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Abstract: The use of intranasal implantable drug delivery systems has many potential advantages 
for the treatment of different diseases, as they can provide sustained drug delivery, improving pa-
tient compliance. We describe a novel proof-of-concept methodological study using intranasal im-
plants with radiolabeled risperidone (RISP) as a model molecule. This novel approach could pro-
vide very valuable data for the design and optimization of intranasal implants for sustained drug 
delivery. RISP was radiolabeled with 125I by solid supported direct halogen electrophilic substitution 
and added to a poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was 
casted on top of 3D-printed silicone molds adapted for intranasal administration to laboratory ani-
mals. Implants were intranasally administered to rats, and radiolabeled RISP release followed for 4 
weeks by in vivo non-invasive quantitative microSPECT/CT imaging. Percentage release data were 
compared with in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and 
also by HPLC measurement of drug release. Implants remained in the nasal cavity for up to a month 
and were slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in 
the first days with a steadier increase to reach a plateau after approximately 5 days. The release of 
[125I]I− took place at a much slower rate. We herein demonstrate the feasibility of this experimental 
approach to obtain high-resolution, non-invasive quantitative images of the release of the radio-
labeled drug, providing valuable information for improved pharmaceutical development of in-
tranasal implants. 
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1. Introduction 
Implantable drug delivery systems are capable of providing sustained drug delivery 

over prolonged periods of time [1–6]. The interest in this type of system has been experi-
encing an increase over recent years due to its potential advantages over conventional 
drug delivery systems. Implantable systems can be used for either systemic or local drug 
delivery, with many advantages. First of all, once implanted, these devices area capable 
of providing unattended sustained drug delivery [7–9]. Therefore, patients are not re-
quired to rely on continuous and repeated oral intake of medication, which will improve 
patient compliance [7]. A wide variety of implantable drug delivery systems have been 
described, including subcutaneous implants [10–14], cardiovascular devices [15–21], or 
orthopaedic implants [22,23]. Among these type of implantable devices, intranasal im-
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plants have been described for local drug delivery [24]. These devices are normally ap-
plied within nasal sinuses after surgery to maintain sinus patency while releasing corti-
coesteroids to reduce inflammation and reduce polyp recurrence [24]. 

Intranasal drug delivery has shown potential not only for treating local conditions 
but to administer drug systemically or even to achieve a more effective delivery of drugs 
into the brain [25,26]. Most of the formulations developed for intranasal delivery are liq-
uid- or gel-based formulations [27–29]. The only type of implantable devices clinically 
available for intranasal applications are the previously mentioned nasal implants/stents 
for local drug delivery. Accordingly, there is a clear need for new types of implantable 
devices that combine the advantages of implantable devices and intranasal drug delivery. 

As in vitro release kinetics might differ from in vivo forms, there is a real need for 
the development of advanced techniques to measure drug release from intranasal im-
plants in vivo. Radionuclide-based non-invasive molecular imaging techniques are cur-
rently widely used in the clinical setting for diagnosis of multiple diseases and or patho-
physiological altered conditions. In addition, their fully translational nature (“from bench 
to bedside and back”) has fostered the use either of positron emission tomography (PET) 
or single-photon emission computed tomography (SPECT) technologies in pharmaceuti-
cal development. These techniques can provide three-dimensional, fully quantitative, 
non-invasive, longitudinal, whole-body images with submillimeter resolution and an ex-
tremely high sensitivity that is unsurpassable by any other in vivo imaging technology, 
given that micro or nanomolar concentrations of radiolabeled molecules in tissues can be 
detected. In addition, the current state-of-the-art multi-technology devices adapted for 
small animal imaging combine high-resolution molecular imaging using microPET or mi-
croSPECT with anatomical imaging using computed tomography (CT). 

The main potential drawback of these techniques is their much lower throughput as 
compared to others, their cost, and the need for special facilities for the use of radioactive 
material. However, their fully translational nature and their aforementioned unique char-
acteristics could make them ideal for research, as in the case described in this work. 

On the other hand, visible-light in vivo imaging techniques such as bioluminescence 
and fluorescence are widely available, relatively non-expensive, and can provide a high 
experimental throughput. However, they have several problems intrinsically bound to the 
physical nature of the wavelength of visible light photons, including those related with 
autofluorescence of biological tissues and mainly the lack of real 3D information as visible 
light photons are significantly absorbed by the tissues, and hence the exact location and 
intensity of a signal cannot be obtained. Furthermore, these techniques are intrinsically 
non-quantitative, and only magnitudes such as “relative light units” can be obtained, but 
there is no way to really obtain fully quantitative values. 

This work describes a proof-of-concept study describing the use of intranasal im-
plants for drug delivery using risperidone (RISP) as a model molecule. Applying solid-
based radioiodination, we herein radiolabeled RISP with a long-lived radionuclide (125I), 
designed poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) (PLGA)-
based intranasal microimplants adapted for administration to rats, loaded them with 125I 
radiolabeled RISP, and in vivo imaged microimplants for a month using high-resolution 
MicroSPECT/CT. 

2. Materials and Methods 
2.1. Risperidone Radiolabelling 

RISP (Enke Pharma-Tech Co., Ltd., Cangzhou, China) was radiolabeled by direct 
electrophilic substitution with 125I (Figure 1) under oxidative conditions using a modified 
protocol derived from Saddar et al. [30]. Given the very low solubility of RISP in aqueous 
solvents, we used Iodination Beads (ThermoFischer Sicentific, Waltham, MA, USA) to 
achieve mild oxidation conditions and permit a solid-supported reaction in a RISP pow-
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der suspension. The radionuclide was chosen on the basis of its long half-life and radio-
active properties that could permit follow up of the release of the radiolabeled RISP for 
more than 1 month. 125I has a half-life of 59.49 days, and it decays by electron capture to 
an excited state of 125Te that immediately decays by emission of 35 keV gamma rays. 

 
Figure 1. Solid supported 125I-radiolabelling of RISP via direct halogen electrophilic substitution. 

For the radiolabeling reaction, one Pierce™ iodination bead was pre-wetted in 500 
µL of PBS (pH = 6.5) for 5 min, removed from the solution, and dried over filter paper. 
Thirty milligrams of RISP was weighted in a bottom-flat glass vial, and the iodination 
bead was added along with 300 µL of fresh PBS and 18,5 MBq of [125I]INa solution (Perkin 
Elmer Inc, Amsterdam, the Netherlands) in <5 µL. The suspension was thoroughly mixed 
by shaking and left with gentle magnetic stirring for ≈72 h. 

2.2. Quality Control 
The radiolabeling reaction was periodically monitored by radio thin-layer chroma-

tography (radioTLC). For this purpose, samples were taken from the reaction vial just 
after increasing the stirring speed. Such samples (that contained both the non-dissolved 
RISP and the reaction solution) were added into 10 µL of an acidified PBS solution (3 mL 
of HCl 1 M:2 mL of PBS) to dissolve RISP, then seeded at 1 cm from the bottom of a 10 cm 
iTLC SG strip (Agilent Technologies, Santa Clara, CA, USA) that was developed to a final 
distance of 8 cm from the origin with 0,9 % NaCl. Chromatograms were analyzed using a 
radioTLC scanner (Scam RAM, LabLogic, Sheffield, UK). The separation method had pre-
viously been validated by our group using non-radioactive RISP and iodide samples vis-
ualized with a 7.5 g/L KMnO4, 50 g/L K2CO3, and 0.625 g/L NaOH solution as described 
in the Section 3. 

2.3. 125I-Risperidone Extraction and Purification 
At the endpoint of the reaction, the iodination bead was removed from the radio-

labeling vial, the suspension was thoroughly mixed and transferred into an Eppendorf 
tube, the vial was washed twice with 200 µL of PBS, and the three samples were mixed. 
The overall reaction suspension was centrifuged at 9000 rpm for 1 min, and the superna-
tant was removed. The solid precipitate was then washed twice with 200 µL of PBS, and 
the supernatant was analyzed by radioTLC as described above to check for the absence of 
free [125I]I−. The precipitate containing 125I-labelled RISP (125I-RISP) was then dried over-
night with gentle shaking at 37 °C in a ThermoMixer C (Eppendorf Thermoshaker, Ham-
burg, Germany). 

2.4. Preparation of Microimplants Containing 125I-RISP or [125I]INa 
To prepare PLGA-based microimplants, silicone molds were used (see Figure 2A,B). 

These implants were prepared by using a 3D-printed poly(lactic acid) and casting silicone 
on top as described previously (Figure 2C,D) [11]. The silicone (Xiameter® RTV-4250-S) 
(Notcutt, Surrey, UK) was prepared by mixing a silicone elastomer with a curing agent 
(ratio 10:1). The molds contained two parts: a part containing 3 cavities to prepare 3 im-
plants and a lid. ViatelTM DLG 7509 E PLGA (75/25 D,L-Lactide/glycolide ratio; Mn = 61.9 
kDa; Mw = 104.2 kDa; Tg = 50 °C; ester end group) (Ashland Specialities Ireland, Mullingar, 
Ireland) was used to prepare implants. In order to achieve this, approximately 20 mg of 
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the dry solid 125I-RISP mixture was dissolved in 70 µL of dichloromethane. Subsequently, 
16 mg of PLGA was added to the 125I-RISP solution, and the solution was carefully mixed 
(to avoid bubble formation) for 20 min. Using the silicone mold and a positive displace-
ment pipette, 15 µL of the 125I-RISP/PLGA mixture containing around 750 kBq was added 
to the silicone molds to prepare each microimplant. After 24 h at room temperature, mi-
croimplants were taken out from the molds, burrs were carefully removed and longitudi-
nally cut in half, and their activity was measured in a dose calibrator calibrated for 125I. 
Such halves contained 150–225 kBq 125I and were rigid enough for intranasal in vivo ad-
ministration. As controls for in vitro and in vivo release studies, microimplants containing 
[125I]INa were prepared in a similar way but using [125I]INa instead of 125I-RISP. 

 
Figure 2. Images showing silicone molds used to prepare intranasal implants (A,B). Microscopy 
image of a PLGA implant prepared using the silicone molds (C). Size comparison of microimplants 
(D). 

2.5. In Vitro Release Studies 
Microimplants containing either 125I-RISP or [125I]INa were placed in 2 mL PBS at 37 

°C with constant agitation (350 rpm) in a thermomixer. Five microliter triplicate samples 
were taken at defined time points for up to 30 days and radioactivity measured in a 
gamma counter (Hidex Automatic Gamma Counter, Turku, Finland) calibrated for125I, 
and percentage release ratios were calculated. 

In parallel, the release of unlabeled RISP from PLGA implants in PBS (pH = 6.5) at 37 
°C was evaluated using HPLC. For this purpose, an Agilent 1220 Infinity II LC gradient 
system (Agilent Technologies UK Ltd., Stockport, UK) equipped with a Phenomenex® 
SphereCloneTM C18 ODS column (150 mm length × 4.60 mm internal diameter, 5 µm 
particle size) was used. The mobile phase contained a mixture of organic (85% v/v) and 
aqueous phases (15% v/v). The aqueous phase contained 10 mM sodium dihydrogen phos-
phate buffer. On the other hand, the organic phase contained a mixture of methanol and 
acetonitrile (75:25% v/v). RISP detection was carried out at 235 nm. 

2.6. Animal Studies 
Female Wistar rats (212 ± 22,5 g, Harlan Laboratories S.A., Barcelona, Spain) were 

used. Animals were socially housed on 12 h light–dark cycles under standard conditions 
in compliance with the current regulation and given free access to food and water. 

2.7. Microimplant Intranasal Administration and In Vivo Release Studies 
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Radiolabeled microimplants halves (≈5.5 mm× 0.5 mm) were introduced into a 20 GA 
1.1 mm × 30 mm i.v. catheter (Insyte Autoguard BC, BD medical, Madrid, Spain) previ-
ously cut at around 15 mm from the hub to flatten the bevel and shorten its length. A total 
of 7–10 mm of the catheter were slowly introduced through the nostril of anesthetized rats 
(2% isoflurane in 100% O2 gas), the shaft was carefully pushed until the implant was left 
into the nasal cavity, and then the catheter was removed (Figure 3). Six animals were 
treated with 125I-RISP microimplants, while three were treated with microimplants loaded 
with [125I]INa as controls. The correct placement of the microimplants inside the nasal cav-
ity was verified by microSPECT/CT imaging. 

 
Figure 3. Microimplant (red arrow) placed inside the modified catheter (A). Intranasal administra-
tion of the implant to the animal (B). 

After microimplant administration, in vivo images were acquired just post-admin-
istration (day 0) and at 1, 3, 7, 11, 14, 18, 21, and 28 days. SPECT scans were acquired in a 
U-SPECT6/E-class (MILabs, the Netherlands) using an ultrahigh resolution UHR-RM-1 
mm multi-pinhole collimator. Rats were placed prone on the scanner bed under continu-
ous anesthesia with isoflurane (2% in 100% O2 gas) to acquire dynamic scans of the head 
in list mode format over 30 min. Following the SPECT acquisition, and without moving 
the animals, CT scans were performed to obtain anatomical information using a tube set-
ting of 55 kV and 0,33 mA. All the SPECT images were reconstructed using the 125I pho-
topeak centered at 29 keV with a 20% energy window width and using a calibration factor 
to obtain the activity information (MBq/mL). Finally, attenuation correction was applied 
using the CT attenuation map. To obtain fully quantitative values (MBq), the system was 
calibrated using a point source prepared from [125I]INa. 

Studies were exported and analyzed using the PMOD software (PMOD Technologies 
Ltd., Adliswil, Switzerland), where fully three-dimensional fused SPECT/CT images were 
processed. The retention of radioactivity in the microimplant was calculated for each im-
age as follows: a spherical volume of interest (VOI) containing the entire microimplant 
was drawn over SPECT images using the CT co-registered images as anatomical reference. 
Then, a semiautomatic delineation tool was used applying a predefined threshold of 1% 
of the maximum voxel value to obtain a new VOI that delimited the entire signal. Finally, 
the average value inside the VOI (MBq/mL) multiplied by the volume (ml) was calculated 
to estimate the amount of radioactivity retained in the microimplant. From these data, the 
corresponding 125I decay correction based on the half-life (T1/2) of 125I and the time elapsed 
between the administration and the imaging was applied (A = A0 ∗ e(-ln(2) ∗ t/T1/2). The 
percentage of the release was calculated as the inverse of the percentage of the retention 
detected in each image and considering the retention value in the 1 h post-administration 
image as the administered dose for each animal. 
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3. Results and Discussion 
3.1. Reaction Optimization and Radiolabelling Yield 

The radiolabeling yield was studied at different time intervals by radioTLC. Before 
taking a sample for radioTLC, the stirring speed was increased to be able to pipette a rep-
resentative sample containing both a fraction of the solid (RISP) and the liquid in a sus-
pension. Furthermore, after around 24 h, a solid precipitate could not be seen any more, 
and the suspension had a milky-turbid visual appearance. At 24 h, the labelling yield was 
around 50%, and it only increased marginally up to 72 h. 

RISP iodination reaction was first tested in an Eppendorf tube. Although the tube 
was inverted several times every 2 h, a rather large part of the RISP was not in contact 
with the solution because it precipitated under reaction conditions and the contact of the 
solid with the iodination bead was not sufficient to get appropriate yields. Radiolabeling 
was then tested in a flat-bottom 5 mL glass vial that permitted continuous magnetic stir-
ring at low speed for the overall reaction time (up to 72 h). Using the simple approach of 
combining a surface-based reaction on the iodination beads with a water-insoluble mole-
cule such as RISP, we were able to carry out the radioiodination exchange reaction in sus-
pension. Although the reaction yield was relatively low (around 25%), after extraction, 
centrifugation, and two consecutive washing steps, virtually all [125I]I− was removed from 
the reaction mixture as determined by the radioTLC measurement of radioactivity in the 
different supernatants. The extraction and purification processes were optimized to max-
imize the purity of the final product, not the reaction yield. 

RISP has previously been radiolabeled with 125I [30], although by direct electrophilic 
substitution by oxidation with chloramine-T in an alcoholic solution of RISP. Strong oxi-
dation with aggressive reagents such as chloramine-T might produce alterations in the 
molecule, and this requires a careful optimization of reaction conditions and times. In our 
hands, mild oxidation with iodination beads produced a smoother and more controllable 
reaction, albeit the final reaction yield was usually lower. Nonetheless, we decided to use 
a solid-supported electrophilic substitution and a final extraction step to maximize purity 
of 125I-RISP and not reaction yield. In this way, using high specific activity [125I]INa (≈629 
GBq/mg), we were able to obtain >99% pure 125I-RISP in sufficient amount to make PLGA 
microimplants containing radiolabeled RISP for in vivo imaging. Given the chemical 
structure of RISP, we might have considered radiolabeling it with fluorine-18 (a PET ra-
dionuclide with a half-life of 109.8 min) producing an identical molecule to the parent one. 
This is not only a very complex synthesis that has only been described in one paper thus 
far [31] (and never been used for in vivo imaging), but is also performed with an extremely 
short half-life radionuclide that could in no way be used for long-term release studies such 
as the ones presented here. 

3.2. Quality Control Validation 
As can be seen in Figure 4A, using iTLC SG strips developed in saline and stained 

with permanganate, the mixture of RISP and KI showed no interferences in TLC, and both 
species could be clearly resolved. 

When using radioactive samples for QC of RISP radiolabeling, both species were able 
to be properly resolved and identified (see a representative radioTLC chromatogram in 
Figure 4A,B). 
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Figure 4. (A) Permanganate-stained TLC strips. RISP (R) remained at Rf = 0, while sodium iodide 
(I) advanced to the front (Rf = 1). The mixture of both compounds (R + I) showed that the mixture 
did not alter the individual results. (B) Representative radioTLC radiochromatogram of radio-
labeled 125I-RISP at 72 h, before purification. 

3.3. In Vivo and In Vitro Release Studies 
SPECT-CT images show the correct placement of the microimplant inside the nasal 

cavity of the animals (Figure 5), thus demonstrating the feasibility and accuracy of the 
administration procedure we developed. The sensitivity and resolution of MicroSPECT 
depends on the radionuclide used and the scanner, but it can be as low as 0.5 mm. Further 
details of the MicroSPECT/CT system were previously reported by Prieto et al. [32]. Lon-
gitudinal images acquired in all animals for around 4 weeks showed that the implants 
remained inside the nasal cavity for a long time (Figure 6). The amount of radioactivity in 
the microimplant progressively decreased over time (all data were corrected for the decay 
of 125I and were hence comparable). When comparing the release of 125I-RISP and [125I]I−, a 
clearly different pattern was seen with faster clearance of the former (Figure 6), probably 
due to its lipophilic nature. 125I-RISP release reached around 45% by day 3 and then stead-
ily but slowly increased up to 80% by day 21. [125I]I− release was much slower, and it only 
accounted for 17% by day 12, and then it increased with a larger slope up to around 45% 
by day 21. Between 3 and 4 weeks after implantation, the implant moved from its original 
placement position towards the nostril, probably due to the progressive dissolving of the 
PLGA matrix (see Figure 6A at 28 days). The in vivo imaging technique used allowed us 
to even be able see this phenomenon. 

 
Figure 5. Fused MicroSPECT-CT images showing the location of the microimplant inside the nasal 
cavity. Hotter colours indicates higher concentration of radioactivity. 
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Figure 6. (A) Comparative release of radioactivity in vivo from 125I-implants. MicroSPECT-CT im-
ages clearly show a progressive decrease in the amount of radioactivity in the nasal cavity over time, 
both for 125I-RISP and [125I]INa implants. Hotter colours indicates higher concentration of radioac-
tivity. The plot in (B) shows comparative quantitative values of radioactivity release as measured in 
the images on the left (mean ± SD). 

In vitro release studies of 125I-RISP and [125I]I− from the microimplants also showed a 
different pattern, although the different experimental conditions between in vitro and in 
vivo experiments figures were somewhat different (Figure 7). HPLC release studies of 
unlabeled RISP implants showed a fast release of RISP in the first 2 days (up to 65%) and 
then a very slow increase up to 80% by day 7. 

 
Figure 7. Radioactivity release in vitro from 125I-implants are shown in (A), while (B) shows RISP 
release from implants as determined by HPLC (mean ± SD). 
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All three methods (in vivo SPECT-CT imaging, in vitro radioactivity release studies, 
and HPLC release studies) showed a fast release of the drug in the first days and then a 
much steadier increase to reach a plateau-like situation. Release profiles are mostly com-
parable, but figures and slopes are different for each method, yet all three methods show 
that RISP can be released from our implants for a long time. 

The highly lipophilic drug used in these experiments was slowly but steadily re-
leased from the microimplants, while the release of a hydrophilic compound ([125I]INa) 
took place at an slower rate. If both the lipophilic molecule and the ionic one would be 
equally trapped in the PLGA implant matrix, and their release would only depend on the 
progressive dissolution of the implants over time in vivo, quantitative values and release 
profiles of 125I-RISP and [125I]I− would be similar. Our data show that the lipophilic or hy-
drophilic nature of the molecule of interest definitely conditions its release (as expected). 
Consequently, the dissolution of the implants would be responsible to some extent for the 
release of the loaded test molecule, but the specific physicochemical characteristics of the 
molecule under study and its interactions with the implant matrix are also of paramount 
importance, not only in in vitro experiments, but also in vivo, as shown by our images. 
The exact relationship between the release produced by dissolution of the implant and 
progressive release from the matrix are difficult to estimate for small ionic molecules (such 
as iodide) when a matrix as PLGA is used. 

It is important to note that 125I-RISP was not seen in the brain or any other part of the 
animal. The reason behind this could be the small amount of radioactivity used in each 
implant (just a few kBq, as compared to magnitudes in the order of MBq usually used for 
in vivo imaging in small animals). Furthermore, the passage of iodinated RISP through 
the nose to brain cribiform plate is unknown, and it might be different to some extent 
different to that of RISP, leading to a lower entrance into the brain. However, it is im-
portant to note that previous studies showed that intranasal RISP formulations showed 
enhanced drug uptake [33–35]. This work describes a new method for RISP radiolabeling 
and loading into intranasal microimplants. These implants have been designed to be im-
planted inside the nasal cavity to provide enhanced brain delivery of drugs for potential 
treatment of schizophrenia. Intranasal implants can revolutionize the treatment of chronic 
conditions affecting the central nervous system as they can provide sustained drug deliv-
ery and enhanced brain targeting. As mentioned previously, nasal stents and nasal drug 
eluting implants are currently been used to treat nasal polyps [24,36–39]. Accordingly, 
they are designed for localized drug delivery. Modifying this type of implant to provide 
sustained drug release into the brain can be used in the treatment of a wide range of 
chronic conditions. These devices are capable of providing prolonged drug delivery and, 
therefore, have potential to improve patient adherence to treatment [40–43]. This is espe-
cially important for schizophrenia treatment, as it has been reported that up to 75% of 
patients discontinue the treatment within the first year and a half [44]. Non-adherence to 
treatment has an enormous impact for this patient as it increases the risk of relapse, hos-
pitalization, and even suicide rates [45–49]. Moreover, there is an obvious economic im-
pact for healthcare systems. In the UK, it has been estimated that the cost of relapse per 
patient can be up to GBP 15,000 per year [50]. This figure is four times higher than the 
equivalent cost for non-relapse patients [51]. In addition, in order to improve patient com-
pliance, nasal drug delivery will improve brain uptake, minimizing the risk of systemic 
exposure and potential side effects. Therefore, intranasal implants for the treatment of 
chronic conditions affecting the central nervous system offer multiple benefits to conven-
tional treatment. However, before these systems can be used, in vivo testing is required. 
In the present work, we have shown potential alternatives to evaluate in vivo drug release 
using radiolabeled microimplants containing RISP. 

4. Conclusions 
To the best of our knowledge, this is the first study to describe the use of radiolabeled 

RISP for the development of intranasal implantable devices. This procedure can be used 
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to evaluate drug release in vitro and in vivo in a simple way. This is especially important 
for in vivo drug delivery. We herein demonstrate the feasibility of this approach and its 
application to obtain high-resolution images of the release of the radiolabeled drug from 
the microimplants for more than one month. Furthermore, the possibility to accurately 
quantify in vivo the amount of the drug in the target, instead of simply measuring the 
concentration of the drug or its metabolites in the body fluids (i.e., blood, urine, etc.) as a 
result of the release, provides very valuable data for the development and fine-tuning of 
implantable long-term drug release devices. Future studies addressing the relationship 
between dosage of the number of therapeutic molecules in the brain and blood of the an-
imals and the values quantitatively evaluated by imaging would further help clarify this 
point. 
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