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Proteins and peptides are on the rise as therapeutic agents and represent a higher
percentage of approved drugs each year: 24% in 2021 vs. 13% in 2016 [1]. These classes
of therapeutics can engage targets considered undruggable by small molecules. However,
proteins and peptides are often less stable and labile to proteolysis, which limits their
effective use as therapeutics. These challenges can be overcome by chemical modification
or “chemical enhancement”. For instance, peptide lability to proteases can be greatly
reduced by cyclization or the use of non-canonical amino acids, while clearance may be
decreased by conjugation to albumin. Proteins may also be chemically enhanced; for
instance, stability may be increased by conjugating polyethylene glycol and the targeting
capacity of antibodies may be combined with the potency of toxic small molecules by
chemical conjugation. In this Special Issue, we include some of the latest advances in this
thriving field.

Peptides have many therapeutic applications, including as antimicrobial agents and
for the treatment of diabetes, gastrointestinal disorders, and tumors, among others. More-
over, peptides can also be used to endow targeting or cell penetration properties to other
molecules. The use of peptides as therapeutics is growing, and a total of 33 non-insulin
peptide drugs have been approved worldwide since 2000 [2]. More than 170 peptides
are in active clinical trials, with many more in preclinical development. Peptides have
two main physiological disadvantages: rapid clearance and high lability to proteases. The
first limitation may be overcome by conjugation to proteins or polymers, while the latter
may be addressed by cyclization, backbone modification, and the use of non-canonical side-
chains. Chemical modification can not only be used to increase peptide residence time and
resistance to proteases, but also to boost binding and activity. Since peptides have less than
40 amino acid residues (as defined by the FDA) and are amenable to chemical synthesis,
introducing chemical modifications to enhance their properties is readily accessible.

This Special Issue contains several publications showing a wide variety of strategies
to enhance peptide activity. As Shatz-Binder and collaborators describe [3], in order to
decrease blood clearance, therapeutic peptides may be conjugated to polymers or proteins
such as albumin, antibody crystallizable fragments (Fc), or nanoparticles. Increasing
peptide residence time and their accessibility for immune recognition is key in peptide
vaccines. For instance, Skwarczynski, Toth, and collaborators prepare an anticancer vaccine
by conjugating a peptide derived from the human papilloma virus, responsible for cervical
cancer, to a polyleucine tail [4]. They incorporate the chemically enhanced peptide into
liposomes and show that their vaccine induces a strong cellular immune response in
tumor-bearing mice.

Focusing more on protease lability, Andreu’s group provide us with a comprehensive
review on chemically enhanced peptides as modulators of G-protein-coupled receptors
(GPCR) with drug-like properties. They focus on GPCR-disrupting peptides and deriva-
tives with improved potency and bioavailability [5]. Cyclization of peptides has exten-
sively been used to confer higher protease stability and affinity due to reduced binding
entropy [6,7]. In this Special Issue, Rizwanul Haq and collaborators investigate the mecha-
nism of resistance of colistin, a cyclic antimicrobial peptide with a C-terminus-to-side-chain
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connectivity [8]. They find that electrostatic forces are key in preventing interaction with
the cell membrane, and this hinders the internalization of the antimicrobial peptide (AMP)
into bacteria. Rabanal and co-workers focus on improving another antimicrobial peptide
with a C-terminus-to-side-chain cyclization, polymyxin B. The antibacterial activity is fine-
tuned by utilizing non-canonical side-chains to redistribute the hydrophobicity within the
scaffold [9]. The authors show that by introducing small changes, such as the replacement
of leucine by norleucine, safer and more selective antibiotics can be obtained. Gomes
et al. also study the possibility of adding imidazole moieties to enhance the activity of an
antibacterial peptide and disclose a promising lead to tackle complicated skin infections
with a new chimeric peptide that combines both collagenesis-boosting and antimicrobial
properties (PP4-3.1) [10]. Aiming to generate even more accessible therapeutics, Mor’s lab-
oratory studies a peptidomimetic antibiotic with a completely altered backbone, combining
positively-charged amino acids and aliphatic methylene chains [11]. The authors of this
study find that this peptidomimetic acts through a similar mechanism to other AMPs but
with a significantly higher potentiation capacity. Interestingly, amino acids alone may also
boost the activity of other materials. For instance, El-Fakharany and collaborators show
that decorating tungsten oxide nanoparticles with Cys or Trp boosts their broad-spectrum
antibacterial activity [12].

Other important roles of peptides in biotherapeutics is their capacity to provide selec-
tivity by targeting specific membrane proteins, to enhance cell internalization or to increase
transport across biological barriers. In this Special Issue, Villaverde and coworkers demon-
strate efficient antitumor activity of a construct containing a peptide targeting anti-CXCR4
fused to GFP that is covalently conjugated to a microtubule polymerization inhibitor,
monomethyl auristatin E [13]. When targeting proteins or nanoparticles, clearance is gener-
ally not an obstacle because the peptide is conjugated to a large cargo, reducing glomerular
filtration. However, lability to proteases may decrease targeting or transport capacity. In
this Special Issue, we have reviewed the latest advances in the field of protease-resistant
targeting and cell-penetrating peptides, critically assessing the advantage of enhancing the
metabolic stability of these peptides [14]. Two main approaches are used to make these
peptides less prone to protease degradation: enantio/retro-enantio isomerization [15,16]
and cyclization [17,18].

In proteins, the most extended modification is PEGylation, which reduces protein
aggregation, immune recognition, protease degradation, and renal clearance [3]. Chemical
enhancement has also been used to boost protein function, such as increasing enzyme
activity with non-canonical amino acids [19], improving thermal stability in proteomimet-
ics [20], and generating targeted conjugates. In this Special Issue, Kogan and collaborators
describe the use of the ferritin protein as a coating to efficiently deliver gold nanopar-
ticles into cells [21]. These nanoparticles have great potential as theranostic agents but
cannot be injected without modification due to toxicity and specificity issues. In this article,
they use ferritin homopolymers as nanoreactors to synthesize gold nanoparticles, and
they find low cytotoxicity and improved cellular uptake in cells with high levels of the
transferrin receptor.

The most extensively utilized targeted therapeutic conjugates are antibody–drug
conjugates (ADCs). ADCs couple the high selectivity of the antibody to the high potency
of the antineoplastic toxin. An update on the current trends of this class of chemically
enhanced antibodies is also presented in the review by Shatz-Binder and collaborators [3].
A key parameter in the development of ADCs is the linker between the antibody and the
cytotoxic agent, as its characteristics impact the efficacy and pharmacokinetics of the drug.
The numerous types of linkers, including cleavable to non-cleavable ones, are summarized
and compared in a review by Albericio’s group [22]. Site-specific modification has also been
shown to increase the therapeutic index of ADCs [23]. This can be achieved by a variety of
chemogenetic approaches, including enzymatic ligations, genetic encoding of cysteines,
and non-canonical amino acid in the sequence [24–26]. Other opportunities for chemically
enhancing antibodies lie in the raising field of conditionally active antibodies [27].
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In conclusion, this Special Issue covers many of the latest advances in chemically
enhanced peptides and proteins, from conjugation improving selectivity or decreasing
renal clearance to cyclization and the use of backbone and site–chain modifications to
increase protease resistance and affinity. A number of applications are covered, from GPCR
modulation to cancer treatment, with a special focus on antimicrobial peptides. Overall,
this Special Issue will provide the reader with a collection of recent scientific advances in
the development of safer and more efficacious peptide and protein therapeutics utilizing
chemical tools.
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