the medium were checked, and the degree of maintenance of the temperature range where
apoptosis occurred and the amount of thermal damage to surrounding normal tissues were
quantitatively evaluated.
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Figure 6. Temperature change of tumor tissue over time for: (a) various numbers of GNPs injections
(fv = 10−6); (b) various volume fractions of GNPs (over six injections).

3.2. Apoptosis Occurrence Amount in Tumor Tissue

In this study, the apoptosis retention ratio (θ∗A) proposed by Kim et al. [29] was used to
quantitatively identify how effectively apoptosis occurrence was maintained in the tumor
tissue. The term θ∗A is the average ratio of the tumor volume corresponding to the apoptosis
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temperature range of 43–50 ◦C to the total volume of the tumor at each time step (i.e., to
obtain the average, the ratios at each time step are summed and the result is divided by
the total treatment time). The maximum value of θ∗A is 1, indicating that the occurrence
temperature range of apoptosis is maintained for the entire treatment time at all locations
in the tumor. Using this method, it is possible to quantitatively determine how much the
apoptosis occurrence temperature range is maintained inside the tumor tissue during the
total treatment time.

Figure 7 shows θ∗A for each laser intensity Pl according to the various fv. The tendency
of θ∗A is similar between various numbers of injections, so only the results of the three and
six GNP injection cases are replicated in the graphs below. It was confirmed that there
existed a Pl corresponding to the maximum θ∗A for each fv and for each number of injections.
In addition, it was confirmed that as fv decreased, the Pl corresponding to a maximum θ∗A
increased. This is because a decrease in fv results in reduced heat absorption capability
of the medium for the laser, so a higher Pl is needed to maintain the desired temperature
range. As the number of injections increased, the Pl corresponding to a maximum θ∗A
slightly decreased. This is because, as the number of injections increases, the injected GNPs
are distributed more widely and evenly, so the tumor tissue is heated in a larger area even
at a relatively low Pl.
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Figure 7. Apoptosis retention ratio (θ∗A) for various volume fraction of GNPs (fv) over (a) three injec-
tions and (b) six injections.

Figure 8 shows θ∗A for each Pl according to various number of injected GNPs for a
given fv. Figure 8a shows the change in θ∗A when fv is 10−3. In this case, there was a specific
Pl corresponding to a maximum θ∗A for each number of injections. In addition, it was
confirmed that the maximum value of θ∗A was higher when GNPs were injected in two
or more divided doses compared to one dose. As mentioned above, this is attributed to
the increased GNPs diffusion radius which results in a more widespread temperature rise
inside the tumor. Figure 8b shows the result when fv is 10−8, and it is confirmed that θ∗A
according to Pl is similar for all numbers of injections. This is because the fv is very low and
the effect of the GNPs’ injection is insignificant—the GNP injections do initiate an increase
in the light absorption coefficient of the entire medium. Evaluating the overall treatment
conditions, it was concluded that apoptosis occurrence temperature in tumor tissue was
best maintained when the number of injections was five times, fv was 10−5, and Pl was
58 mW.
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Figure 8. Apoptosis retention ratio (θ∗A) for various number of GNPs injections at (a) fv = 10−3 and
(b) fv = 10−8.

3.3. Thermal Damage of Surrounding Normal Tissues

Previously, the degree to which the apoptosis occurrence temperature was maintained
inside the tumor tissue was evaluated through θ∗A. However, this variable can only identify
whether the phenomenon occurs inside the tumor tissue and cannot confirm the amount
of thermal damage to the surrounding normal tissue. Accordingly, in this study, the
amount of thermal damage to the surrounding normal tissue surrounding the tumor was
quantitatively evaluated through the thermal hazard retention value (θ∗H) [29]. The variable
θ∗H weights the degree to which the phenomena occurred in normal biological tissues
according to various temperature ranges, and then averages the weighted sums at each
time step for all points in the normal tissues surrounding the tumor tissue. The minimum
value of θ∗H is 1, which indicates that no thermal damage occurs in the surrounding normal
tissue, and the value of θ∗H increases as the thermal damage increases. In this study, only
normal tissues from the tumor tissues’ end to 50% of the tumor tissue diameter were
considered for thermal damage analysis.

Figure 9 shows θ∗H for each Pl according to fv. Figure 9a represents the case of three
GNPs injections in the tumor tissue, while Figure 6b represents six injections. In both cases,
as fv decreases, the amount of thermal damage to surrounding normal tissues decreases.
This is because as fv decreases, the temperature increase of the tumor tissue occurs less, as
shown in Section 3.2.
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Figure 9. Thermal hazard retention value (θ∗H) for various volume fractions of GNPs (fv) over
(a) three injections and (b) six injections.
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Figure 10a,b shows θ∗H for each Pl according to the number of GNPs injections when
fv is 10−3 and 10−8, respectively. As shown in Figure 10a, as the number of injections
increases, so does the amount of thermal damage in the surrounding normal tissue. This is
because as the number of injections increases, the diffusion radius of GNPs within the tumor
increases, resulting in a temperature rise across a wider range of the tumor tissue, and, as a
result, more laser heat absorbed from the tumor tissue is transferred to the surrounding
normal tissue.
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Figure 10. Thermal hazard retention value (θ∗H) for various numbers of GNPs injections when
(a) fv = 10−3 and (b) fv = 10−8.

3.4. Quantitative Analysis of Photothermal Therapy Effect

Sections 3.2 and 3.3 evaluated the degree of maintenance of apoptosis occurrence
inside the tumor tissue and the amount of thermal damage to the surrounding normal
tissue, respectively. However, since the two phenomena do not occur individually, but
rather simultaneously, they should be considered in combination. Therefore, this study
identified treatment conditions that maximize the occurrence of apoptosis in tumor tissue
and minimize thermal damage to surrounding normal tissues, which is the goal of pho-
tothermal therapy. This was accomplished using the effective apoptosis retention ratio
(θ∗e f f ) [29], defined as the ratio of θ∗A and θ∗H calculated above. The maximum value of θ∗e f f
is 1, corresponding to a case where there is no thermal damage at all to the surrounding
normal tissue while all points inside the tumor tissue maintained the apoptosis temperature
range for all time steps.

Figure 11 shows the resulting θ∗e f f at each Pl according to various conditions of pho-
tothermal therapy. The trend of the overall graph was derived in the same way as θ∗A, and
it was confirmed that there was a Pl corresponding to an optimal therapeutic effect for each
fv and number of GNPs injections. At Pl values below the optimum point, the temperature
of the tumor tissue did not rise sufficiently, resulting in a sub-optimal treatment effect. At
values of Pl greater than the optimum point, the temperature of the tumor tissue increased
excessively, resulting is significant transfer of laser heat to the surrounding normal tissue,
increasing the thermal damage. When summarizing the effects of all treatment conditions,
it was confirmed that the optimal treatment effect was achieved when the number of injec-
tions was six, fv was 10−3, and Pl was 42 mW. The optimal Pl for treatment was lower than
that for θ∗A; this is because a higher Pl results in greater heat transfer from the tumor tissue
to the surrounding normal tissue, increasing the amount of thermal damage. Likewise,
the higher optimal fv for treatment vs. θ∗A is explained as follows: the effect of fv on heat
absorption (caused by the change in the light absorption coefficient) is greater than the
effect of laser penetration depth (caused by higher Pl) on the maximum heat absorption
depth. Through this analysis, the treatment conditions that produce optimal treatment
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effects were identified for the case of photothermal therapy on a skin layer where squamous
cell carcinoma has occurred.
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Figure 11. Effective apoptosis retention ratio (θ∗e f f ) for (a) various fv values over three GNPs injections;

(b) various numbers of GNPs injections for fv = 10−6.

4. Conclusions

In this study, a skin layer in which squamous cell carcinoma occurred was simulated
with numerical modeling to evaluate the effect of photothermal therapy under various con-
ditions. To simulate the actual treatment situation, it was assumed that gold nanoparticles
were directly injected and partially distributed inside the tumor, and numerical analysis
was performed while changing the intensity of the irradiated laser, the volume fraction of
the injected gold nanoparticles, and the number of direct injections. To consider the optical
effect when gold nanoparticles were administered to tumor tissue, the optical properties
of the tissue were calculated by applying the discrete dipole approximation method. In
addition, the Monte Carlo method was used to analyze the absorption and scattering
behavior of light energy in the medium, and the temperature distribution in the medium
was calculated based on the thermal diffusion equation.

Using the obtained temperature distribution, the degree of maintenance of apoptosis
occurrence temperature in tumor tissue was derived through the apoptosis retention ratio,
and the thermal damage of surrounding normal tissues was calculated through the thermal
hazard retention ratio. In addition, to analyze the therapeutic effect of actual treatment
conditions, the photothermal therapy conditions that produced optimal therapeutic effects
were evaluated through the effective apoptosis retention ratio, which balanced the two
ratios above. For the tumor tissue conditions presented in this study, it was concluded
that the optimal treatment effect was achieved when the volume fraction of gold particles
was 10−3, deposited over six direct injections and irradiated at a laser power of 42 mW.
It is thus judged that it is possible to present a reference point for optimal treatment in
photothermal therapy in which GNPs are directly injected into the tumor. Furthermore, it is
believed that the popularization of photothermal therapy can be accelerated by optimizing
treatment conditions from a clinical perspective through the process of performing actual
treatment trials. In addition, it is necessary to study a more realistic situation, reflecting
the phenomenon that GNPs are dissipated by various mechanisms immediately after they
are injected.
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Nomenclature

C Cross - section area (m2)
cv Specific heat (J/kgK )
E Electric field (N/C)
fv Volume fraction of GNPs
F Fluence rate (1/m2s)
g Anisotropy factor
k wavenumber of radiation (1/m )
km Thermal conductivity (W/mK )
P Polarization vector (C/m2)
Pl Intensity of laser (W)
Q Dimensionless efficiency factor
r Position vector
reff Effective radius of nanoparticle (m)
t Thickness (m)
T Temperature (K)
Greek symbols
α Polarizability (C2m2/J)
θ∗A Apoptosis retention ratio
θ∗e f f Effective apoptosis retention ratio
θ∗H Thermal hazard retention value
µabs Absorption coefficient (1/m)
µsca Scattering coefficient (1/m)
ρ Density (kg/m3)
τ Time (s)
Subscripts
abs Absorption
m Medium
np Nanoparticle
sca Scattering
x, y, z Notation of direction
Superscripts
+ Next element
− Previous element
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